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INPUT AND OUTPUT DECOUPLING ZEROS 
OF LINEAR PERIODIC DISCRETE-TIME SYSTEMS* 

OSVALDO MARIA GRASSELLI, SAURO LONGHI 

The notions of input and output decoupling zeros are extended to a linear periodic discrete-
time system. The ordered sets of structural indices are also analyzed for these notions and for 
the notions of invariant zero, transmission zero, eigenvalue and pole of such a system. For any 
non-zero zero, eigenvalue and pole, the corresponding ordered set of structural indices is time-
invariant. The input decoupling zeros, the invariant zeros and their ordered sets of structural 
indices are not altered by a linear periodic state feedback. New characterizations of the zeros, 
eigenvalues and poles are introduced through a time-invariant matrix mechanism, which is 
related with the periodic matrices describing the system more directly than the associated system. 

1. I N T R O D U C T I O N 

The increasing attention devoted in the last years to linear periodic systems [1 — 28] 

is motivated by the large amount of processes which can be modeled through a linear 

periodic system, such as periodically time-varying networks and filters, chemical 

processes, and multirate sampled-data systems (e.g. [5, 29 — 31]), as well as by the 

relevance of periodic control to a wide range of applications (see for example [6]), 

and even for the stabilization and control of time-invariant linear systems [32 — 36] 

and bilinear ones [37 —39]. 

For discrete-time linear periodic systems a fairly satisfactory structure and control 

theory has been developed [6 — 26], partly based on geometric methods, while through 

polynomial methods it has been possible to introduce time-varying notions of pole, 

invariant zero and transmission zero for such systems [27] (see [28] for a similar 

less general definition), with a meaning wholly similar to the time-invariant corre

sponding notions [40 — 43], and with a property of quasi time-independence. Namely, 

it was shown that the non-zero poles, transmission zeros and invariant zeros are 

* This work was supported by Ministero della Pubblica Istruzione and Ministero dell'Univer-
sita e della Ricerca Scientifica e Tecnologica. 
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independent of time, together with their algebraic multiplicities. This result, as far 
as invariant zeros are concerned, was based on their geometric interpretation, which 
was extended to the periodic case. . .. . 

In this paper the notion of input decoupling zero and output decoupling zero, 
introduced by Rosenbrock [44] are extended to a linear periodic discrete-time 
system. For these notions and for those of invariant zero, transmission zero, eigen
value and pole of such a system, the ordered sets of structural indices are also analyzed. 
It is pointed out that the ordered sets of structural indices are time-invariant, except 
for the null input (output) decoupling zero, invariant zero, transmission zero, eigen
value and pole. The output (input) decoupling zeros at time k are defined through 
the time-invariant associated system at time k, and characterize modes of the state 
free response of the periodic system starting at time k whose corresponding output 
response is zero (the meaning of input decoupling zeros is dual). As in the time 
invariant case, the input decoupling zeros, the invariant zeros and their structural 
indices are not altered by a linear periodic state feedback. The input (output) de
coupling zeros of a periodic system are related with the standard structural properties 
of such a system and with its invariant zeros, like in time-invariant systems. Moreover, 
for the eigenvalues, poles and all types of zeros of a periodic system, different char
acterizations are obtained through time-invariant matrix mechanisms, which are 
related with the periodic matrices describing the system more directly then the 
associated system. 

2. ZEROS, POLES AND THEIR ORDERED SETS OF STRUCTURAL 
INDICES 

Consider the linear periodic discrete-time system I described by: 

x(k + 1) = A(k) x(k) + B(k) u(k) (l.a) 

y(k) = C(k) x(k) (Lb) 

where k e Z, x(k) e C = : X is the state, u(k) e Cp = : U is the control input, y(k) e 
eCq = : Y is the output, and A(-), B(-) and C(') are periodic matrices of period CD 
(briefly, co-periodic) with entries in C. The state transition matrix of I is expressed 
by <P(k, k0) := A(k — 1) ... A(k0), with k > k0, k, k0 e Z, and $(k, k) := In for 
all k e I, where I„ is the identity matrix of dimension n. For any initial time k0 e I, 
the output response of system I for k ^ k0, to given initial state x(k0) and input 
function u('), can be obtained through the time-invariant associated system of Z 
at time k0, denoted by Ia(k0) [31]. System Ia(k) is represented by: 

