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A CONCURRENCY CONTROL PROBLEM 
IN A TIME-SHARING SYSTEM 
WITH DIFFERENT JOB TYPES * 

HANS DADUNA 

We consider a time-sharing system where due to the locking of resources by some jobs other 
jobs are not admitted to the system. We compute the interruption time distribution and prove 
ergodicity of the system. 

0. I N T R O D U C T I O N 

The problem which is investigated in this note is from the field of controlling 

the use of shared data by parallel processes. These processes operate on the data 

in two different ways: Read operations may be done by several processes concurrently 

while write operations of one process lock the database for other processes. 

Arriving 
Stage 1 

Database 1 

read 

Stage 2 

Database 2 

-> write operation 

Fig. 1. 

Our system is a two-stage tandem, where the second stage is the central processing 

unit (CPU) which operates in a time-sharing modus while the first stage is a prepro

cessor which works under a first-come-first-served (FCFS) regime. To each stage 

a specified database is associated, which has to be accessible for a job to be performed 

* Presented at the "Kolloquium iiber Mathematische Statistik im Rahmen der Wissenschaft-
lichen Kolloquien der Universitat Hamburg und der Karls-Universitat Prag", Hamburg, 
June 1989. 

53 



at this stage. If the database is not accessible for a job when its service has to be 
started, then this job is assumed to be lost. 

Jobs of different type, say: a, /?, resp., arrive at the system, requesting for service 
at the CPU which can be given to them after being served at the preprocessor. All 
jobs have to perform read operations at both stages on the data of that stage, and jobs 
of type /? additionally have to update the data of stage 1 while being executed at the 
CPU. Therefore if a type-/? job is present at stage 2 no job can be served at stage 1. 
More formally: A type-/? job leaving stage 1 takes the key for the database of stage 1 
with it and gives it back if it leaves stage 2. 

We assume the time for passing stage 1 to be negligible compared to the execution 
time at the CPU. This leads to considering a time sharing service system where two 
types of jobs are served, and where the arrival process is interrupted while a job 
of type-/? is in the time-sharing system. 

The Round-Robin queueing discipline of the time-sharing system is modeled as 
a FCFS queue with feedback (for a discussion see e.g. [4], [7]). 

The main quantity of interest for us is the length of the time during which a ty
pe-/? job at the CPU locks the system. 

Conditioning on the state of the system when the interruption commences, we 
determine in Section 2 this interruption time distribution for the system which is 
formally described in Section 1. 

In Section 3 we prove ergodicity for the system for any parameter values — in 
contrast to the classical M/M/l/oo-feedback queue. At least for a thin arrival 
stream of type-/? jobs and large feedback probability this seems to be not intuitively 
obvious. 

In Section 4 we deal with the equilibrium distribution of the system and with the 
steady state interruption time distribution. 

The feedback model under consideration has found some interest in recent rese
arch; e.g. by van den Berg, Boxma [1], where a connection to processor sharing 
systems is pointed out, van den Berg, Boxma Groenendijk [2], Lam, Shankar [9], 
and the references cited there. For earlier work see [6] and the references cited there. 
For the interruption time problem in which we are interested the main reference is 
the work of Takacs [10]. The method used here is adapted from this paper to our 
problems. A similar evaluation of a different problem was done by Boxma [3]. 

1. THE MODEL 

Customers arrive one by one in a Poisson stream of intensity X > 0 at a single 
server with infinite waiting room. If they are allowed to enter the system they join 
the tail of the queue if there are any customers waiting or in service. If the server 
is free their service immediately commences. A customer being served leaves the 
system with probability q = 1 — p e (0, 1], with probability p he joins the tail 
of the queue again requesting for a further service. The service discipline is FCFS. 
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An arriving customer is of type a with probability r e (0, 1), with probability 1 — r 

he is of type /?. 
All interarrival times, service times, type selections and feedback decisions form 

an independent family. 

TYPE 3 
IN SYSTEM? 

No 
-K> 

ғcғs P 
єxp (џ) 

P 
q=1-p 

1 1 1 1 1 єxp (џ) 
P 

q=1-p 
єxp (џ) єxp (џ) 

Yes 
Fig. 2. 

The entrance control is as follows: if a type-/? customer is present at the server, 

all arrivals are lost. 

2. CONDITIONAL LOCKING TIME DISTRIBUTIONS 

We consider the following situation in the model of Section 1: 

A type-/? customer arrives and is admitted to the system because he finds only 

type-a customers present. At his arrival the arrival stream is interrupted due to the 

entrance control. (Because this type-/? customer has to update the data at the pre

processor, his exclusive write access prevents other customers from entering the 

system — which needs read operations on that data.) 

