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NONNEGATIVE MULTIVARIATE AR(1) PROCESSES 

JlŘÍ A N D Ě L 

Conditions for nonnegativity of a p-dimensional AR(1) process X ( = UX ( _i + e ( are investigated 
in the paper. If all the elements of the matrix U are nonnegative, a new method for estimating U 
is proposed. It is proved that the estimators are strongly consistent. Small-sample properties of the 
estimators are illustrated in a simulation study. 

1. I N T R O D U C T I O N 

A one-dimensional AR(1) process is given by Xt = 6A t_i + e t where e t is a white 
noise and b € (—1,1). Assume that b e [0,1) and that et are nonnegative independent 

identically distributed random variables with a distribution function F. Then, of course, 

A'( > 0 for all t. Let a realization X\,...,XH be given. Then Bell and Smith [9] proved 

that 

b* = min Xt I A t _i 
2<t<n 

is a strongly consistent estimator for b if and only if 

F(d) - F(c) < 1 

holds for all 0 < c < d < oo. Andel [2] derived the distribution of 6* when et have an 

exponential distribution. Some moments of 6* in this case were calculated by Andel and 

Zvara [8]. Turkman [11] presents a Bayesian analysis of the model. A generalization to 

the autoregressive processes of a higher order can be found in [5]. This method was also 

applied to nonlinear AR process (see [4] and [6]). 

In the present paper we deal with multivariate AR(1) processes. First, we derive 

conditions under which the process is nonnegative. Second, we propose a method for 

est imating parameters of a nonnegative AR(1) process. It is proved that the estimators 

are strongly consistent. 

2. PRELIMINARIES 

Let X t = ( A ' d , . . . , A'(P) be a p-dimensional process given by 

X i = U X ! _ 1 + e t (2.1) 
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where U = (u^) is a p x p matrix and e( = (e ( 1 , . . . , e(p)' are random vectors. We make 
the following assumptions. 

Al. All the roots of the matrix U lie inside the unit circle. 

A2. The random vectors e( are independent identically distributed with a distribution 

function F. 

A3. The random vectors e( have finite second moments. 

Our assumptions ensure that there exists a stationary solution X( of the equation 
(2.1) and that it can be written in the form 

X( = e( + U e ( _ 1 + U 2 e ( _ 2 + . . . (2.2) 

where the series converges in the quadratic mean. If we denote Ufc = lu^'), then (2.2) 
can be also expressed as 

XH = e„ + f ; j ^ uj*> *__„• (i = 1 , . . . ,p). (2.3) 
fc=i i = i 

Let us remark that under Al - A3 we have 

EEEK1<- (2-4) 
k i 3 

We denote p; = EXti, i — 1 , . . . ,p. 

3. CONDITIONS FOR NONNEGATIVITY 

If all the elements „,_ of the matrix U are nonnegative and all the components et, are 
also nonnegative, then it is clear that Xti > 0 for all t and i. On the other hand, these 
sufficient conditions for nonnegativity of Xu are not necessary (cf. Remarks 3.3 and 
3.4). It is possible to generalize the results concerning one-dimensional case introduced 
in Lemma 10.2 in [3] to multidimensional models. 

Theorem 3.1. Assume that the distribution of e( has the property that 

p ( Y \ , e ( , < £ j > 0 (3A) 

very reals C\,... ,cP. If there exist numbers q > 1 and 

P E"i"^<- C >° (3-2) 
for an i € { 1 , . . . ,p}, then with probability 1 there exist infinitely many subscripts t such 
that Xti < 0. 

holds for every e > 0 and for every reals C\,... ,cP. If there exist numbers q > 1 and 
c > 0 such that 
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Proof . For m > q introduce the events 

Qtm, = { - e ( 1 + g t ^ ) e t - , J < - | } , 

Qtm2 - { « . £ ; t ^ ^ < | } . 
I fc»m+l j=l L J 

From A3 and (2.4) we get that P (<?tm2) —> 1 as m -» oo. Moreover, P (Q%mi) does not 
depend on t. Denote Mm, = {1,2, . . . ,q - 1, q + 1,...>m} for m > q. We have 

P(Qtml)>Tm 
where 

. '- - f («.. < s - E«S?«-W < £ f» * *«... E«l"«.- < - ' ) " 

- ( • • < i ) n ' ( E ^ < s ) 

*(?* e.-gj < - c > 0. 

