ON THE PENALTY APPROXIMATION OF QUADRATIC PROGRAMMING PROBLEM

ZDENĚK DOSTÁL

An upper bound for the difference of the exact solution of the problem of minimization of quadratic functional on a subspace and its penalty approximation has been given. The paper is supplied with a numerical example.

1. INTRODUCTION

It is an easy consequence of the general theory of the penalty method [1] that the solution \bar{x} of the problem

$$
\begin{equation*}
\min \{f(x): x \in \mathscr{V}\} \tag{1}
\end{equation*}
$$

where $f(x)=\frac{1}{2} x^{\mathrm{T}} A x-b^{\mathrm{T}} x$ is a convex quadratic functional and \mathscr{V} is a subspace of the real Euclidean space \mathbb{R}^{n}, may be approximated by the solution \bar{x}_{ε} of the problem

$$
\begin{equation*}
\min \left\{f(x)+\frac{1}{2} \varepsilon^{-1} x^{\mathrm{T}} P x: x \in \mathbb{R}^{n}\right\} \tag{2}
\end{equation*}
$$

where $\varepsilon>0$ and P is any $n \times n$ matrix with the range \mathscr{V}.
Even though there is a number of exact methods for transformation of the problem (1) to the unconstrained one [3], hardly any of them is as simple and cheap from the point of view of numerical realisation as the penalty approximation (2). In a special case when P is diagonal its application consists simply in overwriting corresponding diagonal entries of A by a large number and is widely used [2]. In a more general case, when values of constrained variables are not fully determined by constraints, the application is complicated by the fact that adding a too large matrix to A may destroy the corresponding part of A. This has motivated us to examine in detail the difference $\bar{x}-\bar{x}_{\varepsilon}$ and to carry out some numerical experiments in order to assess the applicability of the penalty approach.

2. AN ESTIMATE

Let $f(x)=\frac{1}{2} x^{\mathrm{T}} A x-b^{\mathrm{T}} x$ where $A \in \mathbb{R}^{n \times n}$ is a real positive semidefinite matrix and $b \in \mathbb{R}^{n}$. Denote by \mathscr{V} and \mathscr{U} a subspace of \mathbb{R}^{n} and its orthogonal complement.

Let $V \in \mathbb{R}^{n \times m}$ and $U \in \mathbb{R}^{n \times(n-m)}$ be two matrices whose columns are formed by the orthonormal bases of \mathscr{V} and \mathscr{U}, respectively. Denote by P a conjugate projector on \mathscr{V}. Let us remind that a matrix P is a conjugate projector on a subspace \mathscr{V} iff $P^{2}=P$ and $P^{\mathrm{T}} A(I-P)=0$. In this case $I-P$ is a conjugate projector on the null space of P. Notice that $A P$ is symmetric and positive semidefinite as $P^{\mathrm{T}} A=P^{\mathrm{T}} A P$.

Theorem. Let $f, U, V . \mathscr{V}$ be defined as above, let \bar{x} be the solution of the problem $\min _{\boldsymbol{\gamma}} f(x)$, and let \bar{x}_{ε} denote for each $\varepsilon>0$ the solution of the problem $\min (f(x)+$ $+\frac{1}{2} \varepsilon^{-1} x^{\mathrm{T}} U U^{\mathrm{T}} x$.

If $V^{\mathrm{T}} A V$ is invertible, then

$$
\begin{equation*}
\left|\bar{x}-\bar{x}_{\varepsilon}\right| \leqq \varepsilon\left(\left|P-V V^{\mathrm{T}}\right|+1\right)^{2}|b|, \tag{3}
\end{equation*}
$$

where $P=V\left(V^{\mathrm{T}} A V\right)^{-1} V^{\mathrm{T}} A$ is a conjugate projector on \mathscr{V}.
Proof. Under the assumption of the theorem, obviously $\bar{x}=V\left(V^{\mathrm{T}} A V\right)^{-1} V^{\mathrm{r}} b$ and $A+\varepsilon^{-1} U U^{\mathrm{T}}$ is positive definite.

