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BLOCK DECOUPLING INVARIANTS: 
GEOMETRIC AND TRANSFER MATRIX 
CHARACTERIZATIONS 

CHRISTIAN COMMAULT, JACQUES DESCUSSE, JEAN-MICHEL DЮN, 
J. A. TORRES* 

In this paper we consider the block decoupling problem for linear time invariant systems 
in the general case i.e. the system transfer matrix is not supposed to be surjective. The aim of this 
work is twofold, first to introduce new lists of integers called "Block Essential Structures" of 
the system and then to provide several equivalent characterizations of these invariants within 
both transfer matrix and geometric approaches. 

It turns out these integers represent precisely the minimal infinite structure achievable for 
the blocks of the decoupled system through precompensation. When the system is decouplable 
by dynamic state feedback the minimal infinite structure achievable is the same as previously. 

1. I N T R O D U C T I O N 

During the last twenty years a great deal of interest has been brought to the theory 

of decoupling for linear time invariant systems. Important steps in the development 

of the decoupling theory as well as references can be found in Falb and Wolovich [12], 

Morse and Wonham [16], Wonham [19], Hautus and Heymann [14]. In the recent 

years a great deal of interest has been devoted to the structural features of decoupling 

problems. Various lists of integers strongly related with the deep structure of the 

system have been introduced. In particular Descusse and Dion in [5] expressed the 

solvability condition of [12] in terms of infinite structure equalities. In [4] the 

essential orders characterizing the minimal infinite structure of the decoupled system 

are presented for the row by row decoupling problem. 

In this paper we will focus our interest on the block decoupling problem. We are 

interested in obtaining the simplest possible decoupled systems. More precisely we 

* Torres's work is sponsored by CONACYT-MEXICO. 
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look for decoupled systems possessing the least possible infinite structure. We 
consider a linear system whose transfer matrix T(s) is partitionsd in subsystems 
T;('s) according to a desidred output partition. We assume that the rank of T(s) 
is equal to the sum of the ranks of the subsystems T;(s), then block decoupling by 
precompensation is always possible [14]. The aim of the paper is mainly to introduce 
new lists of integers called "the ith block essential orders" which represent precisely 
the minimal infinite structure achievable for the ith block of the decoupled system 
through precompensation. We will define the "block essential orders" as the union 
of the ith block essential orders. We will prove that the block essential orders are 
feedback invariants and will provide several equivalent characterizations of these 
invariants within both transfer matrix and geometric approaches. 

The present work generalizes that one already done by Commault and Coworkers 
[4] where only the row decoupling problem was considered. 

This paper is organized as follows: Section two is devoted to notations and basic 
concepts. In the third section we introduce the block decoupling problem and some 
preliminaries are given.. The new lists of invariants called block essential orders are 
introduced in section four. We give also several geometric and transfer matrix cha­
racterizations of these invariants. Its application to the block decoupling problem 
through precompensation, static or dynamic state feedback take place also in section 
four. We show that the block essential orders represent the least infinite structure achie­
vable for the decoupled system. In the last section an illustrative example exhibits 
both geometric and transfer matrix points of view. 

2. NOTATIONS AND PRELIMINARIES 

In this paper we will deal with linear time invariant (C, A, B) systems described by: 

x = Ax + Bu 
(i) 

y = Cx 
where x e SC ~ W, u e 91 ~ Um and y e <W ~ W with B monic and C epic. 

Associated with (C, A, B) we will consider a fc-partition of the output y into k 
k 

nonempty subsets of components yh each of dimension pt(0 < ph £ pt = p). This 
i = l 

partition induces a corresponding partition of C, written as (CT, CT, ..., CT)T with T 
denoting transposition. We will denote by C' the matrix obtained from C by removing 
the ith row-block C;. 

Hereafter, we will use y* the maximal (A, B)-invariant subspace contained in 
Ker Ch also written supI(A, B, Ker C,), .f* that maximal one contained in Ker C\ 
&* will denote the maximal controllability subspace contained in &~t. The classical 
tools of the geometric approach are derived from the following algorithms [19]^ 
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(A, B)-invariant subspace algorithm: Controllability subspace algorithm: 
-T0. = % @o = 0 

-T1+1 = Ker Ct n A~\@ + f f ) M^1 = 3T* n (A^f + @) (2) 

with ^ the image of B. 

Define 

/ > ; + 1 = dim (@ n TT"/Jf n TT*) ; /z ^ 0 (3) 

where f " and V* are related to sup l(A, B, Ker C). 