, ; xk(h + 1) = Ek xk(h) + Jk uk(h) (2.a) 

yk(h) = Lkxk(h) + Mkuk(h) (2.b) 

where h e I, xk(h) e C", uk(h) e Cp0J, yk(h) e Cq(°, Ek : = <P(k + co, k), Jk : = [ 4 ( 0 ) . . . 
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... Ak(co - 1)] with Ak(j) := <P(k + co, k + j + 1) B(k + j), j e {0, 1, ..., co - l}, 
Lk : = [r'k(0) ... r'k(co - 1)]' with rk(j) :=C(k+ j) <p(k+j,k),je{0,l,...,co-l}, 
and Mk is a block matrix {&k(i,j)} with ©k(i,j) := 0, i =j, 0k(i,}) := C(k + i). 
. <p(k + i, k + j + 1) B(k + j) i > j , i,j e {0, 1, ..., co - l} . In fact, it is easy 
to see that, if xk(0) = x(k) and uk(h) = [u'(k + hco)... u'(k + co - 1 + hco)]' 
for all heZ+, where Z+ denotes the set of non-negative integers, then xk(h) = 
= x(k + hco) and yk(h) = [y'(k + hco)... y'(k + co - 1 + hco)]' for all heZ+. 

Remark 1. The subspaces of reachable (unobservable) and controllable (un-
reconstructible) states of system I at time k are readily seen to coincide with those 
of systems Ia(k) if they are expressed in terms of matrices Ek, Jk and Lk [12, 13, 27]. 

The characteristic polynomial of Ek is independent of k, whence it characterizes 
the stability of I [45]. The eigenvalues of Ek are called here the eigenvalues of I. 

The transfer matrix of Za(k), expressed by Wk(z) := Lk(zln — Efc)
_1 Jk + Mk, 

was called the associated transfer matrix of I at time k [27]. 

Lemma 1. [27] The rank of the rational matrix Wk(z) is independent of k. 

The rank of Wk(z) will be denoted simply by r. Then the symbols ek(z) (\J/k(z)), 
i- = 1,2,..., r, will denote the r numerator (denominator) polynomials in the Smith-
McMillan form of Wk(z) in such an order that sk(z) (\j/k

i+ t(z)) divides ek
i+l(z) (ij/k(z)). 

r r 

The zeros of the polynomial nk(z) : = Y[ A{z) (Xk(z) '• = Yl ^K2)) w e r e c a ^ e d the 
i = 1 i = 1 

transmission zeros of I (the poles of I) at time k [27]. The associated system 
matrix of I at time k was defined by: 

^) - [V"MJ W 
and has a rank of n + r [44]. Then the symbols ^\(z), i = 1,2, ..., n + r, will denote 
the n + r invariant polynomials in the Smith form of Pk(z), in such an order that 

n + r 

^\(z) divides £-+1(z). The zeros of the polynomial £k(z) := f\ $(z) were called the 
i = i 

invariant zeros of I at time k. The meaning of transmission zeros and invariant 
zeros [27] (as well as that of poles), is a straightforward extension of the time-
invariant one [40, 46], even when they coincide with the poles. 

A notion of zero can be obtained also through the geometric approach, like in the 
time invariant case [41]. It is based on the concepts of (A(*), B('))-invariant sub-
space [13] and reachability subspace [27]. The former is an co-periodic subspace 
V(k) c: X such that A(k) V(k) c V(k + 1) + Im B(k) for all keZ, that is equivalent 
to the existence of an co-periodic linear map E(*) : X -> U such that AF(k) V(k) a 
c V(k +1) (or, briefly, s.t. V(-) is AF(^-invariant), where AF(k) := A(k) + B(k)F(k). 
The latter is an (A(*), B('))-invariant subspace V(k) whose states are reachable 
at time k from the null state with a trajectory x(h) contained in V(h) for every 
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h < k. For a given (A('), B(*))-invariant subspace V('), denote by F(V(-)) the 
class of co-periodic linear maps E(*) such that V(') is AF(*)-invariant; denote by EF 

the matrix defined like Ek but with AF(') instead of A(-); then, for any E(*)e 
EF(V(-)), EF V(k) c V(k + OJ) = V(k) for all keZ, and the standard notations 
for restriction and induced map in the quotient spaces can be applied to EF and V(k). 
The following lemma allows one to define the geometric notion of zero. 