We want to compute the conditional locking time of the system given the number 

of type-a customers the type-/? customer finds at his arrival, i.e.: we have to compute 

the conditional response time of a type-/? customer given the queue length just 

before his arrival. 

During the type-/? customer's sojourn a suitable state description of the system is 

given by 

E = {(h, u) :h,ue N} 

where the state (h, u) indicates that the type-/? customer sees u other customers 
before and h other customers behind him, all of type-a. Using E as state space the 
time development of the system is described by a two-dimensional death process. 

We denote by 

f(h,u;s), s ^ O , 

the conditional Laplace-Stieltjes-transform (LST) of the type-/? customer's sojourn 

time in the system given the actual state of the system is (h, u) e E. 

The strong Markov property of the describing process yields the following set 

of first-entrance equations for the conditional LSTs: 

f(h, u; s) = —--- [i(u>0)Pf(h + 1, u -X;s) + i ( ,> 0 ) (l - p)f(K u - 1; s) + 
H + s 

+ k«=oyPf(0, h; s) + 1 ( 8 = 0 )(1 - p) 1] , (h, u)єE. (0 
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Introducing generating functions and writing q = 1 — p we obtain from (l) 

X Yxhff(h,u;s) џ + s - џp џqy 
X 

00 oo 

= X xhf(0, h; s) џp - X >"/(0, u; s) џp У- + -Ж- , 
x 1 — X Л = 0 u = 0 

Ixl < 1 , Ы < 1 . (2) 

For > e [0, 1] we set x : = npyj(n(i — q>) + s) e [0, 1] , and inserting the pairs 
(>, x), > e [0, 1) into (2) we obtain: 

00 

J>V(0,u;s)Ml - qy) + s] = 

I ЏPУ Y/(0, h;s)џp + џq & ^ + 5 , > є [0, 1). (3) 
7 w(1 - );) + 5 ft = 0 \w(l — q>) + s 

Introducing the transformation (for fixed s > 0) 

T: R -> R 

> -» - ^ 
w(l - qy) + s 

equation (3) can be written as 

00 

Yjy
uf(0,u;s) = 

« = o 

= I(T(y)Yf(OJr,s)
T^ + q-—i-rJ^, yS(0,l). (4) 

ft=0 > /? 1 - T(>) > 

Because we have T(0, 1) c (0, l) we obtain by induction from (4) for any k e M + : 

00 

Yjy
uf(0,u;s) = 

u = 0 

= Z (rW/(o> /-;.) £ M + - Z 7 - ^ - . - • (4') 
ft = o > p (=1 1 — T(>) > 

Applying equation (4) to Tk(y) instead of y we obtain 

i(r<(y))»/(o,M = 
« = 0 

- z«W**0 ̂  + * - ^ W}• 
/, = o T (>) p 1 - T(T (>)) T (>) 

Changing the notation (u -> /z) this can be inserted into the RHS of (4'), which by 

some direct manipulations yields (4') for k + 1. 
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Now for all y e [0, 1) is the attracting fixpoint 0: 

Tu(y) -> 0 , u -* oo , ye [0,1). 

This implies: 

lyuf(0,u;s) = ^- _Г r(y) , vє(0, 1) 
py i t i 1 - T'(y) 

It remains to find an explicit expression for the RHS of (5). 

(5) 

Let 

L(r,; H; x) = £ n? , \x\ < 1 , |a| < 1 , ß є 
fc=l 1 - x* 

denote the (special) Lambert series (cf. [8], p. 464). 

We have the following result: 

Theorem 1. Let 

f(y,s) = fyuf(0,u;s), s>0, y e [0, 1] , 
u = 0 

be the generating function of the sequence of conditional LST of the response time 
distribution for type-/? customers. Then 

'q(/nq + s) 
f(У,s) = Ł^ sy џp s Ł 0 , y є [0, 1] 

psy ' pq(\. — y) + s p + s, 

Proof. The function Tis a linear transformation; the representation matrix of Tis 

lip 0 

• pq p + s 

Let the /-fold iteration T of Thave the representing matrix power of T 

T' = 

It follows that 

r(y) 

Г џP o 1 
[_ — џq џ + sj 

iteration 

aty + bi 

1 - T!(jO (c, - at) y + (d, - bi) 

is a linear transformation with representation matrix 

[_CІ - UІ di - bi_ 
, iєЫ + 

It follows by induction: 

s,+ 1 = s ; . T = s 1 . r , i _ > i , 
and 

S, ij - a , ďj. - ljj [-// // + sj 
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Again by induction we can prove: 

(Wf 0 

-м X (ЏPY(Џ + SУ (џ + sfУ 
i , j ' ï O 

; + j = k - i 

k > 1 

and 

(џpf 0 

-{џpf - џq X 0~PУ (Џ + SУ (Џ + s) 
i . І Ž O 

i + j = k - l 

•]• k > 1 . 