The infinite zero structure of (C, A, B) is the list of integers {«,} defined by nt = 
= card {p'p = i}. By the way, (C, A, B) has p[ infinite zeros the orders of which are n,. 
Recall that p\ = rank T(s). 

Let R(s) be the field of rational functions. A rational function f(s) = n(s)ld(s) 
is said to be proper (resp. strictly proper) if deg (d(s)) = deg (n(s))(resp. deg (d(s)) > 
> deg (n(s))) where deg (n(s)) denotes the polynomial degree of n(s). 

Denote by Rp(s) the ring of proper rational functions and RpXm(s) the set of proper 
rational p x m transfer matrices. 

The units (invertible elements) of the ring Rm X m(s) are called bicausal matrices 
and are characterized by the property that B(s) is a bicausal matrix if and only if: 

det (lim B(s)) =t= 0 
S-+00 

Definition 1. A full column rank proper rational matrix V(s) is said to be a right 
bicausal matrix if there exists a proper rational matrix W(s) such that [V(s) W(s)] 
is a bicausal matrix. 

The transfer matrix of system (1) is a p x m strictly proper rational matrix with 
null left and right static kernels, since B is monic and C is epic. 

T(s) = C(sl - A)_1B 

For a p x m rational matrix G(s), there exists Smith-McMillan factorizations 
at infinity which were studied in [17] and in [8]: 

G(s) = B1(s)A(s)B2(s) 

where Bt(s), B2(s) are bicausal matrices and A(s) is uniquely defined by: 

Ą,). o 

0 0 

where r is the rank of G(s). If n{ is negative, — n( is the order of a pole at infinity, 
whereas if n{ is positive, nv is the order of a zero at infinity. 
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In the whole paper the infinite structure of G(s) will be denoted by: 

Ix(G(s)) = {nx,...,nr} (4) 

;we will also denote: — Io0(G(s)) = { — nx, ..., —nr}. 

In case, when dealing with a realization (C, A, B) of a strictly proper transfer 
matrix T(s), the infinite structure will b2 denoted either by 2'00(C, A, B) or by 2'a0(T(s)). 

Another useful notation, in the spirit of compactness, will bz dco(T(s)) to denote 
the sum of infinite pole and zero orders of T(s), this means: 

d4T(s)) - X |R|| (5) 
i = l 

The equivalence between Morse's second list I2 and the ordered list of the degrees 
of a minimal polynomial basis for the right kernel of the transfer matrix is well 
known [13], [18]. In particular the dimension of the largest controllability subspace 
M* contained in Ker C of a minimal realization (A, B, C) of T(s) is equal to the sum 
of the degrees of a minimal polynomial basis for the right kernel of T(s). In fact 
we will use the dual formulation of this result namely: 

d i m ( ^ f ^ ) = "(TW) w 
where cr(T(s)) denotes the sum of the degrees of a minimal polynomial basis of the 
left kernel of T(s) and Sf* is the minimal (C, A)-invariant subspace containing the 
image of B. 

3. THE BLOCK DECOUPLING PROBLEM 

Problem formulation 

We will consider now the block decoupling problem. In order to avoid trivialities 
we will require the compensated system to b2 just as "output controllable" as the 
original system is. 

We will say that the proper precompensator C(s) is admissible if 

rank T(s) C(s) = rank T(s) 

This admissibility condition is equivalent to the preservation of the C°° controlled 
output trajectories, see [1]. 

Let T(s) be a p x m proper rational matrix, partitioned in row-blocks relatively 
k 

to a given list of positive integers (px, ..., pk), such that £ pt = p, in the following 
way: 1 = 1 

T(s) = I ; with T:(s)eRp
p
rxm(s) for i - 1 , .;..,* 
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The system with transfer matrix T(s) is said to be block decoupled relatively to the 
k 

partition {pt) if there exist positive integers m1; ..., mk satisfying ]T m,- = m, such 
that T(s) has the block diagonal form: , = 1 

= diag(T11(s), ..., Tkk(s)) 
Tn(s) 0 

T(s) = 0 • • . 
Tkk(s)_ 

withT i ;(s)eR£'Xmi(s) for i = 1., ..., k 
This means that each above defined input block influences only one output block. 

If one wants this influence to be effective the Tu(s) must be non null for each i, 
in this case the system is called non degenerate. 

The decoupling problem can be formulated as follows: Is it possible to exhibit 
an admissible proper precompensator C(s) such that T(s) C(s) is block decoupled 
and non degenerate? 

