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ON THE SYNTACTICO-SEMANTICAL COMPLETENESS 
OF FIRST-ORDER FUZZY LOGIC 

Part I. Syntax and Semantics 

VILEM NOVÁK 

This is the first part of the extensive paper which presents the syntax and semantics of first-
order fuzzy logic. We introduce the structure of truth values and present some main properties 
of its. Then the language of first-order fuzzy logic and its syntax and semantics are defined, and 
proved many theorems demonstrating their good properties. In Sections 6.1 and 6.2, the concept 
of a fuzzy theory is defined and the main properties of fuzzy theories are presented including 
the problem of their consistency and completeness. 

1. INTRODUCTION 

This is the first part of the extensive paper which present first-order fuzzy logic. 
Many theorems describing the properties of its syntax and semantics are proved and 
the connection between them is demonstrated. The most important result is the 
completeness theorem which is based on deep algebraic properties of the set of 
formulae. Some other important theorems, especially closure and deduction ones 
are also proved. 

The paper stems from the results of J. Pavelka [9]. From the point of the theory 
of continuous models [2], fuzzy logic is a special case of continuous logic. 

In this part of the paper, we introduce all the necessary concepts and notation 
and prove various lemmas and theorems concerning the behaviour of fuzzy logic. 
The main results are contained in the second part [8]. 

Recall that a fuzzy set A c u in the universe U is a function A: U -*• L where L 
is the lattice of membership grades. The grade of membership of xeU in A is 
denoted by Ax, Ax e L. Fuzzy set theory is explained in detail in [6]. 
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2. TRUTH VALUES, OPERATIONS AND GENERALISED FUNCTIONS 

We assume that truth values form a complete, infinitely distributive, residuated 
lattice 

se = <L, v , A , ® , - > , 1 , 0 > 

where 0,1 are the smallest and the greatest elements respectively, and ®, —> are binary 
operations of (bold) multiplication and residuation respectively with the following 
properties: 

(a) <L, ®, 1> is a commutative monoid. 
(b) The operation ® is isotone in both variables and -> is antitone in the first 

variable and isotone in the second one. 
(c) The adjunction property 

a ® b — c iff a — b -> c 

holds for every a,b,c e L. 

We moreover assume that L is either the interval <0,1> or a finite chain L = 
= {0 = a0 = ... g; am = 1} and put 

a ® b = 0 v (a + b - 1) (1) 

a -» b = 1 A (1 - a + b) (2) 

if L = <0, 1> and 

ak ® ap = tfmax(o,fc+p-m) (3) 

ak ~~* ap ** amm(m,m-k + p) ( V 

if Lis a finite chain where 0 ^ k, p ^ m. The reason for using this kind of structure 
have been extensively discussed in [5, 6, 7,9]. Among them, the following reasons 
are most important. Let L= <0, 1>. Then the following holds: 

— if the operation -> is not continuous in both variables then it is not possible 
to construct fuzzy logic so that the completeness theorem holds. This is not also 
possible in the case of L being a countably infinite chain. 

— every residuated lattice with the continuous operation -> is isomorphic with 
the above defined one. 

The operations (3) and (4) represent a finite counterpart to the respective operations 
(1) and (2). In [9] it is proved that in a finite L, the completeness theorem holds for 
any adjoint couple of operations ®, ->. For the sake of simplicity, we will consider 
only (3) and (4) in the sequel. 

We will use the following symbols: 

a <—• b : — (a —> b) A (b -> a) 

~1 a := a —> 0 

(:= stands for "is defined as"). 
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Lemma 1. Let a, b, c, e Land K £ L. Then 

(a) a ® V & = V(a® b) 
beK beK 

(b) a v /3 = (a -> b) -> /3 
(c) l ( l a ) = a 
(d) A(a ®b) = /\a® b 

aeK aeK 

(e) a A /3 = " l ( l f l v ~l!3) 

(f) a->/3 = n(fl ® nfc) 
( g ) a - > / 3 = " l / 3 - > ~ l a . 
The proof follows from the definition of the residuated lattice and, in some cases, 

also from the assumption that L is a finite chain or the interval <0,1>. 