Recalling that Sfc is the representation matrix of the linear transformation 

1 - ! * ( • ) ' 

we obtain for y e (0, 1) in the RHS of (5): 

Ы ą_ " Tfc(>) = £ | 
py fe= i 1 - Tfc(>) p k=i ( - (/ф)fc - w I W ( / t + s)') > + (ju + s)fc 

i + j = k - 1 

q џq + s s s> 

џp 
џ + s 

д + s 

D 
/J s> m=i \nq(l — >) + s) 

Remarks, a) From 

Un;Q;x) = fxk{Tir1r), 
fe = 1 m = 1 

m | k 

where "m | /c" means "m divides k", (cf. 8, p. 466), we obtain/(>, s) merely as power 
series in /ip/(/( + s). 

b) The Lambert series L(l; 1; x) has found considerable interest in number theory, 
see e.g. [8]. 

c) Theorem 1 can be interpreted as a proposition on a G/M/l/oo-FCFS queue 
with Bernoulli feedback in steady state which is perturbated by a break down of the 
arrival process due to a special customer's arrival. 

The number of customers the interrupting customer finds in this system is geo
metrically distributed with parameter y e (0, 1). Here y is the unique solution in (0, 1) 
of 

r-t [ 0 , x ) ч Є 
- í д ( l - p ) ( l - 7 ) A(át) , 

where A(') is the cumulative distribution function of the interarrival distribution, 
(which is assumed to be non-lattice). The ergodicity condition X < p.. q guarantees 
the existence and uniqueness of y, see [5], p. 653. The response time of the interrupting 
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•customer is given by its LST 

/(,) - i t s J L ^ t i + m); » .,JS-Y s a o 
\ P7 \ s J fiq{l -y) + s fi+ sj 

d) From the theorem we obtain 

/ (o,...) _ i-Jfi_Y y i f ) (E£]k « , 
A U + V *-« W U / (P + *)'+1 -(w)'+1 

which directly yields the moments of the conditional interruption times. 

3. THE ERGODICITY OF THE SYSTEM 

In the classical M/M/l/oo-FCFS system with feedback determining the equilibrium 
conditions poses no serious problems. Let us assume that only the type-a customers 
arrive at the system in a Poisson-/lr-stream. Then the queue length process is transient 
iff Xr > \iq, recurrent iff Xr ^ [iq, and ergodic iff Xr < fiq holds. 

Introducing the additional Poisson-A(l — r)-arrival stream of type-/? customers 
and incorporating the described concurrency control a new problem appears. 

Let us first consider the "transient" case: We assume Xr > fi, i.e.: for any feedback 
probability the type-a customers alone would create an infinite backlog of work 
over time. 

What would be the effect of introducing type-/? customers and the concurrency 
control protocol? 

For p = 0 the answer is obvious: 
For any arrival intensity of a- and /?-type customers the queue length process 

is ergodic. For, if a type-/? customer is admitted to the system, he clears the system 
completely. This observation makes the following suggestion reasonable: 

For Xr > /.i and Xr near to \i for sufficiently small feedback probability p > 0 
the queue length process of the system should be recurrent. 

The following theorem states that this intuitive reasoning is correct. 
We describe the system's development by a Markov process X = (Xt: t > 0) with 

state space 

S =H2
 KJH 

where the states have the following interpretation: 

Xt = u G N o u type-a customers are present , 

X, = (h, u) e N2 o one type-/? customer is present having u type-a custo
mers before and./i type-a customers behind him . 

We have the following 

Theorem 2. If r e (0, 1), then for any choice of the system's parameter 
X = (X(t): t ^ 0) is ergodic. 
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Proof. From the irreducibility of X it follows that the limits 

lim ?(X(t) = k)=: n(k) , keS, 
f-»oo 

exist and are independent of the initial conditions. We have to show that 

n = (n(k): keS) 

is a probability measure. 