It is well known that the above defined decoupling problem is solvable by pre-
k 

compensation when the row blocks Tt(s) are independent (r — £ r,-, r = rank T(s) 
and r; = rank T/(s)), Hautus and Heyman [14]. 1=1 

In this paper we focus our attention on the simplest achievable decoupled systems. 
More precisely we will give the minimal McMillan degree and the minimal infinite 
structure achievable for the blocks of the decoupled system. 

4. THE BLOCK ESSENTIAL STRUCTURES 

In the first part of this section we are concerned with some lists of integers strongly 
related with the infinite structure of the system under study. Such lists, called the 
ith block essential structures, are feedback invariant and represent, as we will see later, 
the minimal infinite structure achievable for the ith block of the decoupled system. 

We are also interested in the minimal McMillan degree achievable for the blocks 
of the decoupled system. We will recall the geometric definition and some transfer 
matrix properties of the block decoupling invariants nie, which were introduced 
in [11]. 

4.1. Geometric and Transfer Matrix Characterizations 

We will give first a geometric definition of the block essential structure of a system 
(C, A, B). Then we will give two suitable possible interpretations of the block essential 
structure in the transfer matrix framework. 

Definition 2. Let (C, A, B) be the system (1) decomposed according to the output 
partition (pt, ...,pk). Let E; denote any matrix such that: (A + BF^^f c J>*, 
where M* is the maximal controllability subspace contained in Ker C' and C' is 
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the matrix obtained from C by removing its ith row-block. Consider 011 : = 08 n 01*, 
Bt such that Im (B;) = 0&t and At := A + BFt. 

We define the ith block essential structure of (C, A, B) relatively to {pt}, denoted 
re,(C, A, B), as the structure at infinity of the system (C,-, A,-, Bt), i.e.: 

Zet(C, A, B) : = I . ( C „ A*, B,) for i = 1, ..., k 

The fe/ocfc essential structure of (C, A, B) relatively to {pt}, denoted Ze(C, A, B) 
is defined by: 

Ie(C,A,B):={JIet(C,A,B) 
k 

J 
i = l 

In what follows we will consider the system (C, A, B) of transfer matrix T(s) = 
= C(sl - A)-1 B, partitioned according to (pu ..., pk), that means: 

~Hs) 
T(s)= • ; with Tt(s) = Ct(sl - A)-1 B 

.T*W_ 
where Ct denotes the ith row-block of matrix C. 

In the whole paper it will be assumed that: 
k 

rank T(s) = £ rank Tt(s) (7) 
i = l 

The notation T'(s) will be used to denote the matrix obtained from T(s) by remov­
ing its ith row-block, in other words: 

T(s) Гi-iW 
-Гi+iW 

In order to give a first transfer matrix interpretation of the block essential structure 
of (C, A, B), let us introduce the following: 

Definition 3. Let &(s) be a /odimensional rational subspace and M(s) a polynomial 
matrix which columns are a minimal polynomial basis for #(s). Denote ht the ith 
column degrees of M(s). N(s) : = M(s) d iag(s _ h l , ..., s~hk) will be called a minimal 
polynomial basis in s - 1 for #(s). 

Remark that a minimal basis in s _ 1 is a right bicausal matrix. 

Theorem 1. The ith block essential structure Iet(C, A, B) of the system (C, A, B). 
which transfer matrix is T(s), relatively to {pt} satisfies: 

Iet(C, A, B) = ljTt(s) Vis)) for i=l,...,k 
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where Tf(s) is the ith row-block of T(s) and Vf(s) is any right bicausal matrix which 
is a basis for Ker T'(s), with i = 1, ..., k. 

Notice that there always exists such a basis for Ker T'(s), e.g. consider a minimal 
polynomial basis in s - 1 for Ker T'(s). 

Proof. Prove first that I'00(Ti(s) Vt(s)) is independent of the choice of Vt(s). Let 
V;(s) and Wi(s) be two right bicausal matrices which are basis matrices for Ker T'(s). 
Vi(s) = Wt(s) Qi(s), with Qi(s) a nonsingular rational matrix; since that V(s) and 
Wt(s) are full column rank at infinity, then Qi(s) is a bicausal matrix. It follows 
that: Z^s) V,(s)) = Z^Tfa) Wj(j)). 