Now notice that $Q=(V, U)$ is an $n \times n$ orthogonal matrix, so that

$$
\left(A+\varepsilon^{-1} U U^{\mathrm{T}}\right)^{-1}=Q\left(Q^{\mathrm{T}}\left(A+\varepsilon^{-1} U U^{\mathrm{T}}\right) Q\right)^{-1} Q^{\mathrm{T}}
$$

As

$$
Q^{\mathrm{T}}\left(A+\varepsilon^{-1} U U^{\mathrm{T}}\right) Q=\left(\begin{array}{ll}
V^{\mathrm{T}} A V, & V^{\mathrm{T}} A U \\
U^{\mathrm{T}} A V, & U^{\mathrm{T}} A U+\varepsilon^{-1} I
\end{array}\right)
$$

we can apply the formula for the inverse of 2×2 block matrix to get

$$
\begin{align*}
& \bar{x}_{\varepsilon}=(V, U)\left(\begin{array}{cc}
\left(V^{\mathrm{T}} A V\right)^{-1}+C Z C^{\mathrm{T}}, & -C Z \\
-Z C^{\mathrm{T}} & Z
\end{array}\right)\binom{V^{\mathrm{T}}}{U^{\mathrm{T}}} b= \\
& =\bar{x}+V C Z^{\mathrm{T}} V^{\mathrm{T}} b-V C Z U^{\mathrm{T}} b-U Z C^{\mathrm{T}} V^{\mathrm{T}} b+U Z U^{\mathrm{T}} b, \tag{4}
\end{align*}
$$

where

$$
C=\left(V^{\mathrm{T}} A V\right)^{-1} V^{\mathrm{T}} A U
$$

and

$$
Z=\left(U^{\mathrm{T}} A U+\varepsilon^{-1} I-U^{\mathrm{T}} A V\left(V^{\mathrm{T}} A V\right)^{-1} V^{\mathrm{T}} A U\right)^{-1}
$$

Let us now estimate the norm of Z. First notice that

$$
\begin{equation*}
Z=\varepsilon\left(I-\varepsilon U^{\mathrm{T}} A\left(V\left(V^{\mathrm{T}} A V\right)^{-1} V^{\mathrm{T}} A-I\right) U\right)^{-1} \tag{5}
\end{equation*}
$$

Since $P=V\left(V^{\mathrm{T}} A V\right)^{-1} V^{\mathrm{T}} A$ is a conjugate projector on \mathscr{V}, we can rewrite Z into the form

$$
Z=\varepsilon\left(I+\varepsilon U^{\mathrm{T}} A(I-P) U\right)^{-1}
$$

where the inverted matrix is obviously positive definite with all the eigenvalues greater or equal to 1 . It follows that

$$
|Z| \leqq \varepsilon
$$

Further, notice that

$$
\begin{aligned}
& |V C|=\left|V\left(V^{\mathrm{T}} A V\right)^{-1} V^{\mathrm{T}} A U\right|=|P U|=\left|P\left(I-V V^{\mathrm{T}}\right)\right|= \\
& =\left|P-P V V^{\mathrm{T}}\right|=\left|P-V V^{\mathrm{T}}\right|
\end{aligned}
$$

Taking into account that both $|U| \leqq 1$ and $|V| \leqq 1$, we get

$$
\begin{aligned}
& \left|x-x_{\varepsilon}\right|=\left|V C Z C^{\mathrm{T}} V^{\mathrm{T}} b-V C Z U^{\mathrm{T}} b-U Z C^{\mathrm{T}} V^{\mathrm{r}} b+U Z U^{\mathrm{T}} b\right| \leqq \\
& \leqq\left(|V C|^{2}+2|V C|+1\right)|Z||b| \leqq \varepsilon(|V C|+1)^{2}|b|= \\
& =\varepsilon\left(\left|P-V V^{\mathrm{T}}\right|+1\right)^{2}|b|
\end{aligned}
$$

Consider the following trivial example: $A=I, b=(1,0 \ldots)^{\mathrm{T}}, \mathscr{V}$ is the set of all vectors with the first coordinate equal to 0 . Then obviously $|b|=1$,

$$
\left|\bar{x}-\bar{x}_{\varepsilon}\right|=\varepsilon(1+\varepsilon)^{-1},
$$

while (3) yields

$$
\left|\bar{x}-\bar{x}_{\varepsilon}\right| \leqq \varepsilon .
$$

This shows that the constant $\left(\left|P-V V^{\mathrm{T}}\right|+1\right)^{2}$ can not be improved without additional assumptions.