We assume X(0) = 0. Let 

o < C i < C 2 < . . . 

be the sequence of jump times of X, and 

Y=(X(Q=:Y(n):n = 1,2....) 

the embedded jump chain of X. We shall show that Yis positive recurrent. 
Then, if ft == (fc(k): k e S) is the limiting distribution of Y, 

«(fc) 

solves the steady-state equations of X, where 

q(k) = - lim - (P(Xt + h = k | Xt = k) - l) , keS . 
A10 /i 

Now we have only finitely many different q(k), k e S, which implies that 

'n(k) 
keS 

# ) 
may be normalized to obtain n. The regularity of X guarantees positive recurrence. 

In the following we assume: p > 0, and right continuous paths with left limits 
for X. Let 

0 < o^ < a2 < ... 

be the sequence of arrival times of type-/i customers which are admitted to the 
system, and 

0 < Tj_ < T2 < . . . 

be the sequence of departure times of type-/? customers from the system after being 
served there. The ((„), (<T;), (T_) are Markov times for X. 

Let Nt denote the number of service times the /th type-/? customer who is admitted 
to the system requests for. N,- is geometrically distributed on {1, 2, . . . } . For k e S let 

T(IA — \ u if k = u 
L\k) = \ h + u + i if k = (h, u) 

denote the queue length (number in system) of the system. We shall prove in a first 
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step that the sequence of expectations 

E W * & ) ) ] , n = l, 

is bounded by a constant C > 0. 

We have for / > 1: 

E[L(X(r,))] = 
00 00 

- I E E[L(X(T,)) | L(X(ct)) - j , N. - /] P(N; - /, L(X(er,)) = ;) . 
y = i ( = i 

Now, given Nt = / and L(x(<r;)) = j , the type-a customers staying in the system 

when the type-/? customers departs are selected by j - 1 independent Bernoulli 

experiments with success parameter pl, so the number of type-a customers still 

in the system when the type-/} customer departs has a binomial distribution with 

expectation (j — 1) p\ which yields: 

00 00 

E[L(X(T,))] = n [(j - 1 ) A p1-1* P « * M - /)) -
; - n = i 

-t(J- -) W*(*t)) = J)7^- - (E«*(^))] - !)rf-• 
J=l 1 + p 1 + p 

From 

E[L(X(aO)] = - 1 - - Ar + 1 , 
2(1 - r) 

E[L(X(at))] = E[L(X(T,._ J ) ] + r/(l - r) + 1, « = 2 , 

we obtain 

E[L(X(т,))] á 
r p 

1 - r 1 + p 

E[L(X(тŕ + 1))] = E[L(X(тi))] + r i > 1 
1 - rj 1 + p 

which finally yields: 

Substituting this bound, we obtain 

E W ^ 0 ) ] S - - 2 - + - - - + l-T

t-*-
1 — r 1 — r 1 — r 

Now for any r„ e [T,-, ori+ J we have 

E[L(X(C„))] = E[L(X(T;)) + r/(l - r) + 1] , ncN, 
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which yields 

C:=i±^ 
1 - r 

as a uniform bound for the queue length expectations. This will be used to show 
that the sequence (L(X(C„)): n > l) is a tight sequence of probability measures. 
This implies weak convergence to a probability measure on S, which is just ft. 

For tightness we shall show that for each e > 0 there is a finite subset As £ 5,. 
such that 

P(X(C„) e A8) > 1 - e , n 6 - { l , 2 , . . . } , 

holds. For e > 0 let M(s) := min (me N: Cjm ^ s), and 

A£ := {keS:L(k) < Af(e)} . 

Then from 
00 

C ^ E[L(X(C„))] = £ 7 P(L(X(C„)) = j) = M(e) P(L(X(C„)) ^ M(e)) 
J=M(£) 

we obtain for all n > 1: 

e = iHk = p W x ( c * = M(s)) = p(z(a e A3 • 
M(s) 

This completes the proof. • 
Remark. The methods used in the proof can be used to construct an increasing 

sequence of lower bounds for the 
E[L(X(C„))], n = 1 . 

4. STEADY STATE DISTRIBUTIONS 

We consider the model of Sections 1 and 3 and want to compute the steady state 
interruption time distribution as well as the equilibrium distribution for X. 

The first is obtained by conditioning via the results of Section 2 if the second is 
known: 

From the Poisson assumption it follows that any arriving customer sees the other 
customers distributed according to the steady state distribution, irrespective of whether 
he is lost or allowed to joint the queue. 

Conditioning on the event "a type-/i customer arrives and joins the queue" we 
obtain our result on the distribution of the a-type customers when an interruption 
time commences. 