Many other properties of the operations in residuated lattices have been proved 
in [5, 6, 9]. 

It is possible to enrich the lattice S£ by additional w-ary operations o: L" -> L 
and also by generalised operations Q: P(L) -> L (cf. [6, 7, 9]). We leave this problem 
to another paper. We will consider only the generalised operations V> A since S£ is, 
by the assumption, complete and infinitely distributive lattice. 

3. LANGUAGE, TERMS AND FORMULAE 

In this paper, we consider only the basic language of first-order fuzzy logic which 
consists of: 

(i) Variables x, y, ... 
(ii) Constants c, d, r , . . . 
(iii) Symbols for truth values {a; a e L}. 
(iv) H-ary functional symbols/, g,... 
(v) n-ary predicate symbols p, q,... 
(vi) A binary connective =>. 
(vii) A symbol for a general quantifier V. 

(viii) Auxiliary symbols. 

Terms are defined in the same way as in classical logic. 

Formulae 

(a) A symbol a for a truth value a e Lis a (atomic) formula. 
(b) If tlt ...,tn are terms and p an n-ary predicate symbol then p(tu ..., t„) is 

a (atomic) formula. 
(c) If A and B are formulae then A => B and (Vx) A are formulae. 
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We introduce the following abbreviations of formulae: 

~l A : = A => 0 (negation) 

AvB:=(A=>B)=>B (disjunction) 

A A B : = "~i ((A => B) => B) (conjunction) 

A& B:= "~|(A=> ~1B) (bold conjunction) 

A o B : = (A => B) A (B => A) (equivalence) 

{3x) A : = ~l (Vx) "1A (existential quantifier) 

Afe : = A & A & . . . & A (power) 
k — times 

A set of all the terms of a language J is denoted by Mj and a set of all the formulae 

byE , . 
Analogously as in classical logic we introduce the notions of free and bound 

variables and a substitutible term. If t is a term and A a formula then Ax\i\ is a for
mula resulting from A when substituting the term t instead of each free occurrence 
of xin A. 

Two formulae A, B are congruent, 
A~ B 

if there is a formula C and bound variables xu ..., xn, yt,..., yn, z l 9 ..., z„ such that 
A or B is a result of replacement of zu ..., zn in C by the variables xx,..., xn or 
j l 9 . . . , ^ respectively. 

Obviously, ~ is an equivalence and it is a congruence with respect to => (and, 
thence, to v , A , & as well). We define 

AM*M|:=|(Vx)A(x)| 
teMj 

where Mj is a set of all the terms without variables and | • | denotes an equivalence 
class with respect to ~ . 

We obtain the algebra of formulae 

&j = <FJ\„, v , A , & , =>, { a ; a e L } , V , A > 

which is of the same type as JS? (enriched by V, A a n d {a; ae L] being considered 
as a set of miliary operations on L). 

A function 

C: FJI -> L 

is called a Q-homomorphism if it has the following properties: 

Cfa| = a , a e L, (5) 

C|4 => B| = C|A| -• C|B| (6) 

provided that A and B are closed formulae, 

C( A \Ax[t]\ = C|(Vx) A| = A C|A ,[t] | (7) 
teMj teMj 

C\A{xx, ...,xn)\ = A C\AXl ...Xn[tx, ..., f j | . (8) 
t^.^.tneMj 
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In general, by Q-homomorphism we call any homomorphism from one algebra 
with generalised operations to another one which preserves also generalised opera
tions (cf. [10]). 