Lemma 2. [27] For a given ct>-periodic subspace K(k) a X, for the largest (A(*), 
B(*))-invariant subspace V*(k) contained in K(k) for all keZ, for the largest re
achability subspace V*(k) contained in K(k) for all keZ, and for E(-) e F(V*(-)) 
the linear map Hk:= Ek \ V*(k) (mod V*(k)) is independent of E(*) for all ke Z. 

The subspaces V*(') and V*e(') can be computed through recursive algorithms 
[13, 15, 27]. For K(') = Ker C('), the eigenvalues of Hk are called here geometric 
zeros ("structural zeros" in [27]) of I at time k. By Lemma 2, they are independent 
of E(-) e F(V*(')). The dimension of Hk, which in general depends on k, will be 
denoted by m(k). 

For the above recalled notions of zeros, poles and eigenvalues, possibly time-
varying structural indices can be defined as follows. 

For a given transmission zero (pole) a of I at time k and for each i = 1, ..., r, 
let Hi(k) (vi(k)) be the multiplicity of a as zero of &\(z) (\jf)(z)). The non-decreasing 
finite sequence {n^k), n2(k), ..., fir(k)} ({vr(k), vr_l(k), ..., v.(/c)}) will be called 
the ordered set of structural indices at time k of the transmission zero (pole) a. 
In a similar way, ordered sets of n + r, m(k) and n structural indices at time k 
of an invariant zero a of I at time k, a geometric zero a of I at time k and an eigen
value a of I, respectively, are defined as the non-decreasing finite sequences of multi
plicities of a as zero of the invariant polynomials ^(z) of Pk(z), of those of zlm(k) — Hk 

and of those of zln — Ek, respectively. 

Remark 2. A transmission zero (pole) of I at time k is an invariant zero of I at time k 
(an eigenvalue of I) and the two sets of structural indices at time k are related like 
in the time-invariant case [47]. In particular, when I is reachable and observable 
at time k, an invariant zero at time k (an eigenvalue) is a transmission zero (pole) 
at time k, with the same set of structural indices, except for some null structural 
indices [44]. 

As in the time-invariant case, geometric zeros coincide with invariant zeros. 

Theorem 1. [48] For each integer k, the invariant zeros of E at time k and their 
ordered sets of structural indices coincide with its geometric zeros at time k and 
their ordered sets of structural indices except for n + r — m(k) null structural 
indices of invariant zeros, and are not altered by a linear periodic state feedback, 
i.e. by substituting A(') with AF(') (with E(«) co-periodic). 

Evans [45] stated the time-invariance of the structural indices of the non-zero 
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eigenvalues of I, but his proof was incomplete. The following theorem states a similar 
property also for invariant zeros, transmission zeros, and pole. 

Theorem 2. [48] The non-zero invariant zeros, the non-zero transmission zeros, 
the non-zero poles, the non-zero eigenvalues of Z. at time k and their ordered sets 
of structural indices, are independent of k. 

Theorems similar to Theorems 1 and 2, but restricted to multiplicities, defined as 
the sum of structural indices, were proved in [27]. The existence and the ordered 
set of structural indices of the null invariant zero, transmission zero and pole, as 
well as the ordered set of structural indices of the null eigenvalue, can depend on k, 
as shown through counter-examples in [27, 48]. 

Two equivalent characterizations of invariant zeros, transmission zeros, poles and 
eigenvalues of I and their structural indices can be given through simpler, block-
diagonal matrices, defined by: 

sik := diag {A(k), A(k + 1), ..., A(k + to - 1)} , ' (4.a) 

mk := diag {B(/c), B(k + 1), ..., B(k + co - 1)} ;_, - !•' r), (4b) 

<€k := diag{C(/c), C(k + 1), ..., C(k + co - 1)} (4.c) 

and through the following matrices: 

0 L 
D(z): = 

zL 
Ҷa>- l)n 

0 
(5.a) 

slk:=MD(l)Y^k - >v - ; (5.b) 

%k :=[D(l)Yl@k. ' (5-c) 
Write Qi(z) ~ Q2(z) for polynomial matrices Qx(z), Q2(z) with the same dimen

sions and the same Smith form (i.e. Qt(z) — U(z) Q2(z) V(z), with U(z) and V(z) 
unimodular). 

