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QUALITY OF OPTIMUM STATISTICAL ESTIMATES 
IN CASE OF AMBIGUITY 

IVAN VRÁNA 

An ambiguity of measurements is encountered when observations are taken modulo a constant. 
Paper Vrana [1] has introduced an optimum estimation rule for this case. In the present paper, 
a behavior of an estimation error is investigated in the case of ambiguous observations. It is 
shown that the classical approach cannot express the quality of the estimation properly. A three-
measure concept is therefore introduced. Equations for these measures and also for bounds are 
developed. 

INTRODUCTION 

Paper [1] deals with the problem of the optimum statistical estimation of the 
quantity X which cannot be observed directly, but whose observation equation has 
the form 

F = (X + A) modulo X , (1) 

where F is an actual observation, A is an observation error and X is a given constant. 
Equation (l) is ambiguous because there is generally no one-to-one relation between 
F and X. Equation (1) is unambiguous only in intervals shorter than X. 

Interval A of unambiguous estimation can be considerably extended by perform
ing observations through several different periods Xt, i = 1, 2, ...,N. The quantity 
A is the least common multiple of the used periods Xh A = n^X^ n; are mutually 
non-divisible integers. The global radio navigation system Omega is an example of 
the technical application of this principle. In the Omega system, the original intervals 
of unambiguous estimation are given by the wavelengths Xt of the used signals which 
are about 30 km. The least common multiple/I of these wavelengths is about 18 000 km. 

The optimum estimation rule of unambiguous estimation was developed in [1] 
for the case where observation errors are normal random variables. It has been shown 
there that various criteria of optimality lead to the same form of the optimum estima
tion rule. 

In the present paper we shall investigate the question of how to express the quality 
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of estimation for the above mentioned case. We shall introduce the concepts of 
"trunk" and "branches" of estimation and we shall show that the quality of estima
tion should be expressed by triple measures: probability of a mistake, the mean 
value and the variance of a correct estimation. 

1. STATISTICAL MEASURES OF QUALITY 

In accordance with Vrana [1] we shall use the following notation. Let UN be an 
N-dimensional Euclidean space. The term vector will always mean some element 
of space UN. The vectors will be indicated by boldface letters or expressed in a com
ponent form, while components are real variables, e.g. D = (Dl5 ..., D^) e UN. 

Analogically as in [ l ] , this notation will also be used 
N 

a = n = a 
i i = l 

if not indicated otherwise, where the symbol ft stands for operations ]£, [7, \J, f). 
In [1], we have the following formulation of the estimation problem. We must 

estimate the real quantity X e <0, A) through an observation of the vector F with 
the components 

Ft = (X + At) modulo Xt; i = \,...,N . (1.1) 

The value 

Dt=X + At (1.2) 

is the ith true observation. The true observations are not available to us. Observation 
errors At are independent zero-mean normal random variables with small variances 
aA.. The constants X-t are mutually commensurable with A as the least common 
multiple 

l.n. =- A; i ={,..., N . (1.3) 

It follows from (1.1) and (1.2) that 

Ft = Dj modulo Xt — cf,(mf) modulo Xt; i = 1, ..., N . (1.4) 

A set {ci;(ra;)} of so called fictive observations dt is assigned to each D; 

djjnt) = D„ + mtXt; i = l,...,N, m = ... - 1, 0, 1, ... (1.5) 

The Active observations replace the inaccessible true observations Dt in (1.4). The 
set of all vectors d = (du ..., dN) will be denoted by Q). Every value of the true 
observation Dt yields a set of Active observations {J,}, according to (1.5). Only one 
element of this set has the value of the true observation Dt. Analogically, a finite set 
of vectors of the Active observations {</} corresponds to vector D of the true observa
tions 

@:={d}^MN (1.6) 

and D e Q) also holds. 
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Paper [1] solves the problem of optimum estimation for two typical cases. In the 
first case, when X is an unknown but nonrandom quantity, the maximum likelihood 
estimation rule is derived. In the second case, when X is a random quantity with 
either uniform or normal distribution, the optimum Bayesian estimation rules are 
developed. 

It is shown in [1] that the optimum estimation rule consists of two steps. The 
first step selects the unique vector d from the entire set B of vectors d and this removes 
the ambiguity of estimation. The second step then performs the estimation of quan
tity X using the selected vector d of Active observations. The first step can decide 
in two ways: 

a) d = D (1.7) 

i.e. the selected vector of Active observations d equals the vector D of the true ob
servations. We shall say that the estimate X belongs to the trunk (of estimates) 
in this case; 

b) d #= D (1.8) 

which is the opposite case to (1.7). We shall say that the estimate belongs to branches 
(of estimates) here, when the selected vector d does not coincide with the true ob
servation D. 

The estimation from the trunk is the same as the classical optimum estimate (when 
all true observations are available and, therefore, no ambiguity exists). If LdJ < |Af, 
then the error of estimation (without a priori information) does not exceed a halj 
of the largest period XitmK 

\X -X\< iA,max (1.9) 

The trunk is the desirable result of the optimum estimation rule. The estimate will 
be considered as the correct estimate if and only if it belongs to the trunk. 

On the other hand, if X belongs to branches, then the deviation \X — X\ is generally 
greater than periods At or observation errors At. The branches are undesirable results 
of the optimum estimation rule. If the estimate belongs to the branches, then this 
event will be considered as a mistaken estimate. It is possible to use some suitable 
method (e.g. coincidence) to distinguish and remove mistakes when repeated estima
tions are performed. 

In our case, the quality of estimation shall be expressed by the following three 
measures: 

1) Probability of the correct estimate Pc; 
2) Average value of the correct estimate Ec = E{X \d = D); 
3) Variance of the correct estimate ac = a2{X | d = D}. 

We have seen in [1] that: 
— estimates of a nonrandom quantity X with a uniformly distributed additional 

observations S, or without any additional observation and also the estimates of 
a random quantity X with a uniform distribution p(X) have an identical structure 
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of the optimum estimation rule consisting of the following two steps: 

1) Find the vector d e l ? for which it holds that 

d: min *£ £ [(<*. _ dn)\aAiaA^ : = * £ £ [ 0 , - U K ^ J * (1.10) 
de2> 

2) Calculate 

^(IW (1.11) 
;= l 

where 
a = Z^Wi = cons t • (L12) 

We shall use for all these cases the common name: estimates without a priori in
formation; 

— estimates of a nonrandom quantity with a Gaussian additional observation $ 
and also the estimates of a Gaussian random quantity X have an identical optimum 
estimation rule consisting also of two steps: 

1) Find the vector d e 3 

d: min (£ I [(<*, - -fj/^ffj3 + Hfa " »)K*J2} : = 
deS> i = 1 n = i + 1 

:- Z1 I K* - 4)K*J2 + YBi - *)K°tf • (I-") 
i = 1 n = i + 1 

2) Calculate 

X = (3/<x2 + l a ^ J / a / f l j + a) . (1.14) 

We shall call these cases the estimate with a priori information. 

2. QUALITY OF ESTIMATE WITHOUT A PRIORI INFORMATION 

The optimum estimation rule (1.10) and (1.11) can be expressed also in the form: 
For each vector d e 2> calculate a pair of quantities 

* - <Z*il<tM* - *(<-) (2-1) 
h = Z(X - dtYla2

t = h(d). (2.2) 

That value X e {X(d)} is the optimum estimate X to which the smallest value of h(d) 
belongs; d e 3. 

The Active observations can be expressed in the form 

dt = D; + wtjAf ; i = 1, ..., N , m,- is an integer . (2.3) 

Substituting dt = D, into (2.1) we obtain a pair of values X = XT and /i = /iT 

which correspond to the trunk 

XT = (lDja2
t)la (2.4) 

hT = £(#-. ~ D;)2R . (2.5) 
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Analogically, substituting (2.3) into (2.1) and (2.2) we get, for each d * D > t h e P a i r 

XB and hB which corresponds to branches. 

XB = XT + (Y,mtXtla
2
At)la ; m #= 0 = {0,. . . , 0} , (2.6) 

hB = hT+ Y+Z (2.7) 
where 

F = I a A (2.8) 

a, = 2[m^ - GmA-/ffi)/a]/°".4. = c o n s t • (2-9) 

Z = £(a;/2)2 = const. (2.10) 

* , - - . , / * * . ( 2 -U ) 

The normalized observation errors <5,-, i = I, ..., N, are independent random variables 
and have the Gaussian distribution «/r(0, 1). The quantities Z = Z(m), Y = Y(m), 
as = a^(m) are the functions of the vector m. 

We get the correct estimate if and only if it holds 

hB > hT (2.12) 

for all vectors m 4= 0. Then it should hold 

Y(m) > -Z(m) (2.13) 

according to (2.7). 
Let J b e a set of all vectors m for which it holds: dt e <D(- — \A; Dt + %A}; 

d 4= D. A complementary vector m* e Jt exists to every m e J{ and it has components 

mf = — mt . (2-14) 

Substituting this into (2.8), (2.9) and (2.10) we get 

a.(m*)= -a , ( ro) , (2.15) 

Y(m*) = - Y ( m ) , (2.16) 

Z(m*) = Z(m). (2.17) 

Vector m* does not cause, a mistaken estimate if it holds 

Y(m*)> - Z ( m * ) . (2.18) 

Using (2.16) and (2.17), the last relation (2.18) can be arranged into the form 

Y(m) < Z(m) . (2.19) 

According to (2.13) and (2.19), the mistake does not happen for the complementary 
pair of vectors m, m*, if 

-Z(m) < Y(m) < Z(m) . (2.20) 

Remark. As we have seen in [1], the process of estimation has a periodic solution 
with a period A. We can, therefore, follow through this process for fictive observations 
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from any interval of the length A, e.g. dt e (c; c + A). Choosing this interval sym
metrically around Dh we gain a simple expression of the complementary vector m* 
by (2.14). The general position of the interval gives a more complex expression for 
the complementary vector m* but finally we obtain the result (2.10) again. 

For the given vector of normalized observation errors «5, we obtain the correct 
estimate if and only if the mistake does not happen for any complementary pair 
of vectors m, m* e Ji, i.e. if it holds 

Y(m) e ( -Z (m) ; Z(m)) ; m e Ji. . (2.21) 

Let us consider d as the vector of coordinates of a point in the N-dimensional 
space UN. Then (2.21) defines a volume i^(m) between two parallel hyperplanes 
°U(m), %(m*) for each m e Ji. This pair of hyperplanes is defined as follows 

qi(m), W(m*): ^Mm) = ±Z(m) . (2.22) 

The equation defining °ll(m) differs from the one for aii(m*) only by a different sign 
on the right hand side. The volume i^(m) between these hyperplanes will be called 
the hyperlayer. Both hyperplanes, °tt(m) and °U(m*), have the same distance r 
from the origin 

r = Z/./©?) = i V(S«?) - K») (2.23) 

If, for instance, N = 2, then (2.22) are equations of two parallel straight lines 
SiXi + d2oc2 = +Z and the hyperlayer f^(m) is a strip of the plane between these 
two parallel straight lines. If N = 3 then (2.22) are equations of two parallel planes 
<5iai + <52a2 + <53a3 — + Zand the hyperlayer f(m) is apart of a 3-D space between 
these two parallel planes, etc. An example of this situation is shown in Fig. 1 for 
N = 2 and one complementary pair m, m* e Ji. 

Fig. 1. Hyperplanes, hyperlayer and its width in space 
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The equation of the correct estimate (2.21) is equivalent to the following relation
ship 

deft r(m) : = if . (2.24) 
meJl 

The correct estimate is therefore obtained if and only if the point with the coordinates 
8 falls into the volume if. The probability of the correct estimate Pc is then 

Pc= \...\p(b)d*. (2.25) 
w 

In a general case, it might be very difficult to calculate Pc from (2.25). In addition 
to the difficulties of calculation of the integral itself, difficulties exist already with an 
analytical expression of the integration domain if. We have, in fact, two possibilities 
to determine the probability of the correct estimate: 

1) To use a suitable Monte-Carlo simulation method. For instance, generate the 
vectors 5 with independent Gaussian components and test (2.21) after each attempt; 

2) To find an upper bound PcU and a lower bound PcL for the probability of 
a correct estimate Pc. We gain the upper bound e.g. by integration in (2.25) over 
the domain ifv where if cr if v. Similarly, we get the lower bound by integration 
over the domain ifL c if. It just remains to make suitable selection for domains 
ifv, if i so that it will be possible to calculate the corresponding integrals. 

Use of the simulation method is straightforward. In the following two sections 
we shall deal with the problems of calculating PcV and PcL. 

2.1. Upper Bound 

Let us arrange the hyperlayers ^ ( m ) in accordance with an increasing order 
of their "widths" 2r(m) and denote them f x, f \ , ir

3 .... The thinnest one is the 
hyperlayer fx which is determined by a pair of hyperplanes %x and its width is 
2rx, etc. Clearly it holds 

if c iT,x . (2.26) 

Individual pairs of hyperplanes %j can have general directions with respect to 
axes of used coordinate system C. Let us create a new coordinate system C by a rota
tion of C around the origin so as to obtain the first axis of C perpendicular to the 
hyperplanes %x. Some functional relation 

St = gt(d'); i = l,...,N (2.27) 

holds between the coordinates 5 in C and coordinates d' in C . It holds 

J ... J p(S) d§ - f . . . J P[gx(S'),..., gN(d')] \J\ dd' (2.28) 
if -tv 

where J is Jacobian of the transformation (2.27). The transformation C —• C is 
orthogonal, see Dettman [2, §1.7] and thus |J| = 1 and 

Z<5? - K 2 • (2.29) 
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The joint p.d.f. of the normalized observation error (2.11) has the form 

^ ) = ( l /V(2^) ) J V exp( -p 1
2 /2 ) . (2.30) 

According to (2.29) 

p(d') = (1/7(2*))* exp(-X<5;.2). (2.31) 

We can see that the coordinates <5̂  are statistically independent Gaussian random 
quantities JV(0, 1). 

In the coordinate system C , the hyperplanes dUx are generally given by 

t , : K , i = ±Z[. (2.32) 

It holds 
a 'u = 0 for i = 2, ...,N (2.33) 

due to perpendicularity of the coordinate axis <5i to the hyperplanes <%v Thus 

mx\ <5'1ai>1 = +Zi . (2.34) 

Then, according to (2.23) 

%x\b\ = ±rx . (2.35) 

Therefore, the hyperlayer Vx is in C given by 

r^b'^i-r^r,), (2.36) 

Clearly it holds iV a ir
x and we can put 

* V - r x . (2.37) 

Now we obtain a very simple equation 

PcU = f i r i p(d[) d5[ = (1/7(271)) f i r i exp (-<5i2/2) d^i (2.38) 

for the upper bound of probability of the correct estimate. Thus 

Pcu = *(r-) (2-39) 

where the function <$(•) is tabled in detail e.g. in [3]. 

2.2. Lower Bound 

Here we shall introduce two ways of calculating the lower bound of the correct 
estimate probability which we denote as xPcL, 2PcL. 

1) Let us create an auxiliary system of N hyperlayers V\, i = 1, ...,N, defined 
by pairs of parallel hyperplanes Wt which have distances ft from the origin. Directions 
of individual hyperplanes are chosen so as to be successively perpendicular to the 
individual axes of the coordinate system C . Then, equations (2.22) for these hyper
planes have the form 

%{.b\ = ±ft; i = 1, ...,N . (2.40) 
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The distances r,- are chosen as follows 

fx : = r! 

P « : ~ > / W - r i ) ; * = 2 , . . . , N 
Put 

Then 
1ťL = OУiCziГ . 

We obtain a simple equation for the lower bound 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

Condition (2.43) is very strict and can lead to an unnecessarily pessimistic lower 
bound, particularly if the values r2, ..., r^ are very near to rx. This situation is geo
metrically illustrated in Fig. 2 for N = 2. 

Fig. 2. Construction of domain WL. W' — Y\ n Y2; iTL = Y\ n r 2 a nr'. 

2) Now we shall introduce another way of obtaining the lower bound 2 P c L . 
We shall take advantage of the directional invariability of distribution (2.30). Let 
us have volumes iV and # c R^. Denote 

A # '-= # \ or (2.46) 

AiT = or \ # (2.47) 
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see Fig. 3. We can write 

Pc= \...\P(8)d5= \...\P(d)d5+ \...\P(d)d5 
•w л-w 

(2.48) 

Fig. 3. Sets AW and AW. 

according to (2.25). If we select iV in such a manner that it holds 

\...\p(d)dSZ \...\P(d)d5 
A-W A$ 

then we obtain the lower bound 2PcL in the form 

2PcL= \...\p(5)dd^Pc. 

(2.49) 

(2.50) 

The value of p.d.f. (2.30) at any point 5eUN depends only on the distance V(Z^^) 
from the origin and does not depend on the direction. It follows from there that 

\...\p(d)d8= \...\p(d)dd (2.51) 
x y 

if the area y arose by a rotation of the area x around the origin or by folding x with 
respect to some radial axis. This is illustrated in Fig. 4 for N = 2. For simplicity, 
only halves of areas AW, AiV are indicated in Fig. 4 and they are denoted schematic
ally as \AiV, \AiV~. The second halves are symmetrical to them with respect to the 
origin. We can see that 

# = rxr,r2 (2.52) 

x = (r2c^rx)\iv = AIT (2.53) 

y <=. Air = iV\iP' (2.54) 
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in Fig. 4, where the hyperlayers $U2 are perpendicular to the axis <52 and they have 
distance r2 from the origin. Then it holds (recorded symbolically for brevity) 

:mf_...f+f...fif:..f+f...fmPc 
ířniГ У iГniГ AifГ 

(2.55) 

Fig. 4. Construction of hyperlayer r 2 and relation between if and iP~. 
iV = r x r \ i r

1 \ # = r"j_ n r 2 . 

I f 
r3 ^ yj(r\ + r\) 

then it follows from (2.55), (2.44) and (2.45) for N = 2 

2PcL = *(ri) *(rz) 

If (2.56) does not hold, then 

2PcL=-<P(rt)<l>U(rl-rl)). 

(2.56) 

(2.57) 

(2.58) 

This approach can also be generalized, without difficulties, to N-dimensional 

space. Let the values (r2, r*, ..., r*) correspond to the smallest N — 1 values of 

elements of the set (r2, r3, ..., rN, rN+1, ..., r2N_1}. Then, analogically as in (2.57), 

(2.58) we obtain the following equation for the lower bound 

i=2 

and it apparently holds 

XP„r < 2 P„ r <P<P, cL cL = л c = x cU 

(2.59) 

(2.60) 
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2.3. Average Value and Dispersion of Correct Estimate 

Let X be a nonrandom quantity. Then the average value of the correct estimate is 

-*c«-KW«)L(* + 4)WJ (2-6*) 
and after rearrangement 

EC = X+ Hl^yt}la = X (2.62) 

since At are zero-mean random variables. We can see that the correct estimate is 
unbiased. 

The random variables At are statistically independent and, therefore, the dispersion 
of the correct estimate is 

^2 = ^ { ( i W S ^ . K } (2-63) 
and after rearrangement , 

a2 = \\a . (2.64) 

In a special case when all At have the same variances a]. = az
A; i = 1, 2 , . . . , N, then 

az = az
A\N . (2.65) 

If X is a random variable with the uniform p.d.f., then equations (2.61) to (2.65) 
also hold, but the moments occurring there should be considered as conditional 
moments for the given X. 

3. QUALITY OF OPTIMUM ESTIMATE WITH A PRIORI 
INFORMATION 

The optimum estimation rule is given by (1.13) and (1.14) in this case. Similarly 
to the case without a priori information, this estimation rule can be expressed in 
the form: Calculate a pair of values X, h 

X = (&\al + %dyAi)lA = 1(d) (3.1) 

h = JJa(X - dt)
2 + ($- dtyio*]loit = h(d) (3.2) 

for all vectors d e Qt, where 

A = a + \\a\ . (3.3) 

Only the value X e {X(d)) is the optimum estimate X, to which the least value h(d); 

de3), belongs. 
Further we shall use the following notation 

r = QjntXy^\A (3.4) 

Hj = (x- mjXj)\a2
Aj ; j = 1, . . . , N . (3.5) 
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If we substitute 

S = X - A9 (3.6) 

di = Di + mtXt = X + Ai + rriiki (3.7) 

into (3.1) and (3.2) for m = 0, we obtain a pair of quantities XT, hT for the trunk 
of estimates. If m =f= 0, we obtain a pair XB, hB corresponding to branches. The 
equation for the quantity hB can be arranged into the form 

hв = hт+ Y + Z; m ф O (3.8) 
where 

Y=EM. (3.9) 
i = l 

oct = 2[(alAoAi)J]nj - afiiOA. + m^ola^ = const., i = 1,...,N (3.10) 

% + i = 2[-aoJ+ - a/A)^ + (E*M.M,)/<T.J = c o n s t - ( 3 - x l ) 

di = AjaAi; i = l,...,N (3.12) 

$N+I = -V<r» ( 3-l 3) 

Z - (a/A) [(a/A) - 2] Qjn^Jaiy + A H m ^ J 2 = const. (3.14) 

All quantities <5£, i = 1, . . . , (N + 1), are independent Gaussian random variables 
JV(0, 1). 

Let us compare (3.8) and (3.9) with the analogical equations (2.7) and (2.8) for 
the case where no a priori information exists. Comparing them, we can see the 
formal conformity of both cases. The only difference is an increased extent of summa
tion in (3.9). The manner of determining the correct-estimate probability and its 
bounds in the case where a priori information exists is the same as described and 
discussed in Section 2. But we must remember that we deal with the vectors in the 
space UN+l instead of UN and the constants cct, Z are given by (3.10), (3.11) and 
(3.14) instead of (2.9), (2.10). 

3.1. Average Value and Dispersion 

We shall develop these measures separately for the case where X is a nonrandom 
quantity whilst an estimate uses an additional observation 3 and separately for the 
case where X is a random quantity. 

In the first case we shall seek moments for the quantity 

X = [(X- A,)\ol + YiX + At)l*
2

At]lA . (3.15) 
Then 

Ec = X(ljol + a)jA = X (3.16) 

*2c = M M + M K , ) / > - 2 - I/-* • (3-17) 
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In the second case we shall seek conditional moments (for given x)for the quantity 

* = K K + 1 ( * + 4)MJM' (3-18) 
where 

A' = a + 1/ffJ . (3.19) 
Then 

Ec = (mx\a\ + aX)jA' (3.20) 

^ - S K W « ) a M ' a - f l M ' a - (3-21) 
The estimate is biased now though it has the lesser variance (for A = A') than 

in the first case. 

4. EXAMPLE 

Here we shall introduce a simple example of calculating the quality of the optimum 

estimation rule without a priori information for the case N = 2, XX\X2 = j . 

First we shall determine the set Ji of vectors m = (mx, m2). Decompose Ji at 

two subsets Ji+, Ji~; Ji+ u Ji~ = Ji. The set Ji+ contains only vectors m 

with non-negative components mu m2. Evidently, Ji~ contains vectors m which are 

complementary to elements of Ji+. We can, therefore confine ourselves to e.g. Ji+. In 

our case (see Fig. 5), considering the possible errors Ah the set Ji+ has elements 

Ji+ = {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2)}. 

m. -2 I -f 
1 
1 

-2 
Ї 

- , A < 1 

1 
1 

2 
; 
i 

i 

i 

IV. 

D 

i 

i 

i 

i 

Fig. 

л 
5. Determ ning of set Jt'. 

For each m e ^ # + we calculate ax = ocx(m) and a2 = a2(m) according to (2.9) 

and from there we calculate r(m) according to (2.23). The obtained quantities r(m) 

are then arranged into a sequence in accordance with their increasing values. Thus, 

we get a sequence {r,-} and we calculate the corresponding sequences {r,-} and {r*} 

according to (2.42) and to the text following (2.58). 

Table 1 displays results of calculations constant phase-variances a2 = orJ./.Af = 

= const., i = 1, 2. We can see from Table 1 that r* = rx and r2 = r3. Now, we can 

calculate the bounds of probability of correct estimate PcU and PcL according to 

(2.39) and (2.59). (It also holds 2PcL = 1PcL in our case since r* = r2.) The cal

culated values of PcU and PcL are displayed in Table 2 for several values of a. Also, 
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values of P s i m are indicated there for comparison, where P s i m is the probability 
of the correct estimate obtained by a simulation method. The extent of the simula
tion was 10 000 trials. Table 2 further introduces the normalized standard deviation 
of the correct estimate on = o"c/E{Aj. The average value E{X — X} is zero. 

Table 1. Calculation of sequences {rj} and {r/}. 

Щ 1 2 2 1 0 1 

m2 
1 1 2 0 1 2 

j 1 2 3 4 5 6 

05.0- - 0 - 2 4 0-48 - 0 - 4 8 0-72 - 0 - 9 6 - 1 - 2 0 

<x2a 0-32 - 0 - 6 4 0-64 - 0 - 9 6 1-28 1-60 

ГjO 0 1 0-2 0-2 0-3 0-4 0-5 

~ГjO 0 1 0-173 0-173 0-283 0-387 0-49 

Table 2. Calculation of the estimate quality for several values a. 

a = 0 0 3 0 0 6 0 1 0 

І ГjO * Ф(ф ň Ф(ф * 

п 
Ф(ф 

1 

2 

0 1 

0-173 

3-33 

5-77 

0-999 

1 0 

1-67 

2-89 

0-905 

0-996 

1 0 

1-73 

0-68 

0-92 

PcU 

P . 

s im 

PcL 

0-999 

0-999 

0-999 

0-905 

0-903 

0-901 

0-68 

0-67 

0-62 

o„ 0-025 0-C50 0 0 7 1 

It follows from the theory and it is also confirmed by calculations that the greater 
are the values r*; j — 2,...., JV, the closer the upper PcU and lower PcL bounds are 
to each other. 

CONCLUSIONS 

We have developed a method of calculating the quality of an estimation. A seem

ingly complicated development leads to simple final equations for the bounds of 

probability of the correct estimate. 
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