The following corollary gives us an idea about the constant in (3) in terms of the spectrum of A.

Corollary. Let f, U, V, A, \bar{x} and \bar{x}_{ε} be those of the theorem, and let A be invertible. Then

$$
\begin{equation*}
\left|\bar{x}-\bar{x}_{\varepsilon}\right| \leqq \varepsilon(\varkappa(A)+1)^{2}|b| \tag{4}
\end{equation*}
$$

where $\chi(A)$ is the spectral condition number of A.
Proof. Notice that

$$
\left|P-V V^{\mathrm{T}}\right|=\left|\left(P-V V^{\mathrm{T}}\right)\left(U U^{\mathrm{T}}+V V^{\mathrm{T}}\right)\right|=\left|P U U^{\mathrm{T}}\right| \leqq|P|
$$

and

$$
|P|=\left|V\left(V^{\mathrm{T}} A V\right)^{-1} V^{\mathrm{T}} A\right| \leqq\left|\left(V^{\mathrm{T}} A V\right)^{-1}\right||A| \leqq\left|A^{-1}\right||A|
$$

Thus $\left|P-V V^{\mathrm{T}}\right| \leqq x(A)$, which substituted into (3) yields (4).

3. NUMERICAL EXAMPLE

As an illustration, consider the problem

$$
\min _{x \in \mathfrak{r}} \frac{1}{2} x^{\mathrm{T}} A x-b^{\mathrm{T}} x
$$

where

$$
\begin{aligned}
& A=\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right), \quad b=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \\
& \mathscr{V}=\left\{x: x_{1}+x_{3}=0\right\} .
\end{aligned}
$$

Direct computations show that $x(A)=(1+\sqrt{ } 2) /(1-\sqrt{ } 2)$, so that we get the estimate

$$
\left|x-x_{\varepsilon}\right| \leqq 80.77 \varepsilon
$$

The values of both sides are tabulated in Table 1. All the penalty computations were carried out in double precision and no serious effect of computer arithmetics has

Table 1.

ε	10^{-1}	10^{-4}	10^{-7}
$\left\|x-x_{\varepsilon}\right\|$	$1 \cdot 716 \mathrm{E}-1$	$1 \cdot 837 \mathrm{E}-4$	$1 \cdot 837 \mathrm{E}-7$
$\varepsilon(1+\chi(A))^{2}\|b\|$	$8 \cdot 077 \mathrm{E} 0$	$8 \cdot 077 \mathrm{E}-3$	$8 \cdot 077 \mathrm{E}-6$

been observed with $\varepsilon^{-1} \leqq 10^{10}$. We conclude that the estimate (4) may give us some idea about the error of penalty computations, though in many cases it will be too pesimistic.
(Received June 14, 1989.)

REFERENCES

[1] W. I. Zangwill: Nonlinear Programming: A Unified Approach. Prentice-Hall, Englewood Cliffs, N. J. 1969.
[2] J. Fix and G. Strang: An Analysis of the Finite Element Method. Prentice-Hall, Englewood , Cliffs, N. J. 1973.
[3] B. N. Pschenichny and Yu. M. Danilin: Numerical Methods in Extremal Problems. Mir, Moskva 1978.

RNDr. Zdeněk Dostál, CSc., Hornický ústav ČSAV(Mining Institute - Czechoslovak Academy of Sciences), A. Ǩímana 1768, 70800 Ostrava. Czechoslovakia.