4. SEMANTICS 

4.1 Structures and truth valuation 

A structure for the basic language J of first-order fuzzy logic is 

9 = <D, pD, ...;fD, ...;u, v, ...> 

where D is a set, pD £ D",... are n-ary relations adjoined to each n-ary predicate 
symbol p, ...,fD are n-ary (ordinary) functions defined on D and adjoined to each 
n-ary functional symbol/, and u,v,... e D are elements which are assigned to each 
constant u, v of the language J. 

We will assume that J contains one constant d e J associated with each element 
d G D (a name of d). Let u e J be a constant. Then its interpretation is an element 
9(u) e D which was assigned to u in the structure 9. Let fD be a function assigned 
t o / a n d t±,..., t„ be terms without variables. Then 

@f(tx,...,tn))=fD(t1,...,tn). 

We have introduced ordinary functions since fuzzy functions, being defined in fuzzy 
set theory (cf. [6]), can be understood to be special fuzzy relations. Introducing them 
instead of the ordinary functions would lead to greater complexity of the language 
and the definition of interpretation. Note that functional symbols are introduced 
only for the .sake of completeness and they can be dropped away since they can be 
replaced by special predicates. 

Truth valuation of formulae 

Let 9 be a structure for the basic language J. A truth valuation of formulae 
in 9 is a function 

9:Fj-*L 

which assigns a truth value to every formula C e Fj as follows. 

(i) 9(a) = a , a e L, 

(ii) 9(p(tx, ..., tn)) = pD(@(h), ..., 9(tn)) 
where 9(tt) e D, i = 1, . . . , n is an interpretation of the term tt e J and tt is a term 
without variables. 

(iii) 9(A => B) = 9(A) ->• 9(B) 

provided that A and B are closed formulae. 
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(iv) 9((Vx)A(x)) = A9(Ax[d]) 
deD 

where d is a name of the element deD. 
(v) 9(A(xu...,xn))= A ^(-4xt...3en[d1,...,dJ) 

dteD 
i = l,...,n 

From the definition of the truth valuation and Lemma 1 we immediately obtain 
9(A A B) = 9(A) A 9(B) 
9(A v B) = 9(A) v 9(B) 
9(A & B) = 9(A) (g) 9(B) 
9(Ak) = (@(A)f 
9(lA) = ~]9(A) = 9(A) -> 0 
9(A o B) = 9(A) <-> 9(B) 
9((3x)A(x)) = y9(Ax[£\). 

deD 

Lemma 2. Let A, B e Fj. If A ~ B then 

9(A) = 9(B) 

holds in any structure 9 for the language J. 
Proof. If A contains no bound variables then B is A and the equality trivially 

holds true. Let A : = (Vx) C(x) and B : = (Vv) Cx[y]. Then 

9(A) = 9((Vx) C(x)) = A -?(Cx[d]) = A ®(Cx[y\y [d]) = 9(B) . Q 

dsD deD 

Lemma 3. Let I? be a structure for J and put 

T|A| = 9(A) , 4 e F / ( 

Then Tis a Q-homorphism 

T'.Pj-* S£ . 
Proof. It follows from Lemma 2 that the value of Tdoes not depend on the choice 

of a representative from |A|. Hence 
T|A| = 9(a) = a 

T(\A\ ==> IBI) = T(|A => B|) = 9(A => B) = 9(A) -+ 9(B) = T\A\ -+ T|B| 

T A \Ajt]\ = T\(Vx) A\ = ®((Vx) A) = A H^M) = A T\Ax[t]\ 
teMj deD teMj 

since Ms contains all the names for all the elements from D. • 

Canonical structure for the basic language of fuzzy logic 
Let 

T: &j -> se 

be a Q-homomorphism. Put 
DQ = Mj, 
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and 
90(t) = t, teMj 

if t is a constant. The functions fDo are defined as follows. Let/be an n-ary functional 
symbol and tx, ...,t„eMj terms. Then we put 

fDo(h,->;tn)=f(h,...,tn). 