Let wm be the smallest integer such that wm Km > 1. Introduce the subsets S,+2, S,+ 3 , . . . 
of positive integers in the following way. Let S,+2 contain the elements of wq+\ (q + 2)-
tuples ( 1 , . . . , g+2), ( 9 + 3 , . . . , 2<?+4),..., (1 + (u»g+1 - 1) (9 + 2 ) , . . . , 2 + 9 + K + i - 1) 
(9 + 2)). Let S,+3 contain the elements of wq+2 (9 + 3)-tuples starting with 

(3 + 9 + K + i - 1) (9 + 2 ) , . . . , 5 + 29 + («,,+1 - 1) (9 + 2)) 

and so on. The last terms of (9 + 2)-tuples, (9 + 3)-tuples etc. denote h, t2, If 
tr € Sm, then we use the decomposition 

xirii = utr + ztr 
where 

Jt=l j = l 

fc=m i = l 

Denote 
Ar = Qtr,m-l,l, Br = g t r,m-l,2. 

The events y41; A2,. • • are independent, 

v > ( A ) > f; u,mTm = oo, 
m=»+l 

P(5 r) —> 1 as r —» 00 and the events Ar, Br are independent. Theorem 8.1 yields that 
with probability 1 infinitely many events Ar f\ BT occur and thus also infinitely many 
events {Xti < 0}. • 
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The roots of U are A5 = 0, A2 = 2c. Both of them lie inside the unit circle. Since 

U " Є í _ n = 2 " - 2 c " ( Є ' - " л ) , » > 1 , 

we get 

From (2.2) we have 

Xt\ = e n + V J 2"~2 c" e (_n,i, 

n = i 

Ar(2 = - - e n + y ^ 2 " - 2 c " e ( _ n > 1 . 
" n=l 

It is clear tha t A' ;1 > 0. If we take c = 0.4, 0 = 1, 6 = 2, then 

A'(2 > - - 6 + ^ 2 " - 2 c " a = 0. 

4. AUXILIARY RESULTS F O R ESTIMATION 

Till the end of this paper we assume that not only Al - A3, but also the following 

assumptions Bl - B4 are satisfied. 

B l . All the elements u,j of the matrix U are noimegative. 

B2. Random vectors et have only noimegative components. 

B3. P (e., < - , . . . , c«- < _ ) > 0 for all z > 0. 

B4. There exists a number 7 > 0 such that for every 77 > 0 and for each i £ { 1 , . . . ,p] 

P (e (1 <rj,..., e.,,_i < ?/, e,, > 7, e(,,+1 < ?? , . . . , etp < w) > 0. 

It was already pointed out that Al - A3, B l , B2 ensure nonnegativity of all variables 

Xu. 

R e m a r k 4 . 1 . Let p = 2. If Bl holds, then U has only real roots. Really, an easy 

calculation gives 

|U - AI | = A2 - (tin + W22) A + « n u22 - uviu2\ 

and thus the roots are 

Al2 = - JMll + "22 ± [(«n - W22)2 + 4 u , 2 U 2 l ] 2 ] • 
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R e m a r k 4 . 2 . The assumptions B3 and B4 are independent. This can be shown in 

an example with p = 2. If P (e ti = 0, e t 2 = 0) = 1, then B3 is fulfilled bu t B4 does not 

hold. If P ( e n = 0, e(2 = 5) = P ( e n = 5, e,2 = 0) = §, then B3 is not fulfilled bu t B4 

holds. 

R e m a r k 4 . 3 . Consider the case p = 2. Let £*,• be i . i .d . random variables with 

exponential distribution Ex(\) where i = 1,2,3 and t = . . . , — 1 , 0 , 1 , — If en = 

6 i + 6 3 , et2 = 62 + (t3, then the condition B4 is fulfilled, since 

P (61 + 63 < V, 62 + 6s > 7) > 

> P (61 < \, 63 < \, 62 > 7) = 

= P (61 < | ) P (63 < | ) P (62 > 7) > 0 

for every n > 0, 7 > 0. If e n = (n + £e2, e i2 = 6 1 , then P (£« + 62 < «, in > 7 ) = ° 

for every 0 < rj < 7 , and thus B4 is not fulfilled. 

T h e o r e m 4 . 4 . Define 

^ = 2<1i<JX"' I Xi-^ 
for i, j = 1 , . . . , p. Then u°- —> U{j a. s. as n —• 00 for each i, j G { 1 , . . . , p} . 

P r o o f . First , consider the case i = j = 1. Since 

p 

-^tl = 2_,«l/3^t-l , /3 + e*«' 

«?i = W11 + min I ^ W i ^ X ( _ i , / 3 + e t i 1 / Xt-i,i-
2~t-n \0=2 1 

it is sufficient to prove tha t 

'<„ ( E u i " ^ - | ' ' ! + e<i) / e«-i . '—> 0 a'S' 

iber. Consider the events 

I to: {J2ul0Xt-i,0 + eti\/et-i,i<s>-

we obtain 

Since Xt-\,\ > et-i,\, it is sufficient to prove tha t 

mm 
2 < ( < 

Let e > 0 be a given number. Consider the events 

Using (2.3) we can write 

L : Єn + Y^щøi tt-Ьø + E E »l£ Є*-k'r ) + 

l 0=2 \ fc=2 г = l / 

P 00 p 

+E и i ' 3 E E ^ ^ г < £ e ' - i 4 ' 
ŕ i = 9 Ł = m X 1 r = l ' 

/Í = •; w : e п 

0=2 
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Denote A = 2p[l + (p - 1) (m - 1)]. It is clear that Qt _> Qtmi H <5tm2 where 

Qtml = {u>: et_ul>~f,etl<ey/A,u1/3et-h0<e'y/Afox (3 = 2,...,p; 

uw u$ et-k,r < e-i/A for 0 = 2 , . . . ,p, k = 2,...,m, r = 1 , . . . ,pj . 

Qtm2 = {_- : Ztm < .7/2} 

with v <x> P 

/3=2 <:=m + l r = l 

From (2.4) we can see that there exists A > 0 such that 

0 < u\f < A for all i, j , k. 

Therefore P (o.tmI) > 7rm where 

^m = P (etl < ei/A) P (c._,,, > 7, e<-ij? < ^ J for ^ = 2 , . . . ,p) • 

. [ p ( e t _ 2 i r < - ^ f o r r = l , . . . , p ) j m " 1 

Our assumptions imply that neither P (<_tmi) nor irm depend on t. The value of 7 can 
be chosen in such a way that irm > 0. 

It is easy to show that E Ztm -» 0 and var Ztm -» 0 as m -> 00 for every fixed t. Thus 
P (o.in.2) —> 1- Moreover, P (<5(m2) also does not depend on t. 

Let wm be the smallest integer such that wm 7rm > 1 (m = 2,3, . . . ) . Let the set 52 

contain elements of j2 triples 

(1,2, 3), . . . , ( _ _ _ - 2 , 3 i 2 - l , 3 j a ) , 

let S3 contain elements of J3 four-tuples 

(3j2 + 1, 3j2 + 2, 3j/2 + 3, 3j2 + 4), . . . , (3;2 + 4j3 - 3, . . . , 3;2 + 4j3) 

and so on. The last numbers of the triples, four-tuples etc. denote t\, t2, — If U € Sm, 
then we define 

A, = QUml, Bi = QUm2. 

The events A1,A2,... are independent, 

f>(A,)>f>m7rm = co, 
.=1 m = 2 

events A; and £?, are independent for each i, and P (£?,•) —» 1 as i —• 00. It follows from 
Theorem 8.1 that with probability 1 infinitely many events A\ V\ Bi occur, and thus also 
infinitely many events Qt. 

The proof for other estimators „? is quite similar. D 
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Although u°j are strongly consistent estimators for u , j , our experience from similar 

models (see [5]) leads to the suspicion that the convergence u°{- —> uij a. s. as n —> oo 

is too slow and u°. cannot be used in practical situations as reasonable est imators. 

Simulations really confirmed this fact. In the next section we propose other est imators, 

which are also strongly consistent, but which are good for moderate values of n. 

5. ESTIMATING P A R A M E T E R S 

To simplify the notation and the proofs, we describe the estimating procedure in this 

section only in the case p = 2. First, we introduce a motivation for our est imators. Let 

e (1, e,2 be independent random variables such that e(1 ~ Ex. (\i), e(2 ~ Ex (A2), where 

Ex (A) denotes the exponential distribution with the density f(x) = A - 1 e_ I!A for x > 0. 

Then the conditional likelihood of X 2 , . . . , X „ , given X i , is 

A p + 1 exp < - ^ (An - u n A"f_i,i - «i2 A"(_1>2) / A, 

I (=2 

• ^2H+1 e X P \ ~ X . ^ ' 2 ~ " 2 1 Xt-\,\ ~ "22 A"(_1)2) / A2 

I (=2 

for 

Xti - m i A",_i,i - unXt-1,2 > 0, (5.1) 

Xa - «2i A (_1,1 - u22 Xt-1,2 > 0 (5.2) 

(t = 2,...,n). The conditional likelihood reaches its maximum for such uu and u\2 

which maximize 

" • • Y l ^ ' - I . I + "12 / ] A"i-i,2 (5-3) 
(=2 1=2 

under the conditions (5.1) with uu > 0, uV2 > 0, and for such u2 1 and u2 2 which 

maximize 

"21 Yl A''-!.l + U22 Yl A''-1'2 ^5'4) 
1=2 <=2 

under the conditions (5.2) with u2i > 0, u22 > 0. Define 

A ° i = n - 1 ^ A ( 1 , A- =n^±Xt2. 
<=i <=i 

If n is large then one can expect tha t the maximization of (5.3) and (5.4) is nearly the 

same as the maximization of X°x uu + A'°2w l 2 and A'", i/21 + X°2 U22, respectively. 
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T h e o r e m 5.1. Let u*,, u*2 be a solution of the linear program L P ( n ) 

max (X°i vn + X°2 v,2) (5.5) 

under conditions 

Xti - ví, # . - u - v,2 Xt-\,2 > 0 (í = 2 , . . . , n) 

with _,-i > 0, 0,2 > 0, for i = 1,2. Then _*• —» u,j a. s. for all i, j = 1,2 as n —» oo. 

P r o o f . Let i = 1. Assume that u\\ > 0, u J 2 > 0. Define 

Mn = {{vn,vi2) • v\\ > 0, V12 > 0, Xtl - v u Xt-\,i - i > i 2 ^i_i,2 > 0 for . = 2, . . . , n } . 

Let M be the oblong with vertices (0,0), ( - n , 0 ) , (-11,-12), (0,t- i 2 ) . It is clear t h a t 
M2 D M3 D . . . . First we prove tha t Mn —> M a. s. We have 

X í i . ^ i - i , 2 e n 

V = " l i + -y " 1 2 + v 
A ( _ i , i ^ i _ l , l A ( _ i , i 

Vl2 

xtl 

<7i 

\ ř > 

м \ ľ 92 

Jf l-1,1 

Fig. 1. 

Theorem 4.4 implies tha t there exists a sequence tr such that 

Xtr\ I Xlr-X%i — r u „ a.s. 

In view of (5.6) we can see that 

Xir~\,i I A' i r_i,i — > u n a.s. 

Since 

using (5.7) we obtain 

Xt\ , Xt-n tt\ 
rp • = "12 + -"• " n + Y , 
A(_l ,2 ^ i - 1 , 2 -*ť_l,2 

(5.6) 

(5.7) 

Xtr\ I Xtr-i-2 — > oo a. s. 

In this case the straight line p in Figure 1 approaches the straight line qx. Similarly we 

can prove t h a t with probability 1 there exists a sequence of straight lines p converging 

to q2. 
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An elementary calculation gives tha t p intersects (/i at the point 

, e(1 

«11, " 1 2 + v 

and thus no straight line p intersects M . 

Consider the linear program LP(n) (5.5) for i = 1. It concerns the problem 

max (X°x vn + X°2 vu) 

on M„. Since M„ -> M and A"^ -> « , , A'°2 -> u2 a .s . (see [10], Chap. IV.2), the 

solutions (wn,Uj 2) of LP(n) converge a .s . to a solution of the linear program LP 

max (uj vu + "2 vu) (5.8) 

on M . It is clear tha t the maximum (5.8) on M is reached at the point (uu,uu). Thus 

we have proved tha t Uj, —• u n , u\2 —*• u12 a. s. 

If u n = 0 and /o r uu = 0, the proof is similar. The case i = 2 is quite analogous. • 

6. A SIMULATION STUDY 

We simulated the two-dimensional AR(1) process 

X ( = U X ( _ , + e ( 

„ / 0 , 0 . 3 

V 0.1 0.5 

The roots of U are Xx = 0.8, A2 = 0.4. The white noise e ( = ( e n , e i 2) ' was constructed 

in such a way tha t 

e (, = ^ 1 6 1 + ^36.3, e„ = t2Zn+h ia 

where £1( £2, ^3 w e l ' e nonnegative constants and (,,- were nonnegative i.i. d. variables. 

Three distr ibutions of £.,• were examined: 

(i) exponential distribution Ex(\); 

(ii) absolutely normal distribution AN (0,1); i. e. <•.. = \Ut,\, where t/(i ~ 7V(0,1); 

(iii) rectangular distribution R{0, 1) with the density f(x) = 1 for x € (0 ,1) . 

The results of simulations are summarized in Tables 1-5. In each case 100 simulations 

were performed. The tables contain averages of estimates of the elements of the matr ix 

U . T h e empirical s tandard deviations are introduced in parentheses. 
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n = 20, 

0.70 0.37 
(0.10) (0.22) 

0.13 0.50 
. (0.10) (0.20) 

TaЫe 1 TaЫe 2 

n = 20, Єx=Є2 = í3 = 1, Çu~Ex(l) n = 20, t». =Є2 =Є3 = 1, fø ~ AN (0.1) 

0.71 0.37 
(0.15) (0.30) 

0.17 0.46 
. (0.13) (0.26) . 

TaЫe 4 

• Җ0,1) n = 20, ťi = Є2 = 1, 4 = 0, &,- ~ Ex(l) 

0.70 0.33 
(0.05) (0.10) 

0.11 0.51 
. (0.06) (0.12) 

ТаЫе 3 

= е2 = е3 = 1, (и 

0.68 0.44 

(0.20) (0.41) 

0.19 0.43 
(0.15) (0.29) . 

ТаЫе 5 

п = 50, /. = Ь = 4 = 1- «Й ~ ^ " (1) 

0.71 0.32 
(0.07) (0.14) 

0.11 0.51 
(0.06) (0.12) . 

A simulation of length n = 50 with l\ = £2 = ^3 = 1 and £,,- ~ E;r(l) is depicted in 

Figure 2. 

Fig. 2. 

The es t imate of the matr ix U for this simulation is 

0.74 0.26 

0.11 0.53 
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The experience from our simulations can be briefly summarized as follows. Tables 1 -

4 show tha t the est imates are bet ter when the distribution of residuals is nearer' to the 

exponential one. This is not surprising, since our method was motivated by the max imum 

likelihood est imators for exponential distribution. The best results among Tables 1 - 4 

are contained in Table 4. The same quality in the case i\ = i2 = i3 = 1, £t)- ~ Ex(\), 

is reached only when the length of simulation is enlarged from n = 20 to n = 50 (see 

Table 5). 

Let us remark tha t the least squares estimates of the elements of the matr ix U for the 

simulation depicted in Figure 2 are 

0.53 0.41 

0.05 0.48 

(Of course, first of all the average of the both components of the series were substracted.) 

The corresponding asymptotic, s tandard deviations are 

0.14 0.17 

0.16 0.19 

In this case the est imates obtained by the new method are bet ter . Also the empirical 

s tandard deviations introduced in Table 5 are smaller than the asymptot ic s tandard 

deviations of the least squares estimates. 

7. ANALYSIS O F REAL DATA 

Andel [1] presents some hydrological da ta about the small river Volynka in Czechoslo

vakia. The mean hourly discharges of the Volynka river (in m 2 / s ) and hourly rainfall in 

the Volynka basin were measured for three days. The da ta are graphically presented in 

Figure 3. 

Denote Xtl the discharges and Xt2 the rainfall (t = 1 , . . . , 72). The averages are 

72 72 

x\ = (1/72)V^X„ =31.78, x2 = (l/72)J2xt2 = 0.36 
1=1 j=i 

and the empirical variances of the components are 

s2 = 207.59, s 2 = 0.53. 

The least squares est imates of the autoregressive parameters are 

0.97 1.08 

0.00 0.76 

and their asymptot ic s tandard deviations are 

0.025 0.498 

0.004 0.075 
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The residual variance matr ix is 

9.37 0.02 

0.02 0.21 

225 

Fig. 3. 

Applying our new method we get the estimate of the matr ix U 

0.87 1.68 

0.00 0.00 

The residual variance of the first component is in this case 11.80. 

A P P E N D I X 

T h e o r e m 8 . 1 . Let two sequences of events A\, A2,---
 a n d B\, B2,... satisfy the 

following conditions: 

(i) The events A\, A2,... are independent. 

(ii) The events A; and B; are independent for every i = 1,2, — 
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(iv) P (Bi) -» 1 as i -> oo. 

Then with probability one infinitely many events d = At n Bi occur. 

P r o o f . See [7]. D 

(Received April 25, 1991.) 
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