AN APPROXIMATION OF THE PRESSURE FOR THE TWO-DIMENSIONAL ISING MODEL

Martin Janžura

A sequence of pressure functions corresponding to some one-dimensional models is used to approximate the pressure function of the two-dimensional Ising model. The rate of convergence is derived and the method is demonstrated with a numerical study.

1. INTRODUCTION

The two-dimensional Ising model is the simpliest non-trivial Gibbs random field. Namely, a probability measure μ on the space $\{0,1\}^{Z^{2}}$ is called to agree with the Ising model if its one-dimensional conditional distributions satisfy the "nearest-neighbor" property and can be expressed in the following way

$$
\mu\left(x_{t} \mid x_{Z^{2} \backslash\{t\}}\right)=\mu\left(x_{t} \mid x_{\partial t}\right)=\Pi_{t}\left(x_{t} \mid x_{Z^{2} \backslash\{t\}}\right)
$$

for every $t \in Z^{d}$ and a.e. $x \in\{0,1\}^{T}[\mu]$, where

$$
\Pi_{t}\left(x_{t} \mid x_{Z^{2} \backslash\{t\}}\right)=\frac{\exp \left\{-x_{t}\left(h+J_{1}\left(x_{t+u}+x_{t-u}\right\}+J_{2}\left(x_{t+v}+x_{t-v}\right)\right)\right\}}{1+\exp \left\{-h-J_{1}\left(x_{t+u}+x_{t-u}\right)-J_{2}\left(x_{t+v}+x_{t-v}\right)\right\}}
$$

are called the local characteristics,

$$
\partial t=\left\{s \in Z^{2} ;\|t-s\|=1\right\}=\{u,-u, v,-v\}, \quad u=(1,0), v=(0,1)
$$

and h, J_{1}, J_{2} are arbitrary constants.
In general, the system $\left\{\Pi_{t}(\cdot \cdot)\right\}_{t \in Z^{2}}$ depending on the triplet $\left(h, J_{1}, J_{2}\right)$ does not determine the probability measure μ uniquely. The existence, uniqueness, and other properties of the Ising model are closely related to the function called the pressure and defined by the limit

$$
\begin{aligned}
& \lim _{V \nearrow Z^{2}}|V|^{-1} \log \sum_{x \in\{0,1\}^{V}} \exp \left\{-h \sum_{t \in V} x_{t}-J_{1} \sum_{t \in V \cap(V-u)} x_{t} x_{t+u}-J_{2} \sum_{t \in V \cap(V-v)} x_{t} x_{t+v}\right\}= \\
& =p\left(h, J_{1}, J_{2}\right)
\end{aligned}
$$

where $V \nearrow Z^{2}$ means the expansion ensuring $|V|^{-1}|V \cap(V-t)| \longrightarrow 1$ for every $t \in Z^{2}$. (By $|V|$ we denote the cardinality.)

But, with the exception of the famous Onsager's result (cf. [3]), concerning a special case of the problem, no direct way of calculating the pressure p is known. Therefore various approximative methods, using mostly some kind of expansion, are applied. Here, we propose a new approximative method based on an approximation of the pressure of the two-dimensional model by the pressure of some properly chosen one-dimensional models, for which the transfer matrix method is available (cf. [2]).

As will be seen later, the method works quite well in the "high temperature" area (i.e. for "small" parameters h, J_{1}, J_{2}) and even in the neighborhood of the critical point it seems to give satisfactory results.

2. BASIC LEMMA

For a fixed positive integer R and a real γ let us consider the two-dimensional model with the state space $\bar{X}=\{0,1\}^{R}$ and the "nearest-neighbor" local characteristics given by

$$
\bar{\Pi}_{t}^{\gamma}\left(\bar{x}_{t} \mid \bar{x}_{Z^{2} \backslash\{t\}}\right)=\frac{\exp \left\{-U_{\gamma}^{0}\left(\bar{x}_{t}\right)-\sum_{s \in \partial t} U_{\gamma}^{s}\left(\bar{x}_{t}, \bar{x}_{t+s}\right\}\right.}{\sum_{\bar{y}_{t} \in \bar{X}} \exp \left\{-U_{\gamma}^{0}\left(\bar{y}_{t}\right)-\sum_{s \in \partial t} U_{\gamma}^{s}\left(\bar{y}_{t}, \bar{x}_{t+s}\right)\right\}}
$$

for every $\bar{x}_{t} \in \bar{X}, \bar{x}_{\partial t} \in \bar{X}^{\partial t}$, where

$$
\begin{aligned}
U_{\gamma}^{0}(\bar{x}) & =h \cdot \sum_{i=1}^{R} \bar{x}^{i}+J_{1} \sum_{i=1}^{R-1} \bar{x}^{i} \bar{x}^{i+1} \\
U_{\gamma}^{u}(\bar{x}, \bar{y}) & =\gamma \cdot J_{1} \cdot \bar{x}^{R} \bar{y}^{1}, \quad U^{-u}(\bar{x}, \bar{y})=U^{u}(\bar{y}, \bar{x}) \\
U_{\gamma}^{v}(\bar{x}, \bar{z}) & =J_{2} \cdot \sum_{i=1}^{R} \bar{x}^{i} \bar{z}^{i}+(1-\gamma) J_{1} \bar{x}^{R} \bar{z}^{1}, \quad U^{-v}(\bar{x}, \bar{z})=U^{v}(\bar{z}, \bar{x})
\end{aligned}
$$

for every $\bar{x}, \bar{y}, \bar{z} \in \bar{X}$.
Let us denote by $G_{1}(\gamma)$ the set of translation invariant probability distributions on $\bar{X}^{2^{2}}$ with the one-dimensional conditional distributions equal a.s. to the local characteristics $\left\{\bar{\Pi}_{t}^{r}\right\}_{t \in Z^{2}}$.

Finally, we denote by

$$
\begin{aligned}
& \quad \bar{p}_{\gamma}\left(h, J_{1}, J_{2}\right)= \\
& =\lim _{V / Z^{2}}|V|^{-1} \log \sum_{\bar{x}_{V} \in \bar{X}^{V}} \exp \left\{-\sum_{t \in V} U_{\gamma}^{0}\left(\bar{x}_{t}\right)-\sum_{t \in V \cap(V-u)} U_{\gamma}^{u}\left(\bar{x}_{t}, \bar{x}_{t+u}\right)-\sum_{t \in V \cap(V-v)} U_{\gamma}^{v}\left(\bar{x}_{t}, \bar{x}_{t+v}\right)\right\}
\end{aligned}
$$

the pressure corresponding to above defined model.

Lemma. Let $\gamma^{*} \in[0,1]$ be the point at which the function

$$
F(\gamma)=\gamma \bar{p}_{1}\left(h, J_{1}, J_{2}\right)+(1-\gamma) \bar{p}_{0}\left(h, J_{1}, J_{2}\right)-\bar{p}_{\gamma}\left(h, J_{1}, J_{2}\right)
$$

assumes its maximum. Then there exists

$$
\mu^{*} \in G_{I}\left(\gamma^{*}\right)
$$

such that

$$
\bar{p}_{1}\left(h, J_{1}, J_{2}\right)-\bar{p}_{0}\left(h, J_{1}, J_{2}\right)=J_{1}\left[\mu^{*}\left(\bar{x}_{0}^{R} \cdot \bar{x}_{u}^{1}=1\right)-\mu^{*}\left(\bar{x}_{0}^{R} \cdot \bar{x}_{v}^{1}=1\right)\right]
$$

holds.
Proof. The statement follows immediately from the equivalence between translation invariant Gibbs states and tangent functionals to the convex functional p (cf. [4], Thm. 8.3) and the general subdifferential calculus (cf. e.g. [5], Sec. 5).

3. MAIN RESULT

Now, let us make clear what was the aim of introducing the models with the "aggregated" state space \bar{X} in the preceding section.

Directly from the definitions it is easy to see that

$$
\bar{p}_{1}\left(h, \breve{J}_{1}, J_{2}\right)=R \cdot p\left(h, J_{1}, J_{2}\right)
$$

holds for every triplet $\left(h, J_{1}, J_{2}\right)$.
Since for $\gamma=0$ there is no horizontal interaction, i.e. the model consists of mutually independent columns, we may view the model as a one-dimensional one. And, considering all $\bar{x}_{t}, t \in Z$ as the corresponding segments of a sequence $x_{Z}=\left\{x_{s}\right\}_{s \in Z} \in\{0,1\}^{Z}$ (we put $x_{s}=\bar{x}_{t}^{i}$ for $s=t \cdot R+i$), we conclude that

$$
\bar{p}_{0}\left(h, J_{1}, J_{2}\right)=R \cdot p^{R}\left(h, J_{1}, J_{2}\right)
$$

where

$$
\begin{aligned}
& \quad p^{R}\left(h, J_{1}, J_{2}\right)= \\
& =\lim _{n \rightarrow \infty}|2 n+1|^{-1} \log \sum_{x_{[-n, n]} \in\{0,1\}[-n, n]} \exp \left\{-h \sum_{j=-n}^{n} x_{j}-J_{1} \sum_{i=-n}^{n-1} x_{j} x_{j+1}-J_{2} \sum_{i=-n}^{n-R} x_{j} x_{j+R}\right\}
\end{aligned}
$$

is the pressure of the one-dimensional model with the state space $\{0,1\}$ and the local characteristics

$$
\Pi_{t}^{0}\left(x_{t} \mid x_{Z \backslash\{t\}}\right)=\frac{\exp \left\{-h \dot{x}_{t}-J_{1} x_{t}\left(x_{t+1}+x_{t-1}\right)-J_{2}\left(x_{t-R}+y_{t+R}\right)\right\}}{1+\exp \left\{-h-J_{1}\left(x_{t+1}+x_{t-1}\right)-J_{2}\left(x_{t-R}+x_{t+R}\right)\right\}}
$$

for every $t \in Z, x_{t} \in\{0,1\}, x_{Z \backslash\{t\}} \in\{0,1\}^{Z \backslash\{t\}}$.
Now, we may formulate the main result on the approximation.

Theorem. For every triplet $\left(h_{r}, J_{1}, J_{2}\right)$ it holds

$$
\left|p\left(h, J_{1}, J_{2}\right)-p^{R}\left(h, J_{1}, J_{2}\right)\right| \leq(2 R)^{-1}\left|J_{1}\right|_{0}
$$

and therefore

$$
p\left(h, J_{1}, J_{2}\right)=\lim _{R \rightarrow \infty} p^{R}\left(h, J_{1}, J_{2}\right) .
$$

Proof. The statement follows from Lemma and the considerations above if we realize that the probability measures

$$
\nu_{u}(x, y)=\mu^{*}\left(\bar{x}_{0}^{R}=x, \bar{x}_{u}^{1}=y\right), \quad x, y \in\{0,1\}
$$

and

$$
\nu_{v}(x, y)=\mu^{*}\left(\bar{x}_{0}^{R}=x, \bar{x}_{v}^{1}=y\right), \quad x, y \in\{0,1\}
$$

have the same marginals, and therefore

$$
\left|\nu_{u}(1,1)-\nu_{v}(1,1)\right| \leq \frac{1}{2}
$$

Remark. The values of p^{R} may be calculated with the aid of the transfer matrix (for details see e.g. [2], Section I.2.1). Of course, actually we are able to calculate p^{R} for rather small R only. But the convergence is, in fact, quite fast, and even $R=6$ or $R=7$, especially in high temperature area (i.e. for rather small interactions), give nice results.

4. NUMERICAL STUDY

Now, we try to demonstrate the method with a particular case which has been chosen in order to make possible a comparison of the obtained results with the rigorous Onsager's one.

Therefore, let $J_{1}=J_{2}=J \geq 0$ and $h=-2 J$.
For $R=4,5,6,7$ and some $J \in[0,2]$ the values of $p^{R}(-2 J, J, J)$ obtained by the transfer matrix method (cf. [2], Section I.2.1) are given in the table.

	$J=0$	$J=0.5$	$J=1.0$	$J=1.5$	$J=2 \cdot \log (1+\sqrt{2})$	$J=2$
$R=4$	0.6931	0.9589	1.2579	1.5916	1.7800	1.9568
$R=5$	0.6931	0.9590	1.2595	1.6085	1.8213	2.0320
$R=6$	0.6931	0.9590	1.2590	1.5999	1.7968.	1.9841
$R=7$	0.6931	0.9590	1.2591	1.6051	1.8158	2.0297

Here, for the critical point $J_{c}=2 \log (1+\sqrt{2})$ the exact Onsager's solution gives

$$
p\left(-2 J_{c}, J_{c}, J_{c}\right)=\log (1+\sqrt{2})+\log 2 / 2+2 \cdot G / \pi \doteq \mathrm{P} .8110692
$$

($G=0.915965594$ is the Catalan's constant).

Trying to make differences between the functions p^{R} for various R 's more evident, we deal with their deviations

$$
q^{R}(J)=p^{R}(-2 J, J, J)-\log 2-J / 2
$$

from the line $\log 2+J / 2$ (i.e. their common tangent in $J=0$) in the following figure.

Similarly, we denote $q\left(J_{c}\right)=p\left(-2 J_{c}, J_{c}, J_{c}\right)-\log 2-J_{c} / 2 \doteq 0.2365$.

5. CONCLUDING REMARK

Approximation of the described type was at first derived in [1] for purpose of application in mathematical statistics. But here a completely different proof is used, which yields a stronger result and deeper insight into the problem.
(Received March 23, 1991.)

REFERENCES

[1] M. Janžura: Estimating interactions in binary lattice data with nearest-neighbor property. Kybernetika 29 (1987), 136-142.
[2] D.H. Mayer: The Ruelle-Araki transfer operator in classical mechanics. (Lecture Notes in Physics 123.) Springer-Verlag, Berlin - Heidelberg - New York 1980.
[3] L. Onsager: Crystal statistics. Part I: A two-dimensional model with an order-disorder transition. Phys. Rev. 65 (1944), 117-149.
[4] C. Preston: Random Fields. (Lecture Notes in Mathematics 534.) Springer-Verlag, Berlin - Heidelberg - New York 1976.
[5] R. Temam and I. Ekeland: Convex Analysis and Variational Problems. North-Holland, Amsterdam 1976.

RNDr. Martin Janžura CSc., Ústav teorie informace a automatizace CSAV (Institule of Information Theory and Automation - Czechoslovak Academy of Sciences), Pod vodárenskou vëzí 4, 18208 Praha 8. Czechoslovakia.