Relations pDo are defined by 

PD0(h>>>;t„) = T\p(tu...,tn)\ 

for all the terms tu ..., t„ e Mj. At the same time we suppose J to contain at least 
two different constants. This can be done, for example, by adding names of all 
the terms to J. The structure 

D0 = iD0,pDo, ...,fDo, ...,u,...} 

is called the canonical structure for J. 

4.2 The operation of semantic consequence 

The operation of semantic consequence can be introduced on the basis of Lemmas 2 
and 3. Let X c Fj be a fuzzy set of formulae. Then the fuzzy set of semantic con
sequences of the fuzzy set X is 

(CsemX) A = A M A ) ; 9 is a structure for J and 

(MBeFj)(X(B) = ®(B))} (9) 

(X(B) e Lis the grade of membership of BmX). 

Lemma 4. Csem is a closure operation on llj, i.e. it fulfils the conditions 
(a) X £ csemX 
(b) X £ y implies CsemX £ Csemy 
(c) Csem(CsemX) = CsemX. 
Proof, (a) and (b) are obvious, (c) follows from the fact that (CemX) A ^ 9(A) 

for every structure 9 from the right hand side of (9). • 

A formula A e Fj is an a-tautology if 

a = (Csem 0) A 

and we write j= aA. We write |= A if a = 1 and say that A is a tautology. 

Lemma 5. 

(a) j=A. => B iff 9(A) S ®(B) 
(b) \=AoB iff 0(A) = iS>(B) 

holds in every structure 9. 
Proof. Obvious. • 
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4.3 Tautologies of first-order fuzzy logic 

In this section we present the most important schemes of tautologies which later 
will take the role of logical axioms. 

\=(a=> b)o(a=> b) (TI) 

where (a => b) denotes the atomic formula for the truth value a -> b when a and b 
are given. 

h=A=>A (T2) 

|=A=>1 (T3) 

|= ((A&B)=>C)o(A=>(B=> C)) (T4) 

\=(A&B)o(B&A) (T5) 

|=(A => B) => ((B => C) => (A => C)) (T6) 

|=(A=>B) v (B=>A) (T7) 

|=(A v B)" => (An v B") , n > 0 (T8) 

\=(Vx)A=>Ax[q (T9) 

for any term t. 

1= (Vx) (A => B) o (A => (Vx) B) (T10) 

provided that x is not free in A. 

^(ly)(Ax[y-]=>(Vx)AY (Til) 

If L is a finite chain then 

k=(A=>ak)v(ak+l=>A) (TK) 

for k < m. 
I f L = <0, l>then 

|= ((a => B)" => b) => ((a' => B)" => b') (Til) 

for b < b' < 1, 0 < a' < a , n, a + b < n, a' + b' 

|= ((A => a)n =>b)=> ((A => a'f => b') (TI2) 

for b < b' < 1, a < a', n, a' — b' S. na — b . 
All the tautologies can be easily proved using Lemma 5, the definition of a truth 

valuation and the properties of S£. We will demonstrate e.g. (T9): Due to Lemma 5(a), 
it must hold 

®(Vx)A)<.®Ax[i\) 

in every structure 2i. By the definition and the properties of infimum 

A 9{Ax[i\) = ®(AX[A\) 
deD 
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holds for every d e D. If t is a term without variables then there in d e J such that 
$>(t) = d. Otherwise the inequality holds trivially by the definition of <%>. 

5. DEDUCTION 

5.1 Rules of inference 

An n-ary rule of inference r is a couple 
r — / . .syn j .sem\ 

where rsyn is its syntactic part which is a partial n-ary operation on E, and rsem 

is a semantic part which is an n-ary operation on L preserving arbitrary non-empty 
joints in each argument (semicontinuity). 

A fuzzy set V <= Ej is closed with respect to r if 

x(rsyn(A1?..., An)) = rsem(X(A0, ...,X(An)) 

holds for all At, .... An e Fj for which rsyn is defined. 
A rule of inference r is sound if 

T|rsyn(A.,..., An)\ = r^rf^l,..., T|A„[) (10) 

holds for every Ax, ...,Ane Dom rsyn and any Q-homomorphism 

T: &j -> j£f . 