By definition: 

Iei(C, A,B):= Ix(Ch A + BEi, BO,-) 

where Ef is any matrix such that (A + BE;) 0t* cz 0t* and Gt is such that Im BG, = 
= @ c\ 0t*. 

The transfer matrix of the system (C;, A + BE;, BGj), denoted TF.(s) can be written 
as follows: 

TFi(s) = Ti(s) Vt(s) 
with: 

Vi(s) = (I - Fi(sl - A)"1 B)"1 Gi i = 1, ..., k 

Vt(s) is clearly a right bicausal matrix, we will show now that Vt(s) is a basis for 
the null space of T'(s). First, observe that 01* is contained in Ker Cl, for all i + / , 
this means that Tj(s) Vt(s) = 0 for all i + j . We will show now that rank (Vj(s)) = 
= dim (Ker T'(s)), which will end the proof. 

For this we have: 

rank (T''(s)) = r - rt = dim( ) = m - dim (@ n 0t*) 
\%Af f i *Sl/ £ J 

then: dim (^ n 0t*) = m - r + rt. 
From the definition of Gt and Vi(s): 

dim (0& n ^?f) = rank Gt = rank Vj(s) 

On the other hand, because of the independence between the blocks T;(s), 
dim (Ker T'(s)) = m — r + rt. Then: 

rank Vt(s) = dim (Ker T'(s)) for i = 1, . . . , k 

which ends the proof. • 

Give now a technical result which will be used to provide a transfer matrix charac­
terization of Zei(C, A, B). 

Lemma 1. Let T(s) be a p x m proper rational matrix partitioned in row-blocks 
k 

relatively to (plt ..., pk), such that ]|T p{ = p. Let rf denote the rank of T{(s), for 
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i = 1, . . . , k. If T(s) is such that: 
k 

rank T(s) = £ r,-
; = 1 ; 

then T(s) can be decomposed as: 

r(s) = B(s)7f(s) 

where T^(s) is an r x m full row rank proper rational matrix partitioned in row-
blocks relatively to {r,}. B(s) = diag(B,(s), ..., Bk(s)), B,(s) is a />,• x p{ bicausal 

matrix and I = diag (1 x, ..., Ik), It = r' ; Ir. is the r,- x r; identity matrix. 

The proof is quite similar to that of Lemma 1 of [11]. It can be performed by replac­
ing the Smith-McMillan factorization of T,(s) by a Smith-McMillan factorization 
at infinity of Tt(s). 

Now, we are able to give another interesting characterization of the block essential 
structure Iei(C, A, B), in the rational transfer matrix framework. In fact this is a non 
trivial generalization of [4] concerning the essential orders for the row by row case. 

Theorem 2. Let (C, A, B) be the system (1) of transfer matrix T(s), decomposed 
k 

according to the output partition (pt, ..., pk). Assume that rank T(s) = £ ru where 
i = i 

rt = rank T;(s) and let T(s) be decomposed as in Lemma 1, i.e.: T(s) = B(s) I f(s). 
Let f(s) be factorized as follows: 

f(s) = [R(s) 0] B'(s) 

where R(s) is an r x r strictly proper rational matrix and B'(s) is an m x m bicausal 
matrix. Consider R_1(s) decomposed in the following way: 

R-l(s) = [R,(s),..., Rk(s)] ; *»e ] r*" ( s ) 

Then the /th block essential structure of (C, A, B) relatively to {/?,}, Zei(C, A, B), 
satisfies: 

Iei(C, A, B) = -I^R^s)) for i = 1, ..., k 

Proof. Using Theorem 1, it is equivalent to prove: 

ZjTfa) Vfa)) = -XjRi(s)) for i=\,...,k 

where V;(s) is any right bicausal matrix which is a basis for Ker T'(s). In the proof 
we choose Vt(s) a polynomial basis in s _ 1 for Ker T'(s). So, we begin by rewriting 
the /th row-block of T(s) in Lemma 1 as follows: 

T,(s) = B,(s)[^f,(s) 

where B^(s) is a />,- x pt bicausal matrix, f^s) is an r, x m full row-rank proper 

352 



rational matrix and where Ir. is the r, x r; identity matrix. A possible solution is to 
consider the Smith-McMillan factorization at infinity of T;(s). 

In addition, since that subspaces Ker T'(s) and Ker Tl(s) are identical, and since 
B,(s) is bicausal we have: 

r.(r,(s) vis)) = r„(f,(s) v,(s)) (8) 

Therefore it is sufficient to perform the proof for: T(s) = 

Tk(s)_ 
which is a full 

row-rank rational matrix, because rank T(s) = r. + r2 + ... + rk 

Let R,(s) denote the ith row-block of the matrix R(s) partitioned respectively to 
{r,}. Recall that R'(s) is the (r — r;) x r matrix obtained by removing the ith row-
block R,(s) from R(s). From V;(s) we will first construct a polynomial basis in s _ 1 , 
U;(s), for Ker R'(s). Then we will prove that Z„(Tt(s) V;(s)) = Ix(Ri(s) U;(s)). 
From this, the result will follow, basically because the infinite structures —Ica(R~1(s)), 
I00(R(s)) and I^Tfy) are identical. 

Define W;(s) = B'(s) V;(s), which forms a basis of Ker [R'(s) 0]. We can write: 

~Ri(s) 0 
Г(s)[Ж1(s)....,ГҪt(s)] = [W1(s),...,ГҪk(s)] 

= diag[D 1(s),...,D,(s)] (9) 

where W;(s) is an m x (m — r + r;) proper rational matrix. Notice that, since 
V;(s) is a right bicausal matrix and B'(s) is a bicausal matrix, W;(s) is also a right 
bicausal matrix. 

From W;(s) we can obtain a basis, denoted U,(s), for Ker R'(s). This can be made 
by choosing the first r rows of W;(s), i.e., W[(s) : = \lr 0] W;(s), where Ir is the r x r 
identity matrix. Since dim (Ker R'(s)) is r; and since W;(s) possesses m — r + r; 

columns independent at infinity we can take r; independent columns at infinity from 
W-(s) to constitute basis U;(s). Therefore W;(s) can be factorized as follows: 

W/(s) = [U;(s), Z;(s)] P; 

where P; is an (m — r + r;) permutation matrix. Because U,(s) is a basis of 
span (W;(s)), we have: 

Zt(s) = U;(s) 0,(s) 

we can write: Zt(s) = [U*(s), Y,(s)] 
ß;(s) 

where Y;(s) is chosen in such a way that 

[U,(s), Y,(s)] is a bicausal matrix. Since Z,(s) is proper then Qt(s) is also proper. 
We can then construct a bicausal matrix B;(s) such that: 

[Vi(s), z,(s)] = [u£s), o] [7» J W ] = [vt(s), o] B;(S) 

it follows that: 

[7r 0] Wis) = W/(s) = [U,(s) 0] B;(s) (10) 
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where B.'(s) = B-(s) Pt is bicausal. With this in mind, write the following expression: 

" * i t o " 
: [U,(s), ..., Uk(s)] = diag [E.(s), ..., E,(s)] (11) 

where E;(s) is an rt x r£ proper rational matrix. By construction Ut(s) constitutes 
a right bicausal matrix. 

Consider R-1(s) partitioned in column-blocks relatively to {rj as follows: 

R-1(s)=[R1(s),...,Rfe(s)] 

so, we have: 

[U,(s),..., Uk(s)] = [Ri(s),. . . , Rk(s)] diag [E,(s), ..., Ek(s)] 

Since r = ]T r,-, and [Ui(s),..., U&(s)] is non singular, then E.(s) are non singular 
i = i 

matrices. This allows us to rewrite the last expression in the following way: 

[U.(s),..., Uk(s)] diag [E r^s ) , . . . , Ek'
l(s)] = [Rt(s), ..., Rk(s)] 

then, for each block we have: 

[U,(s) Xt(s)] [ £ Г ^ S ) ] = ВД ; for i = 1 k 

structure 

where Xt(s) is any r x (r — rt) rational matrix. Since U.(s) is a right bicausal matrix, 
we choose Xt(s) in order to make [U,(s) x.(s)] a bicausal matrix. Therefore the infinite 

of [Ut(s) Xt(s)] Ei WJ and Ef x(s) are equal. 

From the latter, we have: 

I^Efs)) = -Ioo(Ri(s)) 5 f o r ' = i . ...."* 

putting together expressions (9), (10) and (11), we obtain: 

Di(s) BTl(s) = [Ei(s) 0] ; for i = 1, ..., k 

Finally, since B/'(s) is bicausal we get: 

Z„{DAs)) = -Z^R^s)) for i = 1,..., k 

which by (8) and (9) ends the proof. • 

Remark. In the proof of the above theorem the choice V;(s) minimal basis in s~l 

for Ker Tt(s) is not actually necessary. Any right bicausal matrix being a basis for 
Ker V(s) would do the job. 

Corollary 1. With the above notations, the z'th block essential structure £ei(C, A, B) 
is feedback invariant. 

Proof. Immediate from Theorem 2 and the fact that any state feedback control 
action can always be represented by a bicausal precompensator [14]. • 
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In order to study the minimal McMillan degree achievable for the blocks of 
the decoupled system, let us recall the following "geometric" definition [11]. 

Definition 4. Consider the linear system (C, A, B), with B monic and C epic, and 
k 

an output partition (pl} ..., pk), such that ]T p{ = p. Let V* (resp. 3T*) denote the 
i = l 

largest (A, B)-invariant subspace in Ker C (resp. Ker C) . The block decoupling 
invariants of T(s), denoted nie. are defined as follows: 

nie = dim (r*\f*) for i = l,...,k. 

The above definition gives rise to the following transfer matrix characterizations 
of the block decoupling invariants nie. 

Theorem 3. Let T(s) be a p x m strictly proper rational matrix of null left and right 
static kernels decomposed in row-blocks according to a given partition (pu ...,pk) 

k 

and (C, A, B) a realization of T(s). Assume that rank T(s) = £ rh where r, denotes 
i = l 

the rank of Tt(s). Then the block decoupling invariants nie of T(s) satisfy: 

0) »te = Z Ha + <r(Ti(s)) 
J = I 

where {nn, ..., fxir.} is the ith block essential structure Iei(C, A, B). 
(ii) nie = d„(T(s)) - dx(r(s)) + cr(Tt(s)) 

where T£(s) denotes the ith row-block of T(s), T'(s) denotes the matrix obtained 
from T(s) by removing the ith row-block and (-(T^s)) denotes the sum of the degrees 
of a minimal polynomial basis for the left kernel of T.(s). 

Roughly speaking the idea of the proof of (ii) is as follows. Let X be the state 
space of (C, A, B), making invariant "V*, the state space dimension of the reduced 
system is dim (SC^*) = d^Tfy) + <r(T(s)). This comes from the well known 
equivalences between Morse's list 73 and the infinite structure of (C, A, B) and between 
Morse's list I4 and a(T(s)) (see [15], [18] and [8]). Analogously, making invariant 
3T*, we obtain dim (Se\^*) = d^T^s)) + o-(T'(s)). The proof is finished noting 
that ^(T^s)) = a(T(s)) — o-(Tl(s)), because of the row block independence hypothesis, 
i.e., rank T(s) = r± + r2 + ... + rk. 

In [11], it is shown that dn(T(s)) - d^T^s)) = d^R^s)), which implies (i), 
using Theorem 2 of this paper. 

4.2. Application to the Block Decoupling Problem 

We are now ready to give our results above the minimal infinite structure and the 
minimal McMillan degree achievable for the blocks of a decoupled system. 

Theorem 4. Let T(s) be a p x m strictly proper rational matrix of null left and 
right static kernels, decomposed in row-blocks according to a given partition 
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(pt, ..., pk) and (C, A, B) a realization of T(s). If the system T(s) can be decoupled 
relatively to (pu ..., pk) by an admissible decoupling precompensator, then we have 
the following: 

(i) The minimal McMillan degree achievable for the /th block of the decoupled 
system is given by the block decoupling invariant nie. 

(ii) The minimal infinite structure of the /th block of the decoupled system is given 
by the /th block essential structure Iei(T(s)). 

k 

Notice that when rank T(s) = £ rh where rt denotes the rank of T,(s), block 
; = i 

decoupling via precompensation is always possible, [14]. 
Proof, (i) was proved in [11]. 

To prove (ii), consider T(s) decomposed as in Lemma 1: 

T(s) = B(s)IT(s) 

and let T(s) be factorized as: 

T\s) = [R(sj 0] B'(s) 

where R(s) is an r x r full rank strictly proper rational matrix and B'(s) is an m x m 
bicausal matrix. 

Now partition R-1(s) as follows: 

R-'(s) = [R^s), ..., Rk(s)] ; R,-(s) 6 R'*«(s) 

Consider now a Smith-McMillan factorization of R;(s) written as: 

Rt(s) = Bn(s) 
0 

At(s) = dmg(fin, ...,Hirt). 

Let us consider the following compensator C(s) 

*иM ( 1 2) 

C(s):=B'-Қs) (13) 
Y(s) 

where Y(s) := R~l(s)di?ig(B;2

1(s) A^l(s), ..., B;2

l(s) A^^s)) and X(s) any 
(m — r) x r proper rational matrix. Clearly C(s) is an admissible precompensator. 

The decoupled system is: 

T(s)C(s) = B(s)l dmg(B;2

l(s) A;l(s), ..., B^s) Ak~\s)) 

where the infinite zero structure of the /th block is equal to the infinite pole structure 
of Rt(s) which is, from Theorem 2, Iei(T(s)) = {/in, ..., fiirt}. 

In [11] it is shown that the least value for the sum of the infinite zero orders for 
the /th block of the decoupled system is nie — o,(T/(s)). Then, from (i) of Theorem 3 
the result follows. • 
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Comments. It is proved in [2], that when the number of inputs is sufficiently large 
the system is decouplable by dynamic state feedback. 

In this case the minimal infinite structure achievable when decoupling is possible 
is l£C, A, B). 

In the same vein it is possible to take into account stability requirements, the 
minimal McMillan degree achievable for the blocks of the decoupled system (with 
stability) is given in [3]. Some results generalizing those of this paper incorporating 
stability requirements are given without proofs in [10]. 

5. AN ILLUSTRATING EXAMPLE 

Consider the linear system (C, A, B): 

x = 

" 0 0 0 0 1 " 
0 0 0 0 0 
0 0 0 1 0 
0 0 0 0 0 
0 0 0 0 0. 

1 0 0 0 0 
0 1 0 0 0 
1 1 1 0 0 

" 1 0 0 0" 
0 1 0 0 

X + 0 0 0 0 
0 0 1 0 
0 0 0 1 

J 

which transfer matrix is: 

T(s) = 

_ 1 0 0 
1 0 

5 

0 5 
1 « . - 1 

We will show later that this system is not row by row decouplable, but it is possible to 
decouple T(s) in blocks according to the output partition (2, 1). 

In this way, we will first compute the block essential structure of (C, A, B) relatively 
to (2, 1) to illustrate, in a second time, the transfer matrix characterizations of 
Iei(C, A, B) given in this work. We will finish the example by computing a block 
decoupling precompensator which will exhibit the minimal infinite structure achiev­
able for the block decoupled system. 

Begin by decomposing the matrix C of (C, A, B) according to the partition (2, 1) 
as follows: 

C1 Гi o o o o 
[ o 1 0 0 0_ 

[1 1 1 0 0 ] ; C2 

The maximal controllability subspaces Mj contained in Ker C, for i = 1, 2, are 
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respectively: 

spán 

1 0 0 0' 
- 1 1 0 0 

0 - 1 0 0 
0 0 1 0 
0 0 0 1 

spán 

0 0 0' 
0 0 0 
1 0 0 
0 1 0 

i0 ° !-

By definition the ith block essential structure of (C, A, B) is equal to the infinite 
structure of the subsystem (Ct, A + BE;, Bt), where: 

Ft is such that: (A + BE<) M* c &* 

Gi is such that: Im BGt = & n M* 

and Bi such that Im (B;) = Mu for i = 1, 2. In this case we have that: 

* i = 

0 0 0 0 - 1 

E, = 

0 0 0 - 1 
0 0 0 0 
0 0 0 0 

"o 0 0 0 -
0 0 0 0 
0 0 0 0 
0 0 0 0 

l " 1 0 0 " 
1 0 0 - 1 0 0 

- 1 0 0 
; G,= 0 1 0 

0 0 1 

; ß i - 0 0 0 
0 1 0 
0 0 1 

_ _ "0 0" 
0 0 0 0 
0 0 

; G2 = 1 0 
0 1 

; в2 = 0 0 
1 0 

_o 1. 
satisfy the required properties. Then computing the infinite structures of systems 
(Ci, A + BFh Bi) we get the following ith block essential structure of (C, A, B) 
relatively to (2,1): 

Iel(C, A, B) = Ia(Clt A + BFU BGO = {1, 2} 

Ie2(C, A, B) = ^ ( C - , A + BF2, BG2) = {2} 

which means that (C l 5 A + BFX, BG^ has two infinite zeros of orders {1, 2} and 
(C2, A + BF2, BG2) has one infinite zero of order (2). 

Let us give now the first matrix characterization of Iei(C, A, B). For this, compute 
as in the proof of Theorem 1, the following matrices: 

Vi(s) = (I - Fi(sl - A)'1 B)'1 Gt for i = 1,2, 

giving in this case: 

Vi(>) = 

1 0 — s" 
1 - S " 1 0 
0 1 0 
0 0 1 

V2(s) = 

"o - s - Г 

0 0 
1 0 
0 1 
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a simple calculation shows that 

T.(s) V,(s) 
Г s _ 1 0 0" 
L - 5 - 1 -s~2 0_ 

T2(s) Қ(s) = 0 

T2(s) V2(s) = [ s " 2 0] ; Tx(s) V2(s) = 0 

where clearly Vt(s) is a right bicausal basis for Ker T'(s) and then: 

Iel(C, A, B) = I^T^s) K_(s)) = {1, 2} 

Ie2(C, A, B) = Za(T2(s) V2(s)) = {2} 

and stated in Theorem 1. 
For illustrating Theorem 2, let us now factorize T(s) as follows: 

T(s) = [R(s) 0] B(s) 

where B(s) is a bicausal matrix and R(s) is equal to: . 

-(») 

1 0 0 

with R-1(s) = 
0 0 

s 0 

and let R-1(s) = [Ri(s), R2(s)] be pardoned in column-blocks according to (2, 1). 
Ri(s) has two infinite poles of orders {1, 2) and R2(s) has one infinite pole of order {2}, 
this confirms us that: 

Zel(C, A, B) = I^R^s)) = {1, 2} Ie2(C, A, B) = Z^R^s)) = {2} 

as stated in Theorem 2. 

Compensator Construction 

Below we will construct a block decoupling precompensator C(s) which will 
exhibit the minimal infinite structure achievable for the decoupled system. In fact 
T(s) is not row by row decouplable, since condition m ^ 2p — k does not hold 
[9], where m = 4 is the number of inputs, p = 3 is the number of outputs and k = 1 
is the column rank at infinity of R~1(s). However it is block decouplable according 
to partition (2, 1), since condition m = 2p — k* is satisfied, where k* = 2 is the 
maximal column rank at infinity that can be obtained from the column blocks of 

*-'(») [2]-
To illustrate the compensator construction of Theorem 3, let us consider the 

following Smith-McMillan factorizations at infinity of Rx(s) and of R2(s). 

"-*-(-)" 
o 

s " 1 - 1 l" Гs2 
o' 

Rг(s ) = в-M "-*-(-)" 
o 

B[(s) = 0 1 0 0 s 
\j - 1 0 0 |_0 0 

~ л (Лl "o 0 l" l ~ 1 Гì~ 

R2(s ) = B2(s) ДiЏ) 
0 

B'2(s) = 0 1 0 

1 0 0 

0 

oj 
1 u 

0 1_ 

[ii] 

Hence, from (13) given in the proof of Theorem 4 we have that a block decoupling 
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precompensator is given by: 

'Y(s) 
C(s) = B-Қs) 

W). 
Y(s) = R-l(s)dmg(B;x(s)A;l(s),B2

l(s)A2

i(s)) 

and X(s) is any (m — r) x r rational matrix. In this case we obtain: 

0~ 
0 Y(s) = 1 

0 1 

; X(s) = [ 0 0 1] 

yielding a compensator C(s): 

C(s) = B-Қs) 

s 
0 

- 1 
0 

" l - l o" 
1 0 
0 1 

) 0 1 

The decoupled system is finally: 
2 - s - 1 0 

T(s) C(s) 0 diag (.0,(5)^.(5)) 

As a matter of fact we have: 

M-D-M) = {1,2}; Z„(D2(s)) - {2} 

or Di(s) has two infinite zeros of orders (1, 2} and D2(s) has an infinite zero of order 
{2}, which verifies: 

Zei(T(s)) = Z^Dfa)) for / = 1, 2 . 

Then Di(s) and D2(s) possess the minimal infinite structure achievable for the 
decoupled system. 

To finish let us remark that the system (C, A, B) is block decouplable by non 
regular static state feedback. Actually we can verify that the following static state 
feedback: 

E = 

is equivalent to the precompensator C(s) given above. In fact: 

' l 0 - s _ 1 0" 
0 1 0 0 
0 0 1 0 
0 0 0 1 

Then the block decoupling by non regular static state feedback (E, G) provides us 
with the minimal infinite structure. (Received November 5, 1990.) 

0 0 0 - 1 0 0 - 1 0 
0 0 0 
0 0 0 

0 0 
0 0 ; G = 

0 
- 1 

1 0 
0 1 

0 0 0 0 0 0 0 1 

(/ - F(sl - A)'1 B)"1 G = G = C(s) 
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