Theorem 3. For each integer k 

HTk(z) :=Vk(D(z) - sJk)~
l a* -= Wk(z) Vz e C "!. (6.a) 

Wk(z) = ^(diag{zI„,/ (w_1)n} -slkY
xBk VzeC (6.b) 

(D(z) - séк) 
zln - Ek 0 

0 / 

zL 

0 I(a>-l)nJ 

(<o-l)n_ 

diag{2I„,I(C0_1}„} - slk 

A)- L ^ °J L ° hz-ú\ 
\Pk(z) 0 1 p f e-"díag{z/„,I ( t 0_1 > B} Škl 
L o / ( W - D J ~ L *> ° J ' 

(7a) 

(7.b) 

(8.a) 

(8.b) 
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Proof. For (6.a), (7.a) and (8.a) see [48]. From these relations and from (5), 
(6.b), :(7.b) and (8.b) follow directly. • 

By Theorem 3, the invariant zeros, transmission zeros, poles and eigenvalues of 
I and their ordered sets of structural indices at time k can be computed from 2?k(z), 
i^k(z) and D(z) — stfk, or from the matrices in the right-hand side of (6.b), (7.b) 
and (8.b). They are more simply related with A(-), B(*) and C(') than Pk(z), Wk(z) 
and zln — Ek are. 

Remark 3. Denote with S the one-step forward shift operator, satisfying 3x(h) = 
= x(h + 1). For a given initial state x(k) at time k, the matrices [s4\ — D(S0}), &k"] 
and [s/k — diag {5mln, I(co-i)„},^] allow to compute the state response of I at any 
time kt > k just like the matrix [A — SIn, B] does for time-invariant systems (i.e. 
for co = 1), while Za(k) does not provide the state response at time instants different 
from k + ico. For this reason, the triplets (srfk, 3$k, ^k) and (s7k, $k, <tfk) provide 
time-invariant characterizations of the co-periodic geometric notions, such as that 
of (A('), B(*))-invariant subspace [18, 19]. 

Verriest [25] and Park and Verriest [23] introduced time-invariant representations 
of 1, similar to these triplets. p 

Note that, if p = q and r .== cop, the structure of £Pk(z) easily shows that the exis
tence of a null invariant zero at time k implies the existence of the same zero at all 
times, while the corresponding ordered set of structural indices can depend on,k, 
as shown through a counter-example in [48]. 

3. DECOUPLING ZEROS v 

The notion of input (output) decoupling zero, introduced by Rosenbrock [44], 
can be extended to system I as follows. Define :••, • ^ , : 

":: ;
 lPk(z) := [Ek - zln Jk] , °Pk(z) := [E'k - zl„ Lk]' . / (9) 

and denote with fi)(z) (y)(z)) the n invariant polynomials of lPk(z) (°Pk(z)), in the 
n n 

same order as the £)(z)'s. The zeros of the polynomial Yl P\{z) ( I I ^K7)) a r e s a ^ 
j = l r = l 

to be the input decoupling zeros (output decoupling zeros )of Z at time k. The 
ordered set of n structural indices of one of these zeros at time k is defined as the 
non-decreasing sequence of the n multiplicities of it as zero of the polynomials 
P)(z) (y)(z)). These notions are dual. The meaning of input or output decoupling 
zeros is easily obtained from the meaning of invariant zeros, on the basis of Lemma 
2.2b in [27]: specifically, the output decoupling zeros of S at time k characterize 
modes of the state free response of the periodic system 1 starting at time k, whose 
corresponding output response is zero (the meaning of input decoupling zeros is 
dual). | .R I 
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Now, for any co-periodic linear map G(k):Y-+X, define GA(k):=A(k) + 
+ G(k) C(k), and denote by GEk the matrix defined like Ek but with GA(-) instead 
of A(-). Theorems 1, 2 and 3 for C(-) = 0 (B(-) = 0) yield the following result. 

Theorem 4. (a) The input (output) decoupling zeros of I at time k and their ordered 
sets of structural indices, are not altered by substituting A(-) by AF(-) (GA(*)), with 
E(*) (G(*)) co-periodic. 