Lemmas 2 and 3 assure us that (10) holds also for every structure B. 
The rules of inference are usually written in the form 

Ax,..., An ( ai,..., an r. 
rsyn(A1,...,A„)Vrsem(a1,...,a„). 

where at e Lare truth valuations of the respective formulae At i = 1,..., n. 

Lemma 6. The following rules of inference are sound: 
(a) Modus ponens 

A, A => B / a, b 

B \a® b 
(b) a-lifting rule 

B 
a => B \a 

(c) Generalisation 
A /a 

(Vx) A \a 

Proof. The semicontinuity and soundness of the rules (a), (b) w a s proved in [9] 
Semicontinuity of (c) is obvious. Soundness: 

»W«)I = T\(Vx) 1̂ = A T\Alt\\ = r|X(x)| - iS*(-1.4D Q Ч ^ Ш | = ЧА1ХЛ ^ , 5 е ч , / 

(еМ„ 
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5.2 The operation of syntactic consequence 

In fuzzy logic we deal with fuzzy sets of logical and special axioms. Let AL £ Fj 
be a fuzzy set of logical axioms and R a set of sound rules of inference. Then the 
couple 

<AL, R> 

is a syntax of fuzzy logic. 

Let X £ Fj be a fuzzy set of formulae. Then 

(Csynx) A = A{U(A) ; U %Fj, U is closed with respect to all 

reR and AL,!£[/) 

defines a fuzzy set of syntactic consequences of the fuzzy set X. 

A proof of a formula A from the fuzzy set X is a sequence 

w := A0[«o;J\)] > Ai\pxi -°J»•••>4.K; -°»] 

such that A„ is A and Pt i <, n is LA or S A if A t is a logical or a special axiom re
spectively, or Pt is rt if A,- is a formula 

rs*n(Ah,...,Ain), H,...,i„<i 

and r£ is an n-ary sound rule of inference. The 

0* = Valx (w(i)) 

is the t>c7/we of the proof 
w(0 : = ^o[«o; A>]> • • •> ^i[a.; -Pj 

defined as follows: 
AL(At) if Pf = LA (i.e. At is a logical axiom) 

Valx(w(i)) = < X(^4|) if Pi = SA (i.e. At is a special axiom) 
(rrra(Valx (w(il)),..., Valx (w(in))) if At = rsyn(AlV ..., 4 J 

Note that the above definition of a proof is a generalisation of the classical one. 
If we confine ourselves to (0,1} then Valx (w(i)) = 1 expresses the existence of a proof 
w(i) of the formula At in the classical sense. 

Theorem 1. 

(CsyaX) A = V{Valx (w); w is a proof of A from X S Fs} 

Pro of. It is a verbatim repetition of the proof of Theorem 16 from [9]-I. • 

It follows from this theorem that finding a proof, say w, of a formula A ensures 
only, that the degree in which it is a theorem is greater than or equal to Valx (w). 
If Valx (w) 4= 1 then it is difficult to assure ourselves that we cannot find a proof 
with a greater value. 
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The syntax is sound if 

ALSCsem0 

and each rule r e R is sound. 
The syntax of first-order fuzzy logic consists of: 
(a) The fuzzy set AL of logical axioms defined as follows: 

ALa = a , a e L, 

AL(a => b) = a -> b, a,beL, 

AL(A) = 1 if A is any of the formulae of the form (Tl) - (Til) and either 
(Til), (TI2) if L = <0, 1> or (TK) if Lis a finite chain, 

AL(A) = 0 otherwise . 

In the case when A := Bo C we understand that both AL(B =>C) = 1 as well as 
AL(C =>B) = 1. 

(b) The set of rules of inference is 

R = {rM?> ra> {̂ Ra; aeL}} . 