We have the following 

Theorem 3. In the system of Section 1 and 3 the equilibrium distribution n = 
= (n(k): keS) is given by its generating function in formulas ( l l ) , (12) below. 
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Proof. The equilibrium flow equations which in our case determine 7r uniquely 

if it exists are 

(Al) TT(0) X = TC(0, 0) piq + 7t(l) m 

(A2) 7r(u) (X + j.iq) = n(u — 1) Xr + n(u + 1) piq + n(u, 0) \iq , u ^ 1 

(Bl) TT(0, 0) [iq = TC(0) X(l - r) + n(0, 1) \iq 

(B2) 7r(0, u) \i = n(u) X(l — r) + n(0, u + 1) jiq + n(u, 0) fip , M ^ 1 

(B3) n(h, u) pi = n(h — 1, u + 1) pip + n(h, u + 1) \iq , h = 1 , M ^ O 

Introducing 
00 CO 00 

H(y) = I / 7t(u), G(x, y) = S I A " «(*, «), |x| = 1, M = 1, 
u=0 h=0u=0 

we obtain from (A) 

H(y) [X(l - ry) + piq(l - ljyj] = G(y, 0) fiq + n(0) m(l - Xjy) , 

\y\ = - . 

and from (B) 

G(x, y) pi[l - (px + q)\y] = 

= -G(x, 0) fi(px + q)\y + G(y, 0) fip + H(y) X(l - r) , 

|x| = 1, \y\ = 1 . 

Inserting (6) into (7) yields 

G(x, y) [1 - (px + q)ly] = 

(6) 

0) 

G(x,0)(px + q)ly + G(y,0) P + 
qX(l - r) 

+ 7Г(0) 
qX(l - r) (1 - 1/y) 

X(l - ry) + m(\ - 1/y) 

Introducing the transformation 

S: U -* U 

y -> py + q 

we obtain from (8): 

X(l-ry) + M(l -l/j;)_ 

x\ < 1 , \y\ < 1 . 

+ 

(8) 

G(x, 0) = G(S(x), 0) I p + 

+ 4°) -

qX(l - r) 

X(l - r5(x)) + џq (1 

qЯ(l-r)(l - 1/S(x)) 

i/адj + 

X < 1 . 
X(l - r S(x)) + nq(l - l/S(x)) 

Iterating (9) similarly to the iteration of (4) in the proof of Theorem 1 we obtain with 

qX(l - r) 

W 

W(y) = p + 
X(l - ry) + џq(í - ìjy) 
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and 

v(y)_ g A ( l - r ) ( l - l / j Q 

A(l - ry) + m(l - 1/y) ' 
oc i — 1 °o 

G(x, o) = 40) [ £ V(s^)) n ^ ' M M + <KL °) [ n ^(sfcw)], 
i = l fc=l fc = 1 

\x\ = l , • (10) 

where we used, that 1 is the only fixed point of S in R which is attracting for [ - 1 , 1]. 
Denoting by r\ the smaller root of Xry2 — (X + fiq) y + fiq = 0 which is the only 
one in [—1, 1], we obtain from (6) 

G(r,,0) = it(0)(rj-1 - 1) 

and, using this, from (10) 

G(l, 0) - 7i(0) R(rj) , 

where 
00 i — 1 00 

R(n) - Or1 - i) [E v(sWn w(sk(n))] [U ^ ' to ) ]" 1 • 
1 = 1 fc=1 fc=1 

Inserting this again into (10) we obtain 
00 i— 1 co 

G(x, 0) = „(0) {[ E V(Sl(x)) n W(S\x))] + [ n W(S\x))] R(«)} , \x\ = 1. 
i = 1 fc=l fc=l 

From (8) it follows that 

G(x,y) = n(0)(i - SW/y)"1 . 

co i — 1 00 

. {u-» ([ z v(s'(y))U wfsKM + [ n Hsl(y))l % ) ) -
i = i fc=i fc=i 

00 i — 1 00 

- S(x)/y([E K(S'(x))n W(S"(x))] + [ f l W(S'(*))] «(»))} • 
i = l fc=l fc=l 

H> M < 1. (11) 
and from (6) we have 

H(y) = тr(O) m 
X(\-ry) + m(\ - y-1) 

00 i — 1 00 

• «1 - lly) + lI,y(S'(y))U W(S*(y))] + [U W(S"(ym R(„)} , 
1 = 1 fc = 1 fc = 1 

\y\ < 1 . (12) 

7r(0) finally is obtained by normalization. • 

(Received December 8, 1989.) 
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