
K Y B E R N E T I K A — V O L U M E 28 (1 9 9 2) , N U M B E R 1, P A G E S 5 0 - 61

FORMAL TRANSLATION DIRECTED BY LR PARSING

BOŘIVOJ MELICHAR

The notion of the syntax-directed translation was a highly influential idea in theory of the for
mal translation. Models for the description of the formal translations are syntax-directed translation
schemes. The special case of syntax-directed translation schemes are simple syntax-directed translation
schemes, which can be written in the form of translation grammars. It is possible for an arbitrary
translation described by a translation grammar with LL(k) input grammar to create one-pass transla
tion algorithm by a simple extension of the algorithm of a syntax analysis for LL(k) grammars. Similar
approach for an LR(k) grammar led to the result that it is possible to perform an one-pass formal trans
lation during LR(k) analysis only in that case when the translation grammar has a postfix property. In
this paper the construction of the algorithm is studied, which can, for a particular class of translation
grammars (called LR(k) K-translation grammars), perform one pass formal translation. The basic idea
discussed in this paper is the following: It is possible to make an extension of the algorithm of the syntax
analysis for LR(k) grammars in such a way, that the output of output symbols can be performed not
only as a part of the operation reduction but also as a part of the operation shift.

1. I N T R O D U C T I O N

T h e notion of the syntax-directed translation introduced by Irons ([5], [6]) was a highly

influential idea in theory of the formal translation. Mathematical models of the syntax-

directed translation have been developed and studied in [1], [2], [4], [8], [10] and [12].

Models for the description of the formal translations are syntax-directed translat ion

schemes. The special case of syntax-directed translation schemes are simple syntax-

directed translation schemes, which can be written in the form of t ranslat ion grammars .

Parallel to the development of methods of the formal description of the translat ion,

principles for implementat ion of algorithms of the syntax-directed translat ion were re

searched. Already in 1968, Lewis and Stearns [8] have shown that it is possibleTor an

arbi trary translation described by a translation g rammar with LL(k) input g r a m m a r to

create one-pass translation algorithm by a simple extension of the algorithm of a syntax

analysis for LL(k) g rammars .

Similar approach for an LR(k) g rammar led to the result tha t it is possible to perform

an one-pass formal translation during LR(k) analysis only in that case when the transla

tion g r a m m a r has a postfix property, which means that output symbols are placed only

at the ends of the right-hand sides of the grammar rules. It means tha t t h e o u t p u t of

Formal Translation Directed by LR Parsing 51

output symbols is made only if the end of the rule is discovered. This means, from the

point of view of the syntax analyzer, tha t the output is performed as a par t of the oper

ation reduction of the syntax analyzer. The restriction of the translation g rammar rules

mentioned has led to a development of various transformations of translat ion grammars

into g rammars having postfix property (cf. [8], [9] and [12]) and to a creation of the four

pass model of the formal translator (cf. [1]). Others (cf. [7]) remarked tha t almost all

bo t tom up syntax analyzers contain elements of the top down methods , which can be

used in the process of extension of the syntax analyzer to the algorithm of the formal

translat ion.

In this paper the construction of the algorithm is studied, which can, for a part icular

class of translation grammars (called LR(k) /?.-translation grammars) , perform one pass

formal translat ion. The class of LR(k) /^-translation grammars is a superset of LR(k)

postfix translation grammars .

The basic idea discussed in this paper is the following: It is possible to make an

extension of the algorithm of the syntax analysis for LR(k) g rammars in such way that

the ou tpu t of output symbols can be performed not only as a part of the operation

reduction but also as a par t of the operation shift.

2. NOTATION

Alphabet is a finite nonempty set of symbols. The set of strings of symbols from the

alphabet A including empty string (e) is denoted by A*. A formal language L over an

alphabet A is a subset of A*, L C A*.