6. THEORIES IN FIRST-ORDER FUZZY LOGIC 

6.1 Properties of fuzzy theories 

A theory Tin the language J of first-order fuzzy logic (a fuzzy theory) is a triple 

T=<AL,AS,R> 

where <AL, R> is the above defined syntax of fuzzy logic and As <= E, is a fuzzy set 
of special axioms. By J(T) we denote the language of fuzzy theory. Fuzzy predicate 
calculus is the fuzzy theory with As = 0. 

Let 2 be a structure for J(T ) . Then 9 is a model of the theory T, 2 \= T, if 

AS(A) = 2(A) 

holds for every A EJ(r). It follows from the definition of logical axioms that 

AL(A) = 2(A) 

holds in any model 2 \= T for every formula A e FHT). Then 

(C s e mA s)A = A{2(A); 2\=T). 

If (CsttfiAs) A = a then the formula A is true in the degree a in the theory T and 

we write 
T\=aA. 

If (CsynAs) A = a then A is a theorem in the degree a of the theory Tand we write 

T\-aA. 

We write Th-A, T|= A instead of T Hi A, T\=XA respectively and say that A is 

a theorem (true) of the theory T. 
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It follows from the definition that 

\-a a and \=a a 

holds in fuzzy predicate calculus for every a e L. If w is a proof in T then we write 
Val r (w) for its value. If T is predicate calculus then we omit the subscript T. 

Theorem 2. The following schemes formulae are theorems of fuzzy predicate 

calculus: 

H(B => C) => ((A => B) => (A => C)) (Dl 

I- (A A B) _> A (D2 

| - (A A B)o(B A A) (D3 

h-(A v B)o(B v A) (D4 

H- (C => A) => ((C => B) => (C => (A A B))) (D5 

! - A = > ( A v B ) (D6 

H- (A => c ) => ((B => C) => ((A v B) => C)) (D7 

h - A = > ( B o ( A & B ) ) (D8 

!- ((A => B) => C) => (A => (B => C)) (D9 

\--]1AOA (D10 

h - n ( A = > B ) o ( A & n B ) (Di i 

\-(A A B)o i ( n ^ v "IB) (D12 

! - ( A = > B ) o n ( A & n B ) (D13 

! - ( A = > B ) o ( n B = > 1A) (D14 

1-(A&B )=>A (D15 

h -Ax[ t ]=>(3x)A (D16 

h- (Vx) Aon (3x) ~1 A (D17 

h- (Vx) (A => B) => ((Vx) A => (Vx) B) (D18 

provided that x is not free in B 

I- ((3x) A => B) o (Vx) (A => B) (D20 

provided that x is not free in B 

h - ( A & - | A ) = > B (D21 

f_ A => (B => C) o (B => (A => C)) (D22 

^ ^ ^ ( B ^ ^ ) (D23 

i- (Am => (B => C)) => ((A" => B) => (Am+n =>C)), m,n>0. (D24 

Proof. We use logical axioms and the above defined rules of inference. It is 
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advantageous to prove these theorems in a certain order and to use previously proved 
ones as intermediate results for proofs of the next ones. We will demonstrate e.g. 
(D2). Let us assume we have already proved (Dl), (D10), (D14) and (D23). Note 
that (D2) is a short for a formula 

~]((A=>B)=>-]A)=>A. (11) 

Let us denote C : = (A => B) => ~]A. Let w± be a proof of ~]A => C (formula (D23)), 
w2 a proof of ~11A => A, w3 a proof of ~]A=> C) =>(~]C => ~]~]A) formula ((D14)) 
and w4 a proof of (~| ~]A=> A) =>((~]C => ~] ~]A) => ( n C => A)) (formula (Dl)) 
where 

Val (wt) = Val (w2) = Val (w3) = Val (w4) = 1. 
Then 

w := W l [ l ] , w3[ l] , -]C=>~] ~]A[1; rM P] