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ON THE SYNTACTIC COMPLEXITY OF PARALLEL 
COMMUNICATING GRAMMAR SYSTEMS 

G H E O R G H E P A U N 

Paper dedicated to Professor Solomon Marcus, on his 65th birthday. 

We compare the complexity of generating a language by a context-free grammar or by a parallel 
communicating grammar system (PCGS), in the sense of Gruska's measures Var, Prod, Symb. Then 
we define a specific measure for PCGS, Com, dealing with the number of communication symbols 
appearing in a derivation. The results are the expected ones: the PCGS are definitely more efficient 
than context-free grammars (the assertion will receive a precise meaning in Section 2), the parameter 
Com introduces an infinite hierarchy of languages, is incomparable with Var, Prod, Symb, and cannot 
be algorithmically computed. 

1. PARALLEL COMMUNICATING GRAMMAR SYSTEMS 

The main problem of the classical formal language theory is to study the way a language 

can be generated/recognized by a (hence one) g r ammar /au tomaton . However, in the 

present-day computer science a lot of circumstances there exist when we deal with more 

"processors" concerned with the same task: computer nets, distr ibuted da ta bases, par

allel computers , distr ibuted expert systems, computer conferencing and so on. Thus , a 

natural research topic is to consider "systems of grammars" , working together in a well 

defined way and generating one language. 

Two classes of such grammar systems can be defined, depending on the working pro

tocol: sequential (in each moment only one grammar is enabled to work), or parallel 

(the components work simultaneously, in a synchronized manner) . The former type is 

considered ill [2] (and investigated in a series of subsequent papers) . The later leads to 

parallel communicat ing grammar systems (PCGS, for short) . They were introduced in 

[11] and were investigated in [8], [9], [10], [14], from various (theoretical) points of view. 

Details about motivation and a survey of results can be found in [13]. 

Informally speaking, a PCGS consist of n usual Chomsky grammars , working simul

taneously, each on its own sentential form, and communicating each other by sending, 

on request , the correct sentential form, from one component to another; the language 

generated in this way by a "master" component of the system is considered the language 

generated by the whole system. 
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Beside being a natural grammatical model of parallel computing, the PCGS prove 

to be also a mathematically appealing topic, rich in (often difficult) theoretical prob

lems. Here we investigate two basic variants: centralized and non-centralized query-only 

systems. 

Before presenting their definition, we specify some notations. 

For a vocabulary V, denote by V* the free monoid generated by V, by A the null 

element of V*, by |x | the length of x and by \x\u the length of the string obtained by 

erasing from x all symbols not in U, ! / C V; V + = V* — {A}. For a Chomsky grammar 

G = (VN, VT, S, P), VN is the nonterminal vocabulary, VT is the terminal one, S is the 

axiom and P is the set of rewriting rules; VQ = VN U VT-

For other notions and notations in formal language theory, the reader is referred, for 

instance, to [12]. 

A parallel communicating grammar system (of degree n, n > 1) is an n-tuple 

7 = ( G 1 , G 2 , . . . , G n ) 

where each G, is a Chomsky grammar, G, = (Vjv,., Vr,i, Si, Pi), 1 < i < n, such that 

Vr,; n VJVJ = 0, 1 < i, j < n and there is a set K C {Qlt Q2,..., Qn}, of special symbols 

(called query symbols), K C | J VN,I, used in derivations as follows. 

For ( x , , x 2 , . . . , x „ ) , (y\,y2,... ,yn), x,-, y{ 6 VQ., 1 < i < n, we write ( x i , x 2 , . . . , x n ) 

=*• (y\,V2, • • •, yn) if one of the next two cases holds: 

(i) \xi\K = 0, 1 < i < n, and for each i, 1 < i. < n, we have x,- ==> yi in the g rammar 

Gi or Xi € Vf{, Xi = yi; 

(ii) If \xi\K > 0 for some i, 1 <i < n, then for each such i we write 

Xi = z\ Qi, 2 2 Qh • • • zt Qit zt+l, t > 1, \Zj\K = 0, for 1 < j < t + 1; if \xl}\K = 

0, 1 < j < t, then yi = zr x,-, z2 x,-2 • • • Xit zt+\ and y,v = S;j, 1 < / < *; when, for 

some j , 1 < j < t, \xi}\K > 0, then j/i = Xi. For all i, 1 < i < n, for which y, was 

not defined as above, we put ?/, = x,. 

In words, an n-tuple (xt,x2,..., xn) directly yields (j/i, y2, • • •, 2/n) if either no query 

symbol appears in x\, x2, • • •, xn, and then we have a componentwise derivation, Xi => yi 

in Gt- for each i, 1 < i < n, or, in the case of query symbols appearing, we perform 

a communication step, as these query symbols impose: each occurrence of Qi} in Xi is 

replaced by xij, provided x^ does not contain query symbols; more exactly, a component 

X,- is modified only when all its occurrences of query symbols refer to strings without 

query symbols occurrences. After a communication operation, the communicated string 

Xi; replaces the query symbol Q t j whereas the grammar (?., resumes working from its 

axiom. T h e communication has priority over the effective rewriting. If some query 

symbols are not satisfied at a given communication step, then they will be satisfied at 

the next one (provided they ask for strings without query symbols in tha t moment ) and 

so on. No rewriting is possible when at least a query symbol is present. This implies 
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tha t when a circular query appears, the work of the system is blocked. Similarly, the 

derivation is blocked when no query symbol appears but some nonterminal component 

Xi cannot be further rewritten in G,. 

T h e language generated by 7 is 

L(j) = | x G VfA I ( 5 i , 5 2 , . . . , 5 „ ) ==> ( z , a 2 , . . . , a „ ) , a , -€ V £ , 2 < i < n j . 

A derivation consists of repeated rewriting and communication steps, s tar t ing from 

( 5 i , 5 2 , . . . , 5„) ; we retain in L(-y) the string generated in this way on the first component , 

terminal with respect to G\, without care about the strings generated by G 2 , . . . , G„ (G\ 

is the master g rammar of the system). 

A PCGS as above is called non-centralized; when K fl VJV,, = 0, 2 < i < n, then 7 is 

called a centralized PCGS (only Gi may ask for the strings generated by other grammars 

in the system). 

A further classification can be considered, according to the following criterion: the 

PCGS as above are called returning, to the axiom; when in point (ii) of the above 

definition we erase the words "and y^ = 5,-,, 1 < j < <", then we obtain a non-returning 

PCGS (after communicating a string x^ to some a;,-, the grammar G t j does not return 

to 5,-y, but continues to process the current string x^). 

Four classes of PCGS are obtained in this way: RCPC, CPC, RPC, PC, where R 

stands for returning, C for centralized and PC for parallel communicating g rammar 

systems. When only systems of degree at most n are considered, we add the subscript n: 

RCPCn, CPCn etc. According to the type of grammars G\,G2,..., G„, a PCGS can be 

regular, linear, context-free, A-free etc. (We can write RCPC (REG), RCPC (CF), and 

so on, for distinguishing such classes.) Here we consider only A-free context-free PCGS, 

hence RCPC, CPC, RPC, PC will refer to such systems. The family of languages 

generated by a class X of PCGS is denoted by C(X). 

Here are some simple examples, in order to clarify the above definitions and to point 

out the considerable generative capacity of PCGS. 

7i = ( o i , G 2 ) 

Gi = ( { 5 i , 5 2 , Q 2 } , { a , 6 , c } , 5 i , { 5 i — * a S u 5i —> a2 Q2, S2 —4 6c}) 

G 2 = ( { 5 i } , { a , 6 } , 5 2 , { 5 2 - + 6 5 2 c } ) . 

We have a centralized PCGS. The language generated both in the returning and the 

non-returning mode is 

L ( 7 i ) = { a n 6 " c " | n > 2 } . 

Indeed, let us examine a derivation in 71: 

(Sl,S2) = > (akSu bkS2c
k) = » (ak+2Q2, bk+lS2c

k+') 

= * (ak+2bk+'S2c
k+\a2) =-> (ak+2bk+2ck+2,a'2) , k > 0, 
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with a2 = bk+xS2c
k+l, a'2 = bk+2S2c

k+2 in the non-returning case, a2 = S2, a'2 = bS2c 
in the returning case. 

Note that Gi, G2 are linear grammars and £(71) is not a context-free language. 

73 = (G\,G2) 

G\ = ({S\,Q2},{a,b,c},S\,{S\-^S\,S\-+Q2cQ2}) 

G2 = ({52} , {a, 6}, 52, {S3 —> a 52, 52 —> 653 , S2 —+ a, 52 —> 6}). 

We obtain 
(5i,52) ==- (S\,y)=>(Q2cQ2,x)=^(xcx,z) 

for 2 € {S2,x}. If x G {a, 6}*, then the derivation is terminal, hence both in the returning 
and the non-returning case we have 

L(l2) = {xcx\xe{a,b}+} 

again a non-context-free language. (A similar PCGS can be written for {(xc)T \ x £ {a, b}+ 

r > 1: replace 5i —> Q2cQ2 in Gi by the rule 5i —> (Q2c)r.) 

2. THE EFFICIENCY OF PCGS 

Given a PCGS 7 = (G\,G2,... ,Gn) as above, we can define the complexity measures 
Var, Prod, Symb in the similar way as for context-free grammars [4], [5], [6]: 

Var (7) = ^2 c a r d VJv.i 
;=i 

Prod(7) ~ ] T c a r d P ; 
1=1 

Symb (7) = ^2 Symb (Pi), Symb (Pi) = VJ Symb(r), and 
,=1 rgPj 

Symb(r) = \x\ + 2 for r : A —> x. 

For a complexity measure M : X —> N, defined for a class of generative mechanisms 
A, we define Mx : C(X) —> N by 

MX(L) = iuf {M(G) I G € A, L = L(G)} . 

Clearly, when A, C A2, we have MXi(L) > MX,(L), for all L € £(A t ) . Following [7], 
if there are languages L 6 £(Ai) such that MXl(L) > MX2(L), provided Ai C A2 is a 
proper inclusion, then we say that M is a honest measure. The following refinements of 
this notion are considered in [7]: 

(i) MA-, > I MX2 iff there is L € £(A,) such that MXl(L) > MXi(L) 
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(ii) M i , > 2 Mx2 iff for every integer p there is L £ C(X\) such tha t 

MXl(L) — MXi(L) > p (arbitrarily large difference) 

(iii) MXl > 3 Mx 2 iff there is a sequence Ln, n > 1 of languages in C(X\) such tha t 

,. MXi(Ln) 
hm ' as oo 

(supra-linear difference) 

(iv) MXl >4 MX2 iff there is a constant p such that for any integer q there is a language 

L £ C(X\) such tha t MXl(L) > q and Mx2(L) < p (bounded by no mapping 

difference). 

Clearly >j implies >j-\ for each j = 2 ,3 ,4 . 

Here we are interested in comparing Var, Prod, Symb with respect to CF, the 

class of context-free grammars , with RCPC, CPC, RPC, PC (we have the inclusions 

CF c RCPC C RPC, CF c CPC C PC). 

T h e o r e m 1. VarCF >4 Varx, X £ { RCPC, RPC, CPC, PC } . 

P r o o f . Let us consider the PCGS fn = (G\,G2) with 

G\ = ({S\,Q2},{a,b},S\, 

{S\ —*S\}l>{S\-^QkbkQ2\l <k<n}) 

G2 = ({S2},{a}, S2, {S\—>aS2, S2-+a}). 

Each derivation can contain only one communication step, hence fn can be viewed 

both as a re turning and a non-returning PCGS, centralized or non-centralized. When 

using the rule S\ —> QkbkQ2, the string generated in G2 must be a terminal one (G\ 

cannot rewrite the symbol S2); moreover, that string is of arbitrary length. Therefore, 

L(ln)=(j{akibka'\i>l} 
k=\ 

and we have Varx (L (jn)) < 3 (and Prodx (L (~in)) < n + 3), 

X £ { RCPC, RPC, CPC, PC}. 

Consider now a reduced context-free grammar G = (VN, VT, S, P) generating L(-yn) 

and suppose there is a symbol A £ Vjv such that A ==> uAv, uv ^ A, in G. None 

of u, v can contain the symbol 6 (otherwise strings with arbitrarily many occurrences 

of 6 can be produced) . If A => w, w £ {a}*, then uwv £ {a}*, hence this is a 

substring of the prefix ak'b or of the suffix ba' of some string ak'bka' in £ (7n) - But 

urwvT is such a substring too, for all r > 1. If ak'bka' = xuwvybka', then, for r > 

ni, \xurwvry\ > ni, hence xurwvTybka' fc L(jn). If ak'bka' = ak'bkxuwvy, then, for 

r > ki, \xurwvry\ > ki, hence ak'bkxurwvTy £ L(~fn). Consequently, w = arbka" for 
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all such derivations A ==> uAv ==> uwv. Assume u = ap, v = aq and consider 

a derivation S ==> agAah ==> asapiAaqiah ==> a9apiarbka"aqiah for an arbi trary 

i > 1, We must have g + pi + r = k(s + qi + h), hence p = kq and the derivation 

A ==> UV4D ==> uwv is of the form Ak ==>• akqarbkasaq. As each set {a**6*a' : |. > 1} 

is infinite, when generating it we have to use recursive derivations, hence a nonterminal 

Ak and a derivation as above there exists in G. Suppose now that Ak = Ak>, for 

fc 3: it', 1 < k, k! < n. We can obtain a derivation 

S ==> al'Aka
t2 ==> a V ' M t a ' V 2 

==> a ' , a * , r a * V M * a ' ' W 2 

==> a ' > a * * r a * ' » ' ' , a H * ' a W r a ' 2 

for arbi trary r, s. Therefore, t\ + kqr+k'q's+t3 = k' (t4 + q's + qr + t2), for arbi t rary 7-, s, 

which implies kqr + k'q's = k' (q's + qr). However, this leads to k = k', contradiction. 

For each A;, 1 < k < n, we have a distinct Ak as above, therefore Var (G) > n + 1 (no 

one of Ak can be the axiom of G), VarcF (L(fn)) > n + 1, and the proof is over. • 

Corol lary. ProdcF >2 Prodx, SymbcF >\ Symbx, X as above. 

P r o o f . In the above proof we obtain Prod(G) > 3n: we need a derivation S = > 

xAky, one Ak ==> uAkv, and a terminal one, Ak ==> w, each of them involving 

-at least a rule, for each k, 1 < k < n. Consequently, ProdcF (L(jn)) > 3n, hence 

ProdcF >2 Prodx (as we have pointed out, Prodx (L(fn)) < n + 3). 

In the case n = 2, the above PCGS -y2 has Symb(-y2) = 22, hence Symbx (L(^2)) < 

22. However, as it easily follows from the previous proof, a context-free g rammar G for 

L(72) must contain at least six rules, of the forms S —> x\A2y\, S — • x2A2y2, A\ — • 

a M i a ! , i > 1, A2 — • a2lA2a\ i > 1, A\ -—• U\bv\, A2 — • u2b
2v2. Consequently, 

Symb(G) > 24, that is SymbcF > i Symbx, X as above. Q 

For Prod we can find a stronger result. 

T h e o r e m 2. ProdCF >4 Prodx, X <E { RCPC, RPC } . 

P r o o f . In [1] it is proved that ProdcF(Ln) > log2(?i+l) for Ln = {a'ba3 \i +j < n— 1}. 

However, Prodx(Ln) < 11 for all n, as Ln is generated by the PCGS 7 = ( G ' i , G 2 , G 3 ) , 

with 

G\ = ( {S i ,T, Q2) , {a, b}, S, {Si —* b, Si -+ ab, Si - ^ 6a, 

S, — S,, S, - ^ Q2T, T~^T,T-^ bQ2}) 

Gi = ({S 2 } , {a} , S2, {Si —+ aS2 , S2 - ^ a}) 

G3 = ({S3,A,B}, {a}, S3, {S3~^An~2,A—+ B}). 

Excepting the one-step derivations Si = > x, x g {a, ab, ba}, all derivations in d 

are of the form S, ==> St = > Q2T ==> Q2T = > Q2bQ2. As G] cannot rewrite S2, 
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the communicated strings must be of the form a', aJ, hence one generates strings of the 

form a'ba3. However, the derivations in G3 can have at most n — 1 derivations steps, 

hence also G2 can perform at most ?i — 1 derivation steps, which implies i + j < n — 1, 

tha t is ^ ( 7 ) = Ln, which completes the proof. • 

For the non-returning case, also the relation for Symb can be (slightly) improved. 

T h e o r e m 3 . ProdCF >4 Prodx, SymbCF >2 Symbx, X G {CPC, PC}. 

P r o o f . We consider the PCGS fn = (GUG2,G3), with 

G, = ({SuD,Q2,Q3},{a,b},Su{Si~> Su S, —> DQ3, D—* Q2D, 

D — Q2bQ2, C — b}) 

G-2 = ({S2}, {a}, S2, {St - 4 aS2, S2 - + a}) 

G 3 = ({S3,B,C,E},{a},S3, {S3—+S3, S3 — • CB, C ^ B , B ~ ^ E } ) . 

Each derivation in G\ s tar ts by Si ==> Si ==> DQ3. As Gi cannot rewrite the 

symbols S3, B, E, in the moment of introducing DQ3 in G\ we must introduce Cn 

in G3 too. Thus we have ( S i , S 2 , S j ) = > (Si ,cv2 ,S3) = > (DQ3,a2, Cn), a2, a'2 € 

{a',a'S2 \i> 1}. Now, in G3 we can use at most n times the rule C —> B and at most 

n t imes the rule B — • E, therefore the derivation will have at most 2n further rewrit ing 

steps. In G i , each C must be replaced by b (n rewriting steps); thus at most n steps can 

be performed using the rules D — • Q2D and D —> Q2bQ2. At the first use of the rule 

D —> Q2D, the string a2 generated in G2 must be terminal (Gi cannot rewrite S2), 

tha t is of the form a'. Consequently, all subsequent symbols Q2 will be replaced by the 

same string a'. In conclusion, 

Lhn)=\J{ak'ba'bn\z>l} 
k=i 

hence Varx (L(-yH)) < 9, Prodx (L(^n)) < 11, Symbx (L(^n)) < n + 37. 

Consider now a context-free grammar for L(7„). As in the proof of Theorem 1, we 

can find tha t a derivation A/t ==> ahgAkaq there is for each k, tha t is VarcF (L(ln)) > 

n + 1, ProdcF (L("tn)) > 3n, SymbcF (L(fn)) > 9n, and the proof is over. Q 

Open problem. Improve the above results for the measure Symb. 

3. A SPECIFIC M E A S U R E 

The above measures are borrowed from context-free grammars area; we consider now a 

specific complexity measure for PCGS, which can be interpreted as a dynamical one, as 

it refers to derivations, not to the "hardware" of a system. 
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Consider a PCGS 7 = (Gu G2 , • • •, on) and a derivation D : ( 5 i , 5 2 , . . . , 5 „ ) = > 

(wi,i,w>i,'2,-..,u>i,n) => (u>2,i,«>2,2,-••,«>.>)••• = > (™fc,i, Wfc.2, • • •, u>fc,„) in 7. Denote 

C o m (u>i,i, •. •, w,,„) = ] P |wi,j |K 
j= i 

it 

Com (D) = Y^ Com (u),-,!, . . . , u>;,n). 

For a: € 1 (7 ) define 

C o m ( x , 7 ) = min { C o m ( £ > ) | D : ( 5 . , . . . , S „ ) ==> ( x , a 2 l . -. , « „ ) } • 

Then 

C o m (7) = sup { Com (x, 7) | x € £ ( 7 ) } 

and, for a language L and a class X of PCGS, 

Comx(L) = inf { Com (7) | L = L ( 7 ) , 7 6 I } . 

In what follows, we consider only centralized PCGS returning to axiom after each 

communicat ion, hence we do not specify the class X of PCGS (it is always RCPC). 

T h e parameter Com evaluates the number of query symbols appearing in a derivation 

(a sort of cost of producing a string in 7) . 

A measure M : C(X) —> N is called connected if for each n > n0, n0 a given 

constant , there is Ln 6 C(X) such that M(Ln) = n (cf. [6]). 

T h e o r e m 4. Com, is a connected measure. 

P r o o f . Consider the languages 

Ln = {& (a '6a ' ) 2 " + 1 611 > l } , for n > 1. 

They can be generated by the PCGS 7„ = (G' i ,G 2 ) , with 

G, = ({St,S[, S'2, Q2} , {a, b}, S i , {5 , — bS[b, 

S[ —* aS[a, S[ —+ a(6Q2)n6a, S2 —* 6}) 

G2 = ({S 2 , S2} , {a} , S2 , {S, — S2 , S2 — • a 2 S 2 a 2 } ) . 

A derivation in 7 proceeds as follows: 

(SUS2) =*> (6SJ6, S2) ==> (6a 'S;a i6, a2 'S2a2*) 

= > (6a '+ 1(6Q 2)"6« '+ 16, a 2<'+ 1 )S 2a 2 ( '+ 1 ) ) 

= > , (6a ' + 1 ( 6a 2 ( ' + 1 ) S 2 « 2 ( ' + 1 ) ) "6a ' + 1 6 , S 2 ) 

= » (6a ' + 1 (6a 2 ( ' + 1 ) 6a 2 ( ' + 1 ) ) ' 1 6a '+ 16, a 2 ( "- ] ) S 2 a 2 ( " - 1 ) ) , 
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hence L(-fn) = Ln indeed, and consequently Com(Ln) < n. 

Consider now a PCGS 7 = (G\,G2,... ,Gm) generating this language. Each string 

in Ln contains 2n + 3 occurrences of the symbol 6, hence 2n + 2 substrings of the form 

a', a2' bounded by such symbols. Each G, is a context-free g rammar , hence cannot 

generate strings of the form X\ba'bx2ba'bx3ba'bxi for arbitrarily many i. Two substrings 

a' can be generated in G\, for the other 2n such substrings we need communication steps. 

Each communication can bring to G\ at most two substrings a', with arbitrarily large i. 

Therefore n communication steps are necessary, that is Com (7) > n, Com (L(-/n)) > n 

hence Com (L(^n)) = n. 

Clearly, the parameters Var, Prod, Symb can be computed for an arbi t rary PCGS 

by a simple counting. The situation is different for the measure Com due to its dynamical 

character (it is evaluated on an infinite set, tha t of all terminal derivations). 

T h e o r e m 5. C o m (7) and Com(L(f)) cannot be algorithmically computed for an 

arbitrarily given (context-free, centralized and returning) PCGS. 

P r o o f . In fact, a more general assertion is true, namely "the context-free-ness of 

L(-y), for an arbitrarily given PCGS 7, is undecidable". On the other hand, L(f) is 

context-free if and only if Com (L(f)) = 0. 

For, consider an arbi t rary context-free grammar G = (VN,VT,S,P), with Vj = {a,b}, 

and the non-context-free language 

L = {cndmcem \m > n > 1} 

and construct the language 

L' = L(G) {c,d,c}+U{a,b}+L. 

If L(G) = {a,b}+, then V = {a, b}+ {c, d, e}+, hence it is a regular language. If 

L(G) ^ {a, b}+, then let w G {a,b}+ - L(G) be an arbitrary string. We have L' n 

{w} {c,d,e}+ = {w}L, and this is not a context-free language. Consequently, L' is 

context-free (even regular) if and only if L(G) = {a,b}+. The equality L(G) = {a, b}+ 

is undecidable for arbi trary context-free grammars , hence it is undecidable whether L' 

is context-free or not. 

On the other hand, L' is generated by the PCGS 7 = (Gi,G'2), wi th 

G\ = ({S\,A,B,C,T,Q2}uVN,{a,b,c,d,e},Sl, 

{S\ -^T}UPU{T—*Ta\a£ {c,d,e}}U 

{T — Sa\a€ {c,d,e}}U 

{S\ — + A B } U { A — > a A \ a e { a , b } } U 

{A—>a\a€{a,b}}U 

{B—*cB, B—*cQ2, C—^c}) 

G, = ({S2, C}. {d, e} , 5 2 , {S2 -+C,C—+ dCe}). 
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(Starting with the rule Si —• T we produce a string in L(G) {c, d, e} + and starting with 
Si —• AB we obtain a string in {a,b}+ L.) Consequently, Com (£(7)) = 0 if and only 
if L("l) is regular, which is undecidable. 

Moreover, let us remark that when L(G) = {a,b} +, then the derivations starting 
with Si —> T produce all strings in L(i), without involving communications. When 
L(G) 7̂  {a,b}+, as the language L(f) is not context-free, at least a communication step 
is done. In conclusion, Com (7) = 0 if and only if L(G) = {a, b}+, hence also the equality 
Com. (7) = 0 is undecidable. • 

Corollary. It is not decidable whether Com (7) = Com (£(7)), for an arbitrarily 
given PCGS 7. 

P roof. For the above considered language V'. construct the PCGS 7 = (G\, G2, G3), 
with 

Gx = ({S\,A,B,C,T,Q2,Q3}UVN,{a,b,c,d,e},S1, 

{Si—^ST, T-^g3}U{T^aT|a£ {c,d,e}}UTU 

{Si —• AB, B —• cB, B —» cQ2, C —• c} U 

{A —- aA I a <£ {a, 6}} U {A —• a | a £ {a, b}}) 

G2 = ({S2, C} , {d, e}, S2, {S2 —+C,C—> dCe}) 

Gz = ({S3},{c,d,e}, S3, { S 3 — > a | a G {-,«., c}}). 

As it easily can be seen, £(7) = L' and each derivation in 7 must use either the rule 
B —> cQ2 or the rule T —• Q3, hence Com (7) = 1. On the other hand, Com (L(j)) = 
0 or ComL(-))) = 1, depending on the equality L(G) — {a,b}+, which is undecidable. 

Consider now the compatibility question [6]: given a measure M : X —• N and a 
language L € £(X), denote 

M-'(L) = {G e X I M(G) = M(L), L = L(G)} 

(the set of minimal generative mechanisms for L, with respect to M). Two measures 
M\, M2 are said to be incompatible if there is a language L such that 

Mr1(Z-)nM2-1(z,) = 0 

(they cannot be simultaneously minimized for at least one language). • 

Theorem 6. The measure Com is incompatible with each of Var, Prod, Symb. 

Proof . Consider the language 

L = {anbncbncbncan \n>\}. 
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It can be generated by the PCGS 7 = ( G i , G 2 , G 3 ) , with 

G, = ({S\,S3,S3,Q2,Q3},{a,b,c},S\, 

{S\ — aS\a, S\ — aQ2cQ3a, S2 —> c, S3 —> c}) 

G2 = ( { 5 2 } , {6}, 5 2 , {5 2 — 6526}) 

G 3 = ( { 5 3 } , { 6 } , 5 3 , { 5 3 — • 6 5 3 } ) . 

Consequently, Corn (L) < 2. 

Consider a P C G 5 7 such that Z, = L(i, C o m ( 7 ) < 2. Suppose 7 = ( G i , G 2 ) . 

Each of G\, G2 is context-free and each string in L contains five substrings an, bn with 

related lengths. This implies Com (7) > 2. If two communications are performed from 

G2 to G\, then they must be allowed to bring to G\ strings of the same form (after 

a communication, the grammar G2 resumes working from S2). However, we cannot 

distinguish in anbncbncbncan two substrings, both of the form an or of the form 6nc or 

c6" and so on, such that the string obtained by removing them to can be generated in 

the context-free g rammar G\. In conclusion, either Com (7) > 3, or 7 is of degree at 

least 3, contradiction. 

As we assumed Com (7) < 2, we have 7 of degree at least 3. However, this implies 

Var (7) > 5 (we have to use at least 5 i , S2, S3, Q2, Q3), Prod(f) > 5 (each G, contains 

at least a rule, whereas G\ must contain a terminal rule, one introducing Q2, Q3 and a 

recursive one, which is different from the above two), and Symb(i > 19 (in each G; 

we have a nonterminal rule, also introducing a symbol a, 6 - we obtain Symb > 12 for 

them - but also c must be introduced by a non-recursive rule, as well as Q2, Q3 - two 

further rules, with Symb > 7). 

On the other hand, Var (L) < 4, Prod(L) < 4, Symb(L) < 17, as L can be generated 

by the PCGS 7 ' = (G\,G2), with 

G\ = ( { 5 „ 5 2 , o . 2 } , { a , 6 , c } , 5 i , 

{S\ —-> aS\a, S\ — Q2Q2Q2, S2 — c}) 

G2 = ({5 2 } , 5 2 , {S2 — 652}) 

having Com (7') = 3. 

4. FINAL R E M A R K S 

Of course, the complexity of PCGS must be more investigated, both considering for 

them measures used for context-free grammars (grammatical level, index etc. [6]) and 

defining specific measures. For instance, a natural idea is to consider the number of 

simultaneously used query symbols: for a derivation D as in the beginning of Section 3, 

define 

SCom ( t u . , 1 , . . . , u>.,„) = max {\xij\K : 1 < j < n} 
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and then define SCom(D), SCom(x,f), SCom(f), SCom(L) as for Com. Similar 
results as for Com are expected also for this measure. Other such measures can be the 
maximum length of a communicated string, the degree of non-centralization (the number 
of grammars introducing query symbols) and so on. 

As we already said, the PCGS area seems to be both "practically" motivated and 
rich in theoretical problems. 

(Received October 10, 1990.) 
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