(b) The non-zero input (output) decoupling zeros of I at time k and their ordered 
sets of structural indices are independent of k. 

(c) For each integer k 

0 k(z):=[sѓk-D(z) Җ] , ° 1 (10a) 
_ i (co-l)nJ 

PPk(z) 0 1 r^ f c _ diag{z/B,/(e)_1)fl} Mk] (10b) 
L U '(<o-l)nJ 

• * , „ ,-[<;,»<•)] - [ •<*> , : . , J <"•> 
o i r^ -d iagK, /« ,„_„„}] . ( l l b ) 

0 

Note that the existence and the ordered set of structural indices of the null input 
(output) decoupling zero can depend on time k [48]. 

Remark 4. The relations of input and output decoupling zeros with the standard 
structural properties (see [9, 11 — 13] for algebraic conditions) are similar to the 
time-invariant case. Namely, system I is reachable (observable) at time k, controllable 
(reconstructible), stabilizable (detectable) if and only if, respectively, it has no input 
(output) decoupling zeros at time k, no non-zero input (output) decoupling zeros, 
all input (output) decoupling zeros in the open unit disk [6, 7]. In the same way, 
there exists an co-periodic E(*) (G(')) such that all the eigenvalues of Ek (GEk) 
lie in the open disk of radius Q, if and only if system I has all input (output) 
decoupling zeros in this open disk [48] (see also the following theorem). On this 
basis, the possible time-dependence of the only null input (output) decoupling 
zero justifies the possible time-dependence of the only reachability (observability) 
property among the above mentioned structural properties. 

The meaning of the statements in Remark 4 is further clarified, and the relation 
between input decoupling zeros and invariant zeros pointed out, if the basis of X 
at each time k is taken to contain an co-periodic basis of the subspace Xr(k) of reach
able states at time k. In such a basis: 

~m--[E^-'-EJ^_Jt] ^ 
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where a(k) is the possibly time-varying dimension of Xr(k), the square matrices 
Eu(/c) and E22(k) are defined like Ek but with A(-) substituted by Au(*) and A22('), 
respectively, Jx(k) is defined like Jk but with the pair (A(*), B(*)) substituted by the 
pair (A u ( - ) , B^*)), and the rank of [Eu(fc) — zla(k) J^fc)] is a(k) for all zeC 
and for all k e Z [16, 20]. In general Au(fc) is not square, whence the pair (Au(*) , 
Bi(")) does not represent a dynamical reachable system but only a "reachable pair" 
[16, 20]. Thus, the following theorem is yielded by time-invariant results [43, 44], 
and extends well-known time-invariant properties to the w-periodic system I. 

Theorem 5. (a) The input decoupling zeros of I at time k and their ordered sets of 
structural indices, coincide with the eigenvalues of E22(k) and the corresponding 
ordered sets of structural indices, except for a(k) null structural indices of input 
decoupling zeros. 

(b) If p ^ q and r = qco, for each integer k the product of the polynomial r]k(z) 
and the characteristic polynomial of E22(k) divides the polynomial Ck(z)-

Dual statements concern output decoupling zeros. 

4. CONCLUDING REMARKS 

The meaning and the role of the input (output) decoupling zeros of S and their 
relations with the structural properties of it are similar to those of the time-invariant 
case, as well as the meaning and the role of invariant zeros, transmission zeros and 
poles. 

In particular, the conditions for checking the structural properties of I which are 
expressed in terms of the input (output) decoupling zeros of I (see Remark 4) can 
clarify the mechanism of loss of one of such properties when two w-periodic systems 
enjoying the same property are connected in series or feedback (e.g. as a "pole-zero 
cancellation"), just like for time-invariant systems. In fact, the time-invariant as
sociated system of the connection of two or more linear w-periodic discrete-time 
systems coincides with the same connection of the corresponding time-invariant 
associated systems [18], and this result allows to study any connection of periodic 
systems through the connection of their associated systems, and to apply time-
invariant reachability, controllability, stabilizability conditions of composite systems 
and the dual ones in order to check these properties for periodic composite systems: 
e.g., to apply the reachability and observability conditions of composite systems in 
[46], or the conditions in [49, 50], the latters based just on the notions of input 
and output decoupling zeros. 

(Received November 30, 1990.) 
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