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AN APPROXIMATION OF THE PRESSURE
FOR THE TWO-DIMENSIONAL ISING MODEL

MARTIN JANZURA

A sequence of pressure functions corresponding to some one-dimensional models is used to approxi-
mate the pressure function of the two-dimensional Ising model. The rate of convergence is derived and
the method is demonstrated with a numerical study.

1. INTRODUCTION

The two-dimensional Ising model is the simpliest non-trivial Gibbs random field. Namely,
a probability measure x on the space {0,1}%’ is called to agree with the Ising model
if its one-dimensional conditional distributions satisfy the “nearest-neighbor” property
and can be expressed in the following way

# (x| zzovgg) = 1 (o za) = T (2] 222 ()
for every t € Z? and a.e. z € {0,1}7[y], where

exp {—z¢ (b + Jy (Zegu + Teeu} + J2 (Tego + T0-0)) }
14 exp{—h—Ji (Tegu + Tiou) = 2 (Tigo + T120)}

I, (:L', |:czz\“)) =
are called the local characteristics,
At={seZ% |t—sl=1}={u—uwv,—v}, u=(10), v=(01),

and h, Ji, J; are arbitrary constants.

In general, the system {II;(|-)},c;» depending on the triplet (%, Jy, J2) does not deter-
mine the probability measure p uniquely. The existence, uniqueness, and other properties
of the Ising model are closely related to the function called the pressure and defined by
the limit

‘,131212|V|'1]og z exp 71LZ-T£~J1 Z Ty Loy — Jo Z Ty Tigy p =

zv€e{0,1}V tev teVn(V—-u) teVN(V-v)

= p(h,Ji,.Jn)
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where V 7 Z? means the expansion ensuring |V|™ [V N(V —t)| — 1 for every t € Z2.
(By |V| we denote the cardinality.)

But, with the exception of the famous Onsager’s result (cf. [3]), concerning a special
case of the problem, no direct way of calculating the pressure p is known. Therefore
various approximative methods, using mostly some kind of expansion, are applied. Here,
we propose a new approximative method based on an approximation of the pressure of
the two-dimensional model by the pressure of some properly chosen one-dimensional
models, for which the transfer matrix method is available (cf. [2]).

As will be seen later, the method works quite well in the “high temperature” area (i.e.
for “small” parameters h, Ji, J;) and even in the neighborhood of the critical point it
seems to give satisfactory results.

2. BASIC LEMMA

For a fixed positive integer R and a real v let us consider the two-dimensional model
with the state space X = {0, 1} and the “nearest-neighbor” local characteristics given
by

exp{ Ud(z) E U: (It,zt-{»s}
% e {030 - T, U377

I (7 Zy) =

X

for every 7, € X, T € Ym, where

Uof - Z +J]Z—x~—1+l

i=1 i=1

Uxz,5) = v-4i-z¢F,  UTE9) = U3,

BED = A Y EF - hTE, U@ = UED)
=1
for every 7, %, Z € X. )
Let us denote by G1(7) the set of translation invariant probability distributions on X
with the one-dimensional conditional distributions equal a.s. to the local characteristics

—
{Ht }teZ2‘
Finally, we denote by

By (h, D1, J2) =

= hm V| log Z exp ZU” Z U2 (%1, Tean)— Z U2 (1, Feg)

FoeX” 3% 1eVa(V—u) teva(V—v)

the pressure corresponding to above defined model.
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Lemma. Let v* € [0,1] be the point at which the function
F(7) = 9P (hy 1, J2) + (1 = 7)Bo (hy 11, J2) = B, (h, J1, J2)
assumes its maximum. Then there exists
w € Gi(r)
such that
B (b Ja) = B (i) = 1 [ (3838 = 1) = o (a8 -7 = )]

holds.

Proof. The statement follows immediately from the equivalence between translation
invariant Gibbs states and tangent functionals to the convex functional p (cf. [4], Thm.
8.3} and the general subdifferential calculus (cf. e.g. [5], Sec. 5).

3. MAIN RESULT

Now, let us make clear what was the aim of introducing the models with the “aggregated”
state space X in the preceding section.
Directly from the definitions it is easy to see that

Py (R, Jr, B) = R-p(h, Jy, Ja)

holds for every triplet (k, Ji, J2).

Since for ¥ = 0 there is no horizontal interaction, i.e. the model consists of mutually
independent columns, we may view the model as a one-dimensional one. And, considering
all %, t € Z as the corresponding segments of a sequence z7 = {2,},e5 € {0,1}% (we
put z, = F for s = ¢ - R+ 1), we conclude that

Bo(hyJi, ) = R-pR (h, Jy, Ja),

where
Pk, I, Jo) =
n n-1 n-R
= lim |22 + 1| log Z exp {—h Z z;—Jy Z z; zi01—J2 Z z; x,-“;}
Tfeum,m) €{0, 120 j=—-n i=—n i=—n

is the pressure of the one-dimensional model with the state space {0,1} and the local
characteristics

e (:c z ) _ €Xp {—ha— Jizi (1 + T4-1) — 2 (Te-r + Yi4r)}
e \HHEA 1+exp{—h—J; (Tep1 + Te1) — 2 (Temr + Te4r)}

for every t € Z, z, € {0,1}, 2z € {0,1}2\1},
Now, we may formulate the main result on the approximation.
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Theorem. For every triplet (h, Ji, J2) it holds
[p(haJd1, Ja) = p™ (b, J1, 12)| < (2R)7 1),

and therefore

p(hyJ1, J2) = Jim 5™ (h, 3y, 1)

Proof. The statement follows from Lemma and the considerations above if we realize
that the probability measures

nley)=p (5 == Tu=y), =ye{d1},

and

v(z,y) = p” (Eg:r, fl:y), z,y € {0,1}

have the same marginals, and therefore

(L, 1) = (1, )] € 5.
[m]

Remark. The values of p? may be calculated with the aid of the transfer matrix (for
details see e.g. (2], Section 1.2.1). Of course, actually we are able to calculate p® for
rather small R only. But the convergence is, in fact, quite fast, and even R=6o0r R =17,
especially in high temperature area (i.e. for rather small interactions), give nice results.

4. NUMERICAL STUDY

Now, we try to demonstrate the method with a particular case which has been chosen in
order to make possible a comparison of the obtained results with the rigorous Onsager'’s
one.

Therefore, let J1 =J, =J >0and h = -2J.
For R = 4,5,6,7 and some J € [0,2] the values of pR(—2J,J,J) obtained by the
transfer matrix method (cf. [2], Section 1.2.1) are given in the table.

J=01J=05]J=10]J=15]J=2log(1+v2) | J=2
R=4 | 06931 | 0.9589 | 1.2579 | 1.5916 1.7800 1.9568
R=506931 | 09590 | 1.2595 | 1.6085 1.8213 2.0320
R=6|0.6931 | 09590 | 1.2590 | 1.5999 1.7968 1.9841
R=7 06931 | 09590 | 1.2591 | 16051 1.8158 2.0297

Here, for the critical point J. = 2log (1 + \/5) the exact Onsager’s solution gives
p(—2Je, Je, Jo) = log (l + \/5) +log2/2 4 2-G/r = 8110692

(G = 0.915965594 is the Catalan’s constant).
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Trying to make differences between the functions p® for various R’s more evident, we
deal with their deviations

") = pR(=2J,J,J) = log2 — J/2
from the line log 2 4 J/2 (i.e. their common tangent in J = 0) in the following figure.

=5
1)) . R=7

BE
AN

(]

0 —

0 [ 10 15 bk 20

Similarly, we denote q (J.) = p(—2J., J., J.) — log 2 — J./2 = 0.2365.

5. CONCLUDING REMARK

Approximation of the described type was at first derived in [1] for purpose of application
in mathematical statistics. But here a completely different proof is used, which yields a
stronger result and deeper insight into the problem.

(Received March 23, 1991.)
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