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AN APPROXIMATION OF THE PRESSURE 
FOR THE TWO-DIMENSIONAL ISING MODEL 

M A R T I N J A N Z U R A 

A sequence of pressure functions corresponding to some one-dimensional models is used to approxi­
mate the pressure function of the two-dimensional Ising model. The rate of convergence is derived and 
the method is demonstrated with a numerical study. 

1. I N T R O D U C T I O N 

The two-dimensional Ising model is the simpliest non-trivial Gibbs random field. Namely, 

a probabili ty measure \i on the space {0, \}z% is called to agree with the Ising model 

if its one-dimensional conditional distributions satisfy the "nearest-neighbor" property 

and can be expressed in the following way 

H (xt | xZ2W}) = u (xt | xdt) = II ( (xt | xZ2X{t}) 

for every t G Zd and a. e. x € {0,1}T[#] , where 

„ / . x _ exp {-xt (h + _, (___ + s _ _ } + J2 (xt+v + xt_v))} 
II, (xt | xZ2m) - - - ^ {_h _ - - - - - — - - _ - — - —y} 

are called the local characteristics, 

dt= {sGZ2; \\t-s\\ = 1} = {u,-u,v,-v}, u = ( l , 0 ) , v = (0, 1), 

and h, J\, J2 are arbi t rary constants. 

In general, the system {Ht(-\-)}teZ2 depending on the triplet (h,J\,J2) does not deter­

mine the probabili ty measure a uniquely. The existence, uniqueness, ,and other properties 

of the Ising model are closely related to the function called the pressure and defined by 

the limit 

lim | V | - 1 l o g ^ _ exp < - l * _ _ xt - Jx ^ _ xtxt+u-J2 ]__ xtxi+v\ = 
V/Z2 xve{o,i}v { «ev (evn(v-u) (evn(v-v) J 

= p(h,J„J2) 
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where V / " Z2 means the expansion ensuring | V | _ 1 |V ("1 (V —1)\ > 1 for every t 6 Z2. 

(By |V| we denote the cardinality.) 

But , with the exception of the famous Onsager's result (cf. [3]), concerning a special 

case of the problem, no direct way of calculating the pressure p is known. Therefore 

various approximative methods, using mostly some kind of expansion, are applied. Here, 

we propose a new approximative method based on an approximation of the pressure of 

the two-dimensional model by the pressure of some properly chosen one-dimensional 

models, for which the transfer matr ix method is available (cf. [2]). 

As will be seen later, the method works quite well in the "high t empera tu re" area (i. e. 

for "small" parameters h, J j , J 2 ) and even in the neighborhood of the critical point it 

seems to give satisfactory results. 

2. BASIC LEMMA 

For a fixed positive integer R and a real 7 let us consider the two-dimensional model 

with the s ta te space X = {0, l } f l and the "nearest-neighbor" local characteristics given 

by 

exp { - ! /? (* . ) - Zu;(xt,xt+\ 

Tft(xt\xz,m) = 

Eexp{-U°(y()-£U70žt,ží+s)} 

for every xt £ X, xgt € X , where 

U°(x) = / i - f v + J ^ x ' ^ 1 , 
;=i 1=1 

U^(x,y) = yJi-^f, U-u(x,y) = U»(y\x), 
R 

u;{x,z) = J 2 -V>'r + (i-7)JixV, u~v(x,z) = uv(z,x), 
;=i 

for every x, y, z £ X. 
2? 

Let us denote by Gi(f) the set of translation invariant probabili ty distr ibutions on X 

with the one-dimensional conditional distributions equal a. s. to the local characteristics 

Finally, we denote by 

p7(f t , J j , J 2 ) = 

= Urn | V | - l l o g X > x p | - £ f / 0 ( a ; ( ) _ £ D J ( * . , W - £ U;(xt,^+V)\ 

xv£Xv [ ^V (€Vn(V-«) teVn{V-v) J 
the pressure corresponding to above defined model. 
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Lemma. Let 7* € [0,1] be the point at which the function 

F(l) = 7Pi (h, Ji,J2) + (1 - 7)?o (h, Ji,Jt) - Py (h, Ji, Ja) 

assumes its maximum. Then there exists 

C*€G,(7*) 

such that 

ft (h, J „ J2) - p0 (fc, J, , J2) = J, [|i* (xR • x\ = 1) - f (xR • x\ = 1)] 

holds. 

P roof . The statement follows immediately from the equivalence between translation 
invariant Gibbs states and tangent functionals to the convex functional p (cf. [4], Thm. 
8.3) and the general subdifferential calculus (cf. e.g. [5], Sec. 5). 

3. MAIN RESULT 

Now, let us make clear what was the aim of introducing the models with the "aggregated" 
state space X in the preceding section. 

Directly from the definitions it is easy to see that 

p1(h,Ji,J2) = Rp(h,J1,J2) 

holds for every triplet (h, J\,J2). 
Since for 7 = 0 there is no horizontal interaction, i.e. the model consists of mutually 

independent columns, we may view the model as a one-dimensional one. And, considering 
all xt, t £ Z as the corresponding segments of a sequence x_ = {xs}s€Z € {0,1}Z (we 
put xs = xI for s = t • R + i), we conclude that 

p0(h,J1,J2) = RpR(h,J1,J2), 

where 

pR(h,J1,J2) = 
( n n-1 n-R \ 

~ i^S, '2n + l^ '°g S exp ] ~h ___ xi~Jl ___ xi xi+l~j2 __. x) Xi+R \ 

is the pressure of the one-dimensional model with the state space {0,1} and the local 
characteristics 

n o , I s _ exp{-hxt - Jixt(xt+1 +xt-i) - J2 (xt-R + yt+R)} 
lit {*t I xz\{t]) - j + e x p {_h _ j . ( x ( + i + X(_ i } _ ^ (xt_R + Xt+R)] , 

for every t € Z, _. € {0,1}, x.\{t} € {0,1}Z\W. 
Now, we may formulate the main result on the approximation. 
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T h e o r e m . For every triplet (h,Jr,J2) it holds 

\p(h,JuJ2)-pR(h,J„J2)\<(2R)-1\Jil 

and therefore 

p(h,Jx,J2)= lira pR(h,Jx, J2). 

P r o o f . The s ta tement follows from Lemma and the considerations above if we realize 

tha t the probability measures 

vu(x,y) = p*(xR = x, x\ = y), x, y e {0 ,1} , 

and 

vv(x,y)=p*(xR = x, x\ = y), x, ye {0,1} 

have the same marginals, and therefore 

k(i, i)-".(i , i) l<- . 

Remark. The values of pR may be calculated with the aid of the transfer mat r ix (for 

details see e.g. [2], Section 1.2.1). Of course, actually we are able to calculate pR for 

ra ther small R only. But the convergence is, in fact, quite fast, and even R = 6 or R = 7, 

especially in high tempera ture area ( i .e . for rather small interactions), give nice results. 

4. NUMERICAL STUDY 

Now, we try to demonst ra te the method with a particular case which has been chosen in 

order to make possible a comparison of the obtained results with the rigorous Onsager 's 

one. 

Therefore, let J\ = J2 = J > 0 and h = —2J. 

For R = 4 , 5 , 6 , 7 and some J € [0,2] the values of pR(-2J, J, J) obtained by the 

transfer matr ix method (cf. [2], Section 1.2.1) are given in the table. 

7 = 0 7 = 0.5 J = 1.0 J = 1.5 7 = 2- log(l + ч/2) 7 = 2 

R = 4 0.6931 0.9589 1.2579 1.5916 1.7800 1.9568 
Я = 5 0.6931 0.9590 1.2595 1.6085 1.8213 2.0320 
ñ = 6 0.6931 0.9590 1.2590 1.5999 1.7968 1.9841 
ñ = 7 0.6931 0.9590 1.2591 1.6051 1.8158 2.0297 

Here, for the critical point J c = 2 log ( l + \/2) the exact Onsager's solution gives 

p(-2Jc,Jc,Jc) = log ( l + v/2) + log2/2 + 2 • G/ir = f.8110692 

(G = 0.915965594 is the Catalan 's constant) . 
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Trying to make differences between the functions pR for various R's more evident, we 

deal with their deviations 

q
R(J) = pR(-2J, J, J) - log 2 - J/2 

from the line log2 + J/2 (i.e. their common tangent in J = 0) in the following figure. 

1.5 Jc 2.0 

Similarly, we denote q (Jc) = p (-2 J c, Jc, Jc) - log 2 - Jc/2 = 0.2365. 

5. CONCLUDING REMARK 

Approximation of the described type was at first derived in [1] for purpose of application 

in mathematical statistics. But here a completely different proof is used, which yields a 

stronger result and deeper insight into the problem. 

(Received March 23, 1991.) 
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