A context-free g rammar is a quadruple G = (N,T,P,S), where N is a finite set of

nonterminal symbols, T is a finite set of terminal symbols, T n N = 0, S is the s tar t

symbol, P is a finite set of rules of the form A —> a, A G N, a G (N U T)*. The symbol

=> is used for the derivation relation. For any a, (1 G (TV U T)*, a => /? if a = 71^72, P =

= 7i7o72 and A —> 70 G P, where A G N and 70,71,72 G (N U T)*. Symbols =>k, =4»+,

=>* are used for fc-power, transitive, transitive and reflexive closure of =*-, respectively.

The symbol =>r,n is reserved for the rightmost derivation, e.g. 71A72 =>™ 71072 if

72 € T*. The sentential form a is a string which can be derived from S, S =>* a. The

sentential form a for S =>*Tm a is called the right sentential form. The formal language

generated by the g rammar G = (N,T, P, S) is the set of strings L(G) = {w : S =>* w,

w£T*}.

A derivation tree may be viewed as a graphical representation for a derivation. Each

interior node of it is labeled by some nonterminal symbol A and the children of the node

are labeled, from left to right, by the symbols in the right hand side of the rule by which

this A was replaced in the derivation. The leaves of the derivation tree are labeled by

empty strings or terminal symbols and, if read from left to right, they const i tute a str ing

derived by the grammar . The derivation tree will be t reated as an expression of the

syntact ic s t ruc ture of the derived string.

52 B. MELICHAR

By T*k we shall denote the set T*k = {x : x € T*, |x| < fc, k > 0} , where the length

of string x e T* is denoted by |« | . We define the sets FIRST f c(a) for a e (N U T)* and

FOLLOWA (/4) for A e N, as follows.

F I R S T t (a) = {x e T* : a =>* xj3 and |a;| = k, or a =>* x and [*| < fc},

FOLLOW*(A) = = {xeT*:S^*rm aAP and i € FIRST*(/9)}.

3. TRANSLATION GRAMMARS

A formal translat ion Z is a relation Z € A x B, where A and B are sets of strings. A

and 5 are sets of input and output strings, respectively.

A context-free translat ion grammar is a context-free grammar , in which the set of the

terminal symbols is divided into two disjoint subsets, the set of input symbols and the

set of ou tput symbols.

D e f i n i t i o n 1. A context-free translation grammar is a 5-tuple TG = (N, T, D, R, S),

where

TV is the set of nonterminal symbols,

T is the set of input symbols,

D is the set of ou tput symbols,

R is the set of rules of the form A -» a, where A e TV, a e (TV U T U D)*,

S is the s tar t ing symbol.

The input homomorphism hJG and the output homomorphism hTG from (NUTUD)*

to (TV U T U D)* are defined in the following way:

/ o for a Є T U ТV 1 a for a Є T
hJG(a) = (hтa(a) = (

\ e for a Є D \ e for a Є D U ТV

T h e derivation in the translation grammar TG is denoted by => and called the trans

lation derivation. T h e formal translation defined by the translation g r a m m a r TG is t h e

set Z(TG) = {(hJG(w), hTG(w)) : S =»* to, to € (T U £>)*}.

The input g rammar of the translation grammar TG is the context-free g rammar G =

= (N, T, Ri, S), where ft = {A -> fcpfa) : 4 - » a e 4

TVote. T h e upper index TG is omitted if no confusion arises.

4. / ^ -TRANSLATION GRAMMARS

As stated above, it is possible to extend the LR parser to perform an output of a symbol

as a par t of the operation reduce. The basic idea described below is a possibility to extend

the LR parser in order to perform the output of symbols as a par t of the operation shift

as well. Let us consider a simple case when a rule of the translation g rammar has the

Forma/ Translation Directed by LR Parsing 53

form A —> axa/3, where x is the string of output symbols, a is the input symbol, a,/3 are

strings of input , ou tput and nonterminal symbols.

In such a case, it is possible to add the string x to the output string during the shift

of the symbol a.

D e f i n i t i o n 2. A translation grammar TG is called /^-translation g rammar if the

strings of ou tput symbols appear at the ends of the right-hand sides of the rules and /o r

immediately in front of input symbols.

5. LR(k) / ^ T R A N S L A T I O N GRAMMARS

Now we can demonst ra te that an extended LR parser can perform the t ranslat ion, if

it is possible for every shift operation to determine unambiguously the str ing of ou tpu t

symbols, which may be added to the output string.

D e f i n i t i o n 3 . A translation LR(k) item for the translation g rammar

TG =(N, T, D, R, S) is the object of the form [A -> a. /?, x, w] where A -> a/3 is a rule

of the input g rammar for the translation grammar TG, x £ D*, w € T*k, k > 0.

For k = 0 an LR(0) translation item will be writ ten in the form [A —> a./3,x}.

The following algorithm constructs the collection of sets of the translat ion LR(k) i tems

for given translation grammar TG.

A l g o r i t h m 1. Construction of the collection of sets of LR(k) t ranslat ion i tems.

Input: ^- t ransla t ion g rammar TG = (N, T, D, R, S), k>0.

Output: Collection P of sets of LR(k) translation items for the translat ion g rammar

TG.

Method:

Step 1. Construct an augmented grammar

TG" = (N U {S'},T,D,Rl) {S' -> S},S').

Step 2. Construct the initial set of LR(k) translation items in the following way:

(a) # :={[s ' -^ .S,e,e}}.
(b) If [A - » . B(i,e,u] 6 # , B € N and B -» 7 E R, then

:= # U { [/ ? —» .hi(-y),y,v] : y £ D* is the longest prefix of 7 containing

output symbols only, v £ FIRST f c(/i ,(/?)u)}.

(c) Repeat the step (b) while new items can be inserted into the set # .

(d) P := { # } , # is the initial set.

Step 3. If the1 set M; of LR(k) translation items has been constructed, construct

for each symbol X £ (NUT), which is in some LR(k) i tem in M; just behind

the dot , a new set of LR(k) translation items Xj, where j = max(fc) + 1 for

Xi, £ P or j = 1 for Xk $ P, in the following way:

54 B. MELICHAR

(a) X, := { [A - > aX .fi,y,u] : [A -> a.X/3,x,u] £ Mi, y £ D* is the string

of ou tput symbols from the right hand side of the translat ion g rammar

rule corresponding to the rule A —> aXfl between symbol X and string

/?•},

(b) If [A -> a. B/3,e,u] £ X3, B £ N and B -> 7 € i?,

then X,- := Xj U {[E —> . ft;(7), ?/, w], y £ D* is the longest prefix of 7

containing only output symbols, v £ FIRSTfc(/i,(/3)u)}.

(c) Repeat the step (b) while new items can be inserted into the set Xj.

(d) P := P U {Xj}.

Step 4- Repeat Step 3 for all sets Mi, while new sets can be added into the collec

tion P.

This algorithm constructs the collection of sets of LR(k) translation items for a given

t ranslat ion grammar . This collection differs from the collection of sets of LR(k) i tems

for the input g rammar . Each of its items contains a string of output symbols.

There is a str ing of output symbols y in the item with the dot at the end of the right

hand side of the rule. The string y is a string of output symbols from the end of the rule

in question. Such a situation means tha t the operation reduce will be performed during

the translat ion and the string y will be added to the output string.

There is also a string x of output symbols in the item with the dot just in front of an

input symbol. In this case the string x is the string of output symbols from the rule in

question placed in front of the input symbol behind the dot. This means tha t for the

rule of the translat ion grammar of the form A —> axafi the constructed i tem for some

u £ T*k is [A ~» ht(a). ahi(j3), x,u] where x £ D*, a £ T, a, (3 £ (N U T U D)* and a

does not end with the output symbol.

The existence of such an item in some set of LR(k) translation items means tha t the

operation shift will be performed during the translation and the string x will be added to

the ou tpu t string. In order to select the output string x unambiguously, there must not

be, in the same set of LR(k) translation items, two different items with different ou tput

strings, with the same input symbol behind the dot, and with the same lookahead strings

from FIRSTk(ah,(/3)u).

D e f i n i t i o n 4 . We say tha t in the collection P of LR(k) t ranslation i tems there is a

translat ion conflict, if in some set of P two items are of the form

[A —> a . a/3,x, u]

[B —> 7 . b6, y, v]

for x ± y and FIRSTjt(a^t.)nFIRST f c(M«) + 0.

D e f i n i t i o n 5. An i t- translat ion grammar TG is called an LR(k) /^-translation gram

mar , if the input g rammar of TG is an LR(k) grammar and there is no translation conflict

in any set of LR(k) translation items of the collection P for TG.

Formal Translation Directed by LR Parsing 55

6. A L G O R I T H M OF T H E FORMAL TRANSLATION

For the LR(k) /^-translation grammar translation can be performed using the algori thm,

which is obtained by the following modification of the LR parser.

Step 1. During the operation reduce, add the string of output symbols to ou tput string

from the LR(k) item corresponding to the reduce operation performed.

Step 2. During the operation shift, add the string of output symbols to ou tput str ing

from the LR(k) item corresponding to the shift operation performed.

Strings of ou tpu t symbols can be inserted into the corresponding items of the action

table of the LR parser. The resulting table will be called the translation table.

A l g o r i t h m 2. Construction of the translation table for a LR(k) /^-translation gram

mar .

Input: LR(k) ^ - t rans la t ion grammar TG = (N,T,D,R,S) and a collection P of sets

of LR(k) t ranslation items for LR(k) /^-translation grammar TG.

Output: Translation table p for the translation grammar TG.

Method: Translation table has rows denoted by the sets of items from P, columns are

denoted by the elements of the set T*k.

Step 1. p(Mi,u) = shift(x), if [A -> a . 0 , x , v] £ M., PeT(NuT)*,

u e FIBSTkiPv), x e D*,

Step 2. p(Mi,u) = reduce j(x), if j > 1 and

[A —> hi(a) • ,x,u] £ Mi, A —» a is j t h rule in R,

u e T*k, x e D*,

Step 3. p(Mt, e) = accept, if [S' -> S ., e, e] € M „

Step Jr p(Mi,u) = error in all other cases.

Note. The goto table may be constructed in the same way as the one for the LR parser

(see [3]).

A l g o r i t h m 3 . Formal translation for LR(k) /^-translation grammar .

Input: The translat ion table p and the goto table g for the translation g rammar TG =

= (N, T, D, R, S), input string x eT*,k>0.

Output: O u t p u t string y in case tha t for x e L(Gi), (x,y) £ Z(TG), otherwise error

signalisation.

Method: The symbol # is an initial symbol in the pushdown store. Repeat Steps 1, 2

and 3 until accept or error appears. Symbol Y is on the top of the pushdown store.

56 B. MELICHAR

Step 1. Fix the string of first k symbols from the unused part of the input string and

denote it by u.

Step 2. (a) If p(X,u) = shift(x), read one input symbol, add the string x to the

ou tpu t string and go to Step 3.

(b) If p(X, u) = reduce i(x), pop from the pushdown store the same number

of symbols as is the number of input and nonterminal symbols at the

right-hand side of the i th rule (i)A —> a and add string x to the ou tpu t

string. Go to Step 3.

(c) If p(X, u) = accept, finish the translation; then the output string is the

translat ion of the input string, provided that the input string is read

completely, otherwise finish the translation by an error signalisation.

(d) If p(X,u) = error, finish the translation by an error signalisation.

Step 3. If W is a symbol which may be pushed to the pushdown store (the read symbol

in 2(a) or the left hand side of the rule used for the reduction in 2(b)) and Y

is the symbol at the top of the pushdown store, then:

(a) If g(Y,W) = M, then push M at the top of the pushdown store and

repeat the algorithm from the step 1.

(b) If g(Y, W) = error, finish the translation by an error signalisation.

The configuration of the algorithm is the triple (a,x,y), where

a is the content of the pushdown store,

x is the unused par t of the input string,

y is the par t of t he output string already created.

The initial configuration is a triple (# , . x , e) , the accepting configuration is a triple

(# M ; , e , 7 /) , where M; is the symbol at the top of the pushdown store, and it holds

for Mi t ha t p(M,-,e) = accept.

E x a m p l e . Let us have translation grammar

TG = ({A, B},{a,b},{x,y},R,A), where R contains the rules:

(1) A->aAy (2) A -» B

(3) B -* xbB (4) B -> x

This g rammar describes the translation Z(TG) = {(a'b3. x1+ly') : i,j > 0} . Let us

construct t he collection of sets of LR.(\) translation items for the g rammar TG.

= {[A' -> . A, e, e], [A -> . aA, e, e], [A -» . B, e, e], [B -> . bB, x, e], [B ~t . , x, e]}

Ai = {[A'-> A ., e, c}}

ai = {[A ->a.A, e, e],[A-* .aA, e, e],[A-* .B. e, e],[B—> ,B, x, e],[B-* ., x, e]}

Bl = {[A'->B.,e,e]}

6, = {[B-*b.B, e, e], [B-* .bB, x, e], [B-> .,x, e]}

A, = {[A-*aA.,y,e]}

B2 = {[B-*bB., e, e]}

Formal Translation Directed by LR Parsing 57

The following table is the translation and goto table. Symbols S and A stand for opera

tions shift and accept, respectively. The reduction by the rule number (i) is denoted by

Ri-

а b e A B а b

S S(x) R4(x) A\ B\ а\ Ь\

A\ A

а\ s S(x) R4(x) A2 B\ а.\ b\

B\ R2

b\ S(x) R4(x) в2
h

A2 R\(y)

в2
R3

Algorithm 3 performs the translation of the input string aa6 in the following way:

(#,aab,e) h (#«.,, ab,e)

h (# a l 0 l , 6,e)

h (#0,0! b\, e,x)

h (#aia\b\B2, e,xx)

h (#aiaiBu e,xx)

h Ofa}a^ A2, e,xx)

h (#a,A 2, e,xxy)

h (#AU e,xxyy)

Main theorem. Algorithm 3 of the formal translation for LR(k) ^-translation

grammar TG creates, for each input string x £ L(Gi), where (7; is the input gram

mar of translation grammar TG, an output string y such that (x, y) £ Z(TG).

Proof. Algorithm 3 is an extension of an LR parser, which means that it constructs

the reverse of the rightmost derivation of the input string x and, if this derivation does

not exist, it produces an error signalisation. Therefore we have to prove the fact, that

for an input string x £ L(Gi) the output string y is produced such that (x,y) £ Z(TG).

The proof will be made by the induction on the length of the rightmost derivation of

the input string.

First the following claim has to be proved:

(*) If for some A £ N a derivation A =>" w exists in TG such that x = hi(w), y = h0(w),

then Algorithm 3 performs the sequence of moves (a, x, ft) h* (aA1, e, fiy) for some string

a of pushdown symbols, /3 £ D*, where A' is the pushdown symbol corresponding to A.

1. For n = 1 the derivation has the form A => w and in R there is the rule A —>

y\a\y2a2---ykakyk+\, where k > 0, y\,y2,-- • ,yk,Vk+\ £ D*, aua2,-• • ,ak £ T, h((w) =

a\a2 • • • ak, h0(uj) = yxy2 • • • ykyk+1. In this case the collection P of the sets of translation

58 B. MELICHAR

LR(k) items contains sets b, a[, a'2, • • •, a'k and these sets contain the following items:

[A -> ,a\a2---ak,yx,u] £ b,

[A-* a\.a2---ak,y2,u] £ a\,

[<4-+0iO2 • • • ,ak,yk,u]e a'k_^,

[A -> a\a2---ak.,yk+\,u\ £ a'k

for some lookahead string u £ T*k.

Algori thm 3 performs for some string of pushdown symbols a the following sequence of

moves

(a,a\a2...ak,fi) h (aa\, a2 .. .ak,/3y\)

h (aa '1a2 ,a3. . .a f c , /?i /1 i /2)

h . . .

h (aa[a'2...a'k,e,l3y\y2...yk)

h (aA',e,$y\y2...ykyk+\)

Therefore the claim (*) is true for n = \.

2. Suppose tha t the claim (*) is true for all m < n. The rightmost derivation of the

length n has the form

A =*• 2 i i l a i i l 2 l i 2 a l i 2 - - - z l i i 1 a l i ! l E 1 z 2 i l a 2 , 1 z 2 , 2 a 2 , 2 - - -2 2 , 1 2 a 2 i l 2 S2- • •

• • • ft2i+lllafc+lilZfc+li2afc+li2 • • • 2 f c+1 ,i i+1a f c+ l iik+1 v

=4-"'* z\,xahXzh2a\i2 • • • 2 l l l la l i l lB1z2 i la2,1Z2,2a2 ,2 • • • z2ti2a2<t2B2 • • •

•• • wkzk+\,\ak+\%\Zk+\i2ak+\2 •• • zk+\,ik+lak+\:ik+1v

=>m2 z u a ^ i Z i ^ a i ^ • • • z\,i1a\ti1B\z2t\a2,\z2i2a2i2 • • • z2^2a2>i2w2 • • •

• • -wkzk+\:\ak+\t\Zk+\i2ak+\:2 • • •zfc+i iifc+1afc+i,,k+1u

=>"11 2 i i l a i , 1 z l i 2 a l i 2 • • • Zi,i1ai i l lwiZ2i la2i lZ2,2a2i2 • • • Z2,i2a2il2io2 • • •

• • • wkzk+\^ak+\,\Zk+\<2ak+\2 • • • zk+\tik+iak+ljk+1v

where v,zjit £ D*, aiti £ T, x, = hi(wj),yj = h0(wj), ik > 0 for ; = 1,2, • • • ,k + 1,

1= 1,2,•••,._,, k > 0 .

In this case the collection P of sets of LR(k) translation items contains sets

°i ° i , n °.,2>'"' > ai ,«i ' B'u a2,n a 2 , 2 ' " - ' i a2,i2 ' B2,--, Bk, a f c + 1 1 , a f c+12 , • • •, a fc+l i fc+i

and these sets contain the following items:

[A -> . a\Aaxa • • • oit,-, fl1a2ilo2i2 • • • aU2B2 • • • B f c a f c + u a f c + l i 2 . . . ak+hik+1, z u , u] £ b

[A —> aXt\ . a l i 2 - • •ai i) 1£(1a2 l ia2 i 2- • -a2ti2B2 • • • B f ca f c + l i la f c + l i 2 . . . afc+1,! t+1, z l i 2 , wj £ a'ix

Formal Translation Directed by LR Parsing 59

[A —> Oi,iOi,2' • •Ci1.1 .Bia2,ia2,2- • -a2ti2B2 • • • Bkak+ltlak+lj2 ... ak+ltik+1, e, uj G a^,,,

[A —> 01401,2- • •althB1 .a2,\a2,2 •• • a2,i2B2 •• • Bkak+ltlak+1>2 ... ak+ltik+1, z2,\, u] G B[,

[A —• altla1)2 • • •altilB1a2tl. a2,2 • • • a2ti2B2 • • • Bkak+ltlak+lt2 ... ak+1,ik+1, z2,2, u\ G a 2 1 ,

[A - * aj,jaj,2 • • • Oj.ij J5ja2)102,2 • • • a2 , i2 . B2 • • • Bkak+ltlak+1<2 ... ak+hik+1 ,e,u] G a'2i2,

[A —> altlalt2- • •altilB1a2tla2t2-- -a2tnB2- ••aktH . Bkak+ltlak+lt2 ... ak+ltik+1, e,u] G a'fcifc,

[A -> Oi,jaj,2- • • aitilB1a2tla2t2- • • a2ti2B2- • • Bk ,ak+ltlak+lt2 .. .ak+1<ik+1, Zfc+j,i, w] G B'k,

[A —» aj , ia i , 2 - • •aj,i1.9i02,i02,2- • • a2ti2B2 • • • Bkak+ltl >ak+lt2 ... ak+1,ik+1, Zfc+1,2, w] G a f c + 1 1 ,

[A —> a1)1a1,2 • • • o1,i15ja2,1a2,2 • • • a2 , ,2B2 • • • 5 fco fc+l i la fc+1,2 . . .

• •• •«fc+i,.*+i.2:*+i,.*+t>w] e n i + i ^ - n
[A -> a 1 , 1a 1 , 2---a 1 , 1 1E 1a 2 , 1a 2 , 2---a 2 , i 2 i92---E f ca f c + 1 , 1a f c+ 1 , 2 . . .a f c+ 1 , i t + 1 . , u , u] G «fc+j,it+1'

for some lookahead string u G T*fc.

Algorithm 3 performs for some string of pushdown symbols a the following sequence

of moves:

(a , aj,iaj,2 • • • aj ii1x1a2 ,1a2 ,2 • • • a2>i2x2 • • • xkak+ltlak+lt2 • • • ak+1,ik+1, p)

h (a a ' j j , ai ,2 • • • ai,i1Xia2,1o2,2 • • • a2ti2x2 • • • xkak+ltlak+lt2 • • • ak+ltik+1, $.Z\,\)

h (a a j , j a 1 2 , • • • altilx1a2tla2ti • • • a2ti2x2 • • • xkak+ltlak+lt2 • • • ak+ltik+1 ,/3zltlzlt2)

h . . .

h (aa[, jo '1 2- • • a ' l l i , a - 1 a 2 i l o 2 , 2 - ••a2,,-2.iv • • xkak+ltlak+lt2 ... ak+ltik+1, f3zltlz1]2- • • zltil)

h m i (aa'lxa'12 • • • a\ (lB[, a2,1a2,2 • • • a2,i2x2 • • • xfcafc+1,jafc+j,2 . . . Ofc+i,.fc+1, {3zltlz1;2 • • • Z J ^ J / J)

h (aa^jo ' j 2 - • •a'lilB'1a'21,a2t2- • • a2)i7x2- • • xkak+ltlak+lt2 • • •

... afc+j,ik+1, fiz\,\Z\,2 • • • z\,ily\Z2,\)

h (aa ' j jO j^ • • • a'lilB'1a'2 tla'2a, • • • a2ti2x2 • • • xkak+ltlak+lt2 • • •

• • • a«+i,; t + 1 , Pz\,\Z\fl • • • zltil y\z2tlz2t2)

h •••

h (aa ' j ja ' j 2 • • • o'j J J B J O J J O ' J J • • • a'2i^,x2 • • • xkak+ltlak+lt2 • • •

• • • Ofc+j,.-fc+1, 0Z\,\Z\,2 • • • zltily1z2,1z2,2 ... z2,,-2)

h'"2 (aa[xa'12 • • • a'liilB'1a'2tla'2i2 • • • a'2i2B'2, • • • xkak+ltlak+1,2 • • •

• • •afc+i,./k,j, 0z\,\Z\,2 • • • zltily1z2tlz2t2 ... z2,i2y2)

h •••
|-m* (aa'lta'l2-- • a'x ^ B j V ^ a ^ • • • a'2i2B'2 • • • B'k,ak+ltlak+lt2 • • •

60 B. MELICHAR

• • • Uk+\,ik+l , 0Z\t\Z\t2 • • • Z\,i, y\ 22,1 «2,2 • • • z2,i2y2 • • • Vk)

h (a a i , l a ' l ,2 ' ' ' ai,<, £i a2,l a2,2 ' ' • a2,i2
B2 • • • B'ka'k+\,\,ak+\,2 ' " '

• • • ak+\,ik+1,(3z\,\z\:2 • • • z\,i,y\z2Az2t2 ... z2ti2y2 • • • ykZk+\,\)

h (aa[xa'12 • • • a'Ul B[a'21a'22 • • • a'2i2B2 • • • B'ka'k+hla'k+h2, • • •

• :• a'k+\,H+1 I PZ\,\Z\,2 • • • Z\,iiy\Z2,\Z2,2 • • • Z2,,2V2 ' ' ' ykZk+\,\Zk+\,2J

h- • • •

h (aa'lAa'l2 • • • a\M B\a'2xa22 • • • a'2hB'2 • • • B'ka'k+hla'k+h2ak+hik+i, e, (3z\,\Z\;2 • • •

• • • Z\,iiy\Z2,\Z2;2 • . . Z2,i2y2 • • • ykZk+\,\Zk+\,2 • • • Zk+\,ik+1)

h (aA',e,Pz\t\Zl;2 • • • Z\My\z2t\z2<2 . . . z2,i2y2 • • • ykZk+\,\Zk+\,2 • • • Zk+\,,k+lv)

Since nij < n, for j = 1,2, • • •, k the claim (*) is true for all n > 0.

Thus , we have proved the claim (*) for an arbitrary rightmost derivation and it holds

therefore:

For the r ightmost derivation S =>* w in the translation grammar TG, where x — h{(w),

y = h0(w), Algorithm 3 performs the sequence of moves (#,x,e) h* (#S',e,y) and

therefore (x,y) € Z(TG). •

7. CONCLUSION

A similar approach as for LR(k) ^- t ranslat ion grammars may be used for the definition

of SLR(k) and LALR(k) ^- t ranslat ion grammars . The class of LR(k) /^-translation

grammars does not contain all translation grammars with the LR(k) input grammar .

E. g. no translat ion grammar with output symbols in front of nonterminal symbols

belongs to this class.

(Received November 3, 1989.)

R E F E R E N C E S

[1] A.V. Aho and J.D. Ullman: Properties of syntax directed translations. J. Comput. System Sci. 3
(1969), 3, 319 - 334.

[2] A. V. Aho and J. D. Ullman: Translation on a context-free grammar. Inform, and Control 19 (1971),
5, 439 - 475.

[3] A.V. Aho and J.D. Ullman: The Theory of Parsing, Translation and Compiling. Vol. 1. Parsing,
Vol. 2. Compiling. Prentice-Hall, New York 1971, 1972.

[4] K. Culik: Well-translatable grammars and Algol-like languages. In: Formal Language Description
Languages for Computer Programming (T. B. Steel, ed.), North-Holland, Amsterdam 1966, pp. 76
- 8 5 .

[5] E.T. Irons: A syntax directed compiler for Algol 60. Comm. ACM 4 (1961), 1, 51 - 55.
[6] E. T. Irons: The structure and use of the syntax-directed compiler. In: Annual Review in Automatic

Programming 3 (R. Goodman, ed.), Pergamon Press, New York - London 1963, pp. 207 - 227.
[7] J. Krai and J. Demner: Parsing as a subtask of compiling. In: Mathematical Foundation of Com

puter Science 1975 (J. Becvaf, ed., Lecture Notes in Computer Science 32), Springer-Verlag, Berlin
- Heidelberg - New York 1975.

Formal Translation Directed by LR Parsing 61

[8] P.M. Lewis and R. E. Stearns: Syntax directed transductions. J. Assoc. Comput. Mach. .7,5(1968),
3, 465 - 488.

[9] P.M. Lewis, D.J. Rozenkrantz and R. E. Stearns: Compiler Design Theory. Addison-Wesley, Lon
don 1976.

[10] L. Petrone: Syntactic mappings of context-free languages. Proc. IFIP Congress 1965, Part 2, pp.
590-591.

[11] P. Purdom and C. A. Brown: Semantic routines and LR(k) parsers. Acta Inform. 14 (1980), 4, 229
-315.

[12] S. Vere: Translation equation. Comm. ACM 13 (1970), 2, 83 - 89.

Doc. Ing. Bořivoj Melichar, CSc, katedra počítačů elektrotechnické fakulty ČVUT (Department of

Compuiers, Faculty of Electrical Engineering - Czech Technical University), Karlovo náměstí 13,

121 35 Praha 2. Czechoslovakia.

