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ON THE PENALTY APPROXIMATION
OF QUADRATIC PROGRAMMING PROBLEM

ZDENEK DOSTAL

An upper bound for the difference of the exact solution of the problem of minimization of
quadratic functional on a subspace and its penalty approximation has been given. The paper
is supplied with a numerical example.

1. INTRODUCTION

It is an easy consequence of the general theory of the penalty method [1] that the
solution X of the problem

min {f(x):xe ¥}, o (1)

where f(x) = $xTAx — b"x is a convex quadratic functional and ¥” is a subspace
of the real Euclidean space R", may be approximated by the solution X, of the problem

min {f(x) + +¢7'x"Px: x e R"} (2)
where ¢ > 0 and P is any n X n matrix with the range #". .

Even though there is 2 number of exact methods for transformation of the problem
(1) to the unconstrained one [3], hardly any of them is as simple and cheap from the
point of view of numerical realisation as the penalty approximation (2) In a special
case when P is diagonal its application consists simply in overwriting corresponding
diagonal entries of A by a large number and is widely used [2]. In a more general
case, when values of constrained variables are not fully determined by constraints,
the application is complicated by the fact that adding a too large matrix to A may
destroy the corresponding part of A. This has motivated us to examine in detail the
difference X — X, and to carry out some numerical experiments in order to assess
the applicability of the penalty approach.

2. AN ESTIMATE

Let f(x) = 4xTAx — b"x where 4 e R#*" is a real positive semidefinite matrix
and b e R". Denote by ¥ and % a subspace of R” and its orthogonal complement.

151



Let Ve R"*™ and U e R**(~™ be two matrices whose columns are formed by the
orthonormal bases of ¥~ and %, respectively. Denote by P a conjugate projector
on ¥". Let us remind that a matrix P is a conjugate projector on a subspace ¥~ iff
P? = P and P"A(I — P) = 0. In this case I — P is a conjugate projector on the null
space of P. Notice that AP is symmetric and positive semidefinite as PTA = PTAP.

Theorem. Let f, U, V. ¥~ be defined as above, let X be the solution of the problem
min f(x), and let X, denote for each & > 0 the solution of the problem min (f(x) +
v
+ +¢7'XTUU ).
If VTAV is invertible, then

% — %,

< ¢

P — V| + 1)? |p|, » 3)
where P = V(VTAV)™! V"4 is a conjugate projector on ¥,

Proof. Under the assumption of the theorem, obviously X = V(V'4V)™' ¥™b and
A + ¢~ 'UU" is positive definite.

Now notice that Q = (V, U)is an n x n orthogonal matrix, so that

(A+e'UUN ! = QT4 + e 'UUT) Q)1 QT.
As

QY (A4 + & 'UUT) Q = (VTAV’ VAU )

UTAV, UTAU + ¢ I

we can apply the formula for the inverse of 2 x 2 block matrix to get

_ VIAV)™! + CcZCT, —CzZ\ (VT
X, = (V.U) <( )—ZCT Z )(UT) b

= X + VCZ'"V'b — VCZU"b — UZC™V"b + UZU"b, 4)

where
C= (VTAV)*1 VTAU
and
Z = (UTAU + &7 '1 — UTAV{V"AV) ' VTAU) ™ .
Lect us now estimate the norm of Z. First notice that
Z = s(I — .sUTA(V(VTAV‘)‘1 VT4 — I) U)"1 . (5)

Since P = V(VTAV)™' VT4 is a conjugate projector on ¥, we can rewrite Z into
the form

Z =¢(I + eUTA(I — P)U)~*,

where the inverted matrix is obviously positive definite with all the eigenvalues
greater or equal to 1. It follows that

lZI <e.
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Further, notice that , A
|ve| = |V(V'4v)~t V'4U| = |PU| = |P(I — VVT)| =
= |P - PWW'| = |P - VV'|.
Taking into account that both ‘U[ < 1land IV] <1, we get
|x — x| = [VCZC™V™b — VCZU™b — UZC™VTb + UZU"b| =
< (o + 2] + 12| ] = slve] + 17 o] =
=¢(|P — VW] + 1)? |b|.
Consider the following trivial example: 4 = I, b = (1,0...)T, ¥" is the set of all
vectors with the first coordinate equal to 0. Then obviously |b| = 1,
|x — x| =e(l +¢)7*,
while (3) yields
|x—x|<e.

This shows that the constant ([P — V7| + 1) can not be improved without addi-
tional assumptions. O

The following corollary gives us an idea about the constant in (3) in terms of the
spectrum of A.

Corollary. Let f, U, V, 4, X and X, be those of the theorem, and let A be invertible.
Then

| — %] < o(e(4) + 1) 8], (4)
where %(A) is the spectral condition number of A.
Proof. Notice that

|P — vV = |(P — W) (UUT + Vi) = |PUU"| < |P|
and -
[P = [V(ray)Tt vial < [(vTav) T 4] < |47 4]
Thus |P — VV"| < #(A), which substituted into (3) yields (4). O

3. NUMERICAL EXAMPLE

As an illustration, consider the problem

min 1xTdx — bTx,

xe¥"
where
2 -1 0 1 Xy
A=|-1 2 -1}, b=|1}, x=|x,]),
0o -—-1 2 1 X3

’V={x:x1+x3=0}.
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Direct computations show that »(4) = (1 + +/2)/(1 — /2), so that we get the
estimate
|x - xel < 80-77e.

The values of both sides are tabulated in Table 1. All the penalty computations were
carried out in double precision and no serious effect of computer arithmetics has

Table 1.

€ 1071 1074 1077
Jx— x| 1-716E-1 1-837E-4 1-837E-7
(1 4 %(A))? |b] 8-077E0 ’ 8:077E-3 8-077E-6

s
R

been observed with e7! < 10'°. We conclude that the estimate (4) may give us some

idea about the error of penalty computations, though in many cases it will be too
pesimistic.
(Received June 14, 1989.)
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