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LARGE ADAPTIVE ESTIMATION 
IN LINEAR REGRESSION MODEL 

Part 1 . Consistency 

J A N Á M O S V Í Š E K 

Condition of identifiability of linear regression model with symmetric distribution of errors is given. 
Following Beran's approach for location case consistency and asymptotic normality of this adaptive 
estimator is proved. The result shows that the estimator is not asymptotically efficient. But it selects 
model with such distribution function of errors which is (in the sense of Hellinger distance applied on 
F(x) and 1 - F(-x)) "as much as possible symmetric" which may be useful when we know that there are 
no reasons for the asymmetry. 

1. I N T R O D U C T I O N 

An endeavour to robustify the regression analysis yielded in the last twenty years a lot 

of excellent results. For an insight offering discussion see [5] and for many illustrative 

examples see [11]. Large at tent ion was devoted to the methods based on Li -norm or on a 

combination of L\ and Z^-norms. For a nice review of results see [3] and references given 

there . Most of these methods have paid for the robustness by a decrease of efficiency. 

Moreover some of them were not able to cope with a "heavy" contaminat ion or with 

leverage points. On the other hand, in some cases highly robust methods may yield an 

overdetermined model. A hope to solve some of these difficulties seems to be offered by 

adapt ive est imation. 

Since the decrease of efficiency is not usually dramatic the main reason to use this 

adapt ive method may be the "symmetry" of residuals of est imated model. Since symme

try of distr ibution of errors is the (basic) assumption for consistency of many methods 

of robust regression (e.g. Least Median of Squares) it may be considered also as an 

a t t e m p t to check this assumption. It means that when the model found by the further 

introduced adapt ive procedure is not far from a model obtained by a robust procedure, 

let us say by the Least Median of Squares, then we may accept the latter model because 

the assumption under which the model was derived is, at least approximately, fulfilled. 

In the opposi te case we should be more careful and either try to separate the da ta into 
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(two) groups and build up models for the each group or to accept the "adaptive" model, 

for numerical example see [18]. (For a detailed discussion of this topic see [16].) 

An idea of an adaptive estimation of parameters of unknown type of distribution goes 

back to [14] and later was discussed in generality by Bickel [2]. For the location model 

the problem was solved already in seventies by Stone [15] and Beran [1]. 

We have followed closely the approach of Beran [1] and extended it for the regression 

model . It revealed (again) the fact tha t linear regression model is not a mere gener

alization of location model, compare [4], and hence a difficulty with identifiability of 

coefficients may occur. It will be shown on an example. Let us mention tha t al ternat ive 

approaches to adapt ive estimation in linear models were described in [6], [7], [9] and [18]. 

2. NOTATION 

Let us denote by Af the set of all positive integers, by 71 the real line and by TV1 the 

n-dimensional Euclidean space. We shall consider a linear model 

Y = X-/3° + e, (1) 

where V = (Y1,..., Yn)
T is a real vector (response variable), X = (xij)"=1J=1 a known 

and fixed design matr ix , fl0' = (P°,..., fl0)T a vector of unknown (but fixed) parameters 

and e = ( e i , . . . , en)
T a vector of i. i. d. random variables following distr ibution function 

(d. f.) G (we implicitly assume that { e , } ^ are defined on a space ( 0 , A, P)). We assume 

tha t t he intercept, if any, is included in the design matr ix , i .e. x,i = 1 for i = 1 , . . . ,n. 

The d. f. G is assumed to allow a density g with respect to Lebesgue measure which is 

symmetr ic around zero, i .e. for any x € 7?. g(x) = g(—x). The assumption of symmetry 

may be omi t ted , but without it the intercept has to be est imated separately from other 

coefficients and not adaptively. Naturally, the whole theory have to be modified, too. The 

da t a have to be divided into two parts and Hellinger distance of the est imates of density 

for these halves must be minimized. Although the symmetry is not acceptable in so many 

si tuations as it is sometimes believed there are cases which admit symmetry quite well. 

Let us consider for a while location model and assume tha t we are in a si tuation, may 

be rare, when we do not want to specify type of the parametr ic model at all. Then only 

under the assumption of the symmetry the sense of "location" is out of any discussion 

since modus (if unimodal) , median, mean (if exists) and center of symmetry coincide. 

May be tha t it is the reason why some practit ioner, in the case when da ta are apparent ly 

not symmetr ic , look for a (one-to-one) transformation which brings (bulk of) da ta to the 

symmetry and having est imated location as the center of symmetry they apply inverse 

transformation. Similar facts are also t rue for regression analysis, especially in s i tuat ion 

when for all da t a a model cannot be "reasonably" found. When we are able to choose a 

subsample of da t a and a regression model (for this subsample) implying approximately 

symmetr ic density of residuals we may claim (without any additional assumption on 

distr ibution of errors e,) - in at least intuitively reasonable and clear sense - t ha t the 

errors e, have no systematic influence on response variable. 
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In what follows we shall use kernel estimator of density of residuals. Let us denote 
by w a kernel which is assumed to be symmetric, twice absolutely continuous, positive 
everywhere and 

supu>(y) < Ki, 
yen 

» P f e M < K ! 
yen w(y) 

and 

„„ K M , K 
sup — T - — < K3 

yen w(y) 

where Ki,K2 and K3 are some (positive) real numbers. By {cn}^., \ 0 we shall denote 

the bandwidth of the kernel estimator. Further for y € 71, Y € 7Zn and 0 € TV, let us 

denote by 

gn(y, Y, /?) = J - J2 «> [ <*(» -(Yi-J2 *«&))) 
nCn .=. V i=i / 

the above mentioned kernel estimator of density of residuals. In the sequel we shall 
use Xjp as an alternative notation for Y?j=i Xijjlj. Moreover let 0 < b(y) < 1 be a 
continuous function with 6(0) = 1 and b(y) = 0 for \y\ > 1. Then for a sequence of 
positive constants { a , , } ^ /* 00 and for any y £71 define {6n(y)}^_j as follows: 

My) = 1, |y l<«n, 

= *(i!b±_) a„<M<f ln + cn, 

and 

Finally put 

== 0 otherwise. 

hn(y,Y,0) = bn(y)gn'
2(y,YJ). 

3. PRELIMINARIES 

Let us recall that the "true" value of /3 was denoted by /?° (see (1)). 

Lemma 1. For any ff £ BP 

hn(y,Y,p) - E55n(y,Y,/?) • bn(y)}2dy = 0P(n-lcn\n). 
ІЇ 

P r o o f . Since for any a > 0 and 6 > 0 we have (a — b)2 < b 2(a2 — b2)2 we may write 

E [hn(y,Y,p) - Ehn(y,Y,P) -bn(y)}2 < 
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< bl(y) E-1
5n(y, Y, /?) E [gn(y, Y, /3) - Egn(y, Y, p))2 = 

= b2
n(y)E-'gn(y, Y/3)E | -L £ [u^^fo - tf + Xf/3)) - Et^c^y - Y, + Xffi))} j 

= in(y)E-^n(y, Y, 0 ) - ~ J2 E ["(-^(if - Yi + XiP)) - Ew(c-n\y - V, + Xj 0))}2 = 

< bl(y)E-'gn(y, Y/?) - ^ f £ Ew2(c~n
l(y - Y{ + Xj/3)) < 

< sup w(z) • b2
n(y)E-'gn(y, Y,P)~T Ew(c-\y - Y, + Xj/3)) = 

*€K n Cn ~i 
supw(z) -bn(y). 

ncn z e K 

Notice that 

and 

Egn(y, Қ f l - l f / и (c~n\y - , + Xj(ß° - ß))) g(z)dz 
r ï c " ;=i 

É i й ^-4ê* t t /^ ( < , t o "* + ^ ( / î в " д ) ) ) i ' ( ж ) d ' -

We shall denote [9 E g"<?' y^] by a E M»- y ^) . Notice also that in fact we have shown 

that for any y E TZ 

E\9ky,Y,P)-lhn(y,Y,P)T < (nc*)-1 sup»(-). 

We shall need it in the proof of 

Lemma 2. Let limn-,,*, n ^ c " 1 ^ = 0. Then 

/ hn(y, Y, P°) • hn(-y, Y, j3°)dy - 1 in probability . 

Remark 1. The assumption of Lemma 2 implies a usual requirements that ncn —> oo 
as n —> oo. 

P r o o f of L e m m a 2. We may write 

\J [K(y,Y,p°) • K(-y,Y,p°) - b2

n(y)E^gn(y,Y,p°) • E^n(-y,Y,/30)] dy| 

< J K(y,Y,p°) • \hn(-y,Y,p°) - Eign(-y,Y,p°) • bn(y)\ dy + 

+ J \K(y, Y, p) - Ehgn(y, Y, /3°)| E^„(-y, Y, f?)bn(y)dy. 
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The first integral is not greater than 

yhl(y,Y,p0)dyj [hn(-y,YJo)-E^gn(-y,Y,0°)bn(y)}
2dyy . 

Similar upper bound is easy to derive for the second integral and hence both are (ac

cording to Lemma 1) op(n
_2c^2an). A straightforward computation gives (due to the 

symmetry of w and g) 

j&gn(y,Y,p0)-&gn(-y,Y,p0)dy = l 

which implies 

j Ehgn(y, Y, 0°) • &9n(-y, Y, ff) (1 - b2
n(y))dy - 0. 

That concludes the proof. • 

Corollary 1. Let lim„_oo n~xc~lan — 0. Then 

sup fhn(y,Y,f3)-hn(-y,Y,/3)dy^l 
peitpj 

in probability. 

P roof . Since from the Cauchy-Schwarz inequality we have 

/ hn(y,Y,j3)-hn(-y,Y,(3)dy<l, 

the proof follows from Lemma 2. • 

Due to Corollary 1 we may give the following definition. 

4. DEFINITION OF ESTIMATOR 

Definition 1. For any Y & Tl°° let us denote by P(n)(Y) points /? £ W for which 
/ hn(y, Y, /3)hn(—y, Y, j3)dy reaches its maximum. If there is no such point, let us under
stand under /?(„)( Y) a point(s) /?* € W for which 

/ hn(y, Y, p') • hn(-y, Y, /T)dy > sup / hn(y, Y, /3) • hH(-y, Y, /?)dy - - . 
j ffeiip J n 

Remark 2. For evaluation of fi(n)(Y) only first n coordinates of Y are used, so that 
the above definition may start with Y £lZn. On the other hand in the following it will 
be more convenient to assume in every assertion the infinitely dimensional space 7?.°°. 

It will be shown in the next section that the design matrix X has to fulfill some 
conditions to allow us to prove consistency of /3„(Y). 
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5. IDENTIFIABILITY CONDITION 

Let us consider a very simple example with p = 1 and Xn -= (—1 ) , + 1 for every i = 1, • • • , n 

and n G M. Further let the sequence of r.v.'s {e,}£, be i. i. distributed according to 
standard normal law. Now let us fix 01 € K, 0l / 0 and assume Y{ = Xn • 0l -f e.' for 
? = l , . . . , n . Finally consider our estimator which is based on residuals Yi — Xn-0 (= Ci) 
and which utilizes the assumption of their symmetric distribution. Let us put durselves 
a question: Is (or are) there any other 0 (or 0's) e Tl such that the residuals K — -^ii' 0 
may have a symmetric distribution and hence our estimator cannot distinguish between 
/31 and 01 The answer is, unfortunately, positive. We see that even for any 0 6 TZ we 
obtain for the odd indexes i 

4 = Yi-Xa.0~Yi- Xn • 0l + Xn(0* -f3) = ei + 01~0 

and for the even ones t\ = e,- — 01 + 0 and therefore any reasonable density estimator 
applied on the sequence { e } ^ will yield an estimate converging to the density corre
sponding to the mixture 

i[N(01-0,l) + N(0-0\l)} 

where N(fi,cr2) denotes normal distribution with mean fj. and variance a2. 
This simple example shows that under the mere assumption of symmetry of d. f. of 

e, we cannot prove such property as consistency of 0n(Y). There exist a few different 
remedies. We may for instance require not only the minimization of Hellinger distance 
but also minimization of variance of r. v. corresponding to estimated density of errors. It 
is clear that it may be misleading since it may change the "true" variance of residuals (at 
least). On the other hand, we may arrive at a pragmatical model with better predictive, 
and maybe even explaining properties than the "true" model. 

Let us return to our example. We see that the source of the described difficulties lies 
in symmetry of the design matrix which may be interpreted as realization of a sequence 
of i.i. d. r.v.'s {z ;}£] such that 

P(Zi = -1 ) = P(Z, = \) = \. 

We may then consider K being sum of two random variables, both symmetrically dis
tributed and hence unseparable by our estimator. 

Moreover, the design matrix is - in some sense - a tool, say a microscope, through 
which we observe response variable and in many - not at all - cases we may prescribe its 
properties (and check them). Hence it seems (quite) natural to assume something about 
it. Even in the case when X represents a (realization of) sequence of random vectors we 
may sometimes prefer to restrict character of this sequence than to restrict character of 
errors. 

So our condition has to remove the "symmetry" of the design matrix. Another thing 
which we need when proving the consistency of estimator is some compactness restriction 
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which holds without any assumption for the case of location parameter (see [1], Lemma 
2) but which, as it is easy to show, may generally fail for regression model. 

Denote by 

Cp(a,/3°) = {fSeTlp: \\/3-0°\\>a} 

and by 

Cp(a,b,f3°)=Cp(a,p0)f\C;(b,fi°). 

Condition A . For any 8 > 0 there exist a A S (0,1) and A'& £ TZ such that 

i) 
1 

and 

ü) 

imsup sup / Eign(y,Y,ß)-EÌgn(-y,Y,ß)dy < Д 
n-.oo ØЄCp(S,Kьß°) J 

lim sup sup jhn(y,Y,fi)hn(—y,Y,ji)dy<A in probability. 
n-oo 0<ECJK&,O°)J decp(KA,po) 

Moreover let K4 £ ~R. be such that 

SUp SUp \x{j\ < K4. 
iЄЛ/ =l,...,p 

Remark 3. The problem of identifiability may be probably solved also under another 
conditions similar to those of [10]. We have preferred more "direct" ones. It is easy to 
see that the first condition guarantees that the large values of estimator are senseless. 
The second assures that the kernel estimate behaves similarly as the "true" density. 

6. CONSISTENCY OF ESTIMATOR 

Now we are going to give the main result of the paper. 

Theorem 1. Let the Condition A be fulfilled and 

lim ncn

pa~2p = oo. 

Then /?(n)(V) is a consistent estimator of 0°. 

P r o o f . Let us fix an e € (0,1) and 8 > 0 and find A € (0,1), K4 and K& from 
Condition A. 
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Since 0° is the fixed ("true") value we may find K such that for any /? 6 W such that 
sup j=1 2...iP|/3,-| > K we have ||/3 - /3°|| > K&. From ii) of Condition A it follows that 
there exists n-i 6 Af, so that for n > n5 we have 

P\ sup [K(y,Y,p)K(~y,Y,p)dy>A) < \. (2) 
{0€C[KA,0O)J J 4 

Similarly from Corollary 1 follow that there exists n2 > nx such that for any n € Af, n> 
n2 we have 

Ejsup f hn(y,Y,p)hn(-y,Y,/3)dy < A + ( ^ ) \ <j. (3) 

(In fact (2) and (3) implies that 

pj^upi^-i >*}<!.) 

Denote by K. = {/3 € TV : supJ=1 p |#,| < /?}. Now for every n € N find a set of 
points from TV say j ^ 1 , / ? 2 , . . . , j3r}, such that for any 0 € K there is an 4 € {1 ,2 , . . . , r} 
such that ||/3 — /?<0|| < n - 5? and r is the smallest possible integer. 
Then we have 

| / K(V, Y, fi) hn(-y, Y, p)dy - J K(y, Y, /?'») hn(-y, Y, /?'") dJ (4) 

< ^J hl(y,Y,0)dy J [hn(-y,Y,0)-K(y,Y,^)]2dyy + 

+ ^J [K(y,Y,p)-hn(y,Y,0e°)]2dy J hl(-y,Y,0l°)dyy . 

Since / hn(y, Y, (3)dy is not greater than one it suffices to find an upper bound for 
/ [K(y, Y, P) - K(y, Y, pe»)]2 dy. Making use of the inequality [a - 6]2 < 2|<x2 - 62| valid 
for nonnegative a and 6 we obtain 

J [K(y,Y,fl)-K(y,Y,pe°)]2dy< 

-* 77 E / \w (c»l(» - Y + * £ ) ) - w ta1^ - K+*<£*)) Id^-
n 1=1 •! 

But 

w ( C ( y - y + Xf/9)) - to (c;»(y - y + *.•/•*))) = 

-cy^ť.)-*^.-^]!--
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sup sup min / hn(y,Y,j3)hn(—y,Y,j3)dy— 
Y£-Jl°°0€Ke=1<-r\J 

- Jhn(y,Y,f3e)hn(-y,Y,f3e)dy\ =-. 0 (n~iC;2a„) . 

i. e. it converges to zero. Let us choose n3 > n2 so that for any n £ Af, n > n3 the just 
studied difference (4) is less than (1 — A)/8. Further we have for any £ € { 1 , . . . , r} 

J hn(y,Y,/3e)hn(-y,Y,/3e)dy -J Eh2
n(y,Y,f3e)dy .Eh2

n(-y,Y,pe)dy\ 

Jhn(y,Y,pe) [hn(-y,Y,pe) - Eh2
n(-y,Y,pe)] dJ + 

J Eh2
n(-y,Y,l3e)[K(y,Y,fle) -Eh2

n(y,Y,f}e)]dy\. (5) 

Now 

\^Jhn{y,Y,pe) [hn(-y,Y,pe) - Ehl(-y,Y,/3e)] dyl < 

< J h2
n(y,Y,fie)dy J [hn(-y,YJe) - Eh2

n(-y,Y,pe)]2 dy < 

< J[hn(-y,YJe)-Eh2
n(-y,Y,f3e)]2dy 

and similarly for the second term of the right-hand side of (5). Using once again inequal
ity from the proof of Lemma 1 we obtain 

P^j[K(y,Y,pe)hn(-y,Y,pe)-Eh2
n(y,Y,pe).Eh2

n(-y,Y,pe)]dy\>(^)^< 

< py[E-'hl(-y,Y,/3e)-[hl(-y,Y,pe)-Eh2
n(-y,Y,f3e)})2dy>l((i^))^ + 

+ Py[E-lhl(y,Y,f3').[hl(y,Y,pe)-Ehl(y,Y,(1e)}}2dy>\((^))2y 

But the probabilities may be bounded by 

4 • (8/(1 - A))2 EJyE-'h2
n(y,Y,pe).[hl(y,Y,f3e) - Eh2

n(y,Y,(ie)? dy\ = 

= 4 • (8/(1 - A))2 J {E-'h2
n(y, Y,0e)-E[h2

t(y, Y,/?<) - Eh2
n(y, Y,pe) f } dy 

and proceeding further as in the proof of Lemma 1 one obtains 

ejjy [K(y,YJe) • K(-y,Y,/3e) - Ehl(y,Y,pe) • El hl(-y,Y,{3e)2) dJ > ( ( ^ ) ) 1 

< 8 - ( 8 / ( 1 - A ) ) 2 - — supu>(-)-2(on + l)... 
ncn z€K 



Large Adaptive Estimation in Linear Regression Model, Part 1 35 

Notice that the upper bound does not depend on (. £ { 1 , . . . , r} . Hence 

p{^\\\j[hn(y,y,Pl)M-y,Yjt)-

-Ehl(y,Y,f)1) • Ehl(-y,Y,01)] dy\ < (( -=£ ))} > 

< l - r - S . ^ ) 2 - — -supu;(*Y2(aB + l ) > 
ncn zen 

> 1 - \2K -nMP -8-(j^)2- — •supie(z)-2(a„ + l) = 
L J ncn 2 6K 

= 1 - 0 ( n f c - 1 - a n ) . 

Find an n4 € A/", n4 > n3 such that this probability is less than | . Finally using i) of 
Condition A select n5 > n4 so that for any n e Af, n > n5 

sup / E$9n(y, Y,p) • Elgn(-y, Y,0)dy < A + (1 - A)/8. 
0eCp(6,K*,[S°) J 

So we have derived that for any n £ Af,n > ns there is a set, say C, such that P(C) > 
1 — I and for any w e C we have 

sup fhn(y, Y,/?)• hn(-y,Y,p)dy< A + 3(1 - A)/8. (6) 
/3eCp(«,A'a,/3°)./ 

Finally find n6 £ Af, n6 > n5 such that n j 1 < (1 — A)/8. Then taking into account (2), 
(3), (6) and the way how n3 and n6 were selected, we obtain for any n 6 Af, n > n6 

P\ sup [ hn(y,Y,/3)-hn(-y,Y,P)dy<.A+ 3(1-A)/8 und 
[/36Cp(5,/3°)j 

sup / hn(y, Y, p) • hn(-y, Y, (])dy > A + (1 - A) /2 l > 1 - e, 
Pew J ) 

which concludes the proof. Q 

The asymptotic normality of (3n(Y) together with numerical examples will be presented 
in the second part of this paper. 

(Received June 19, 1990.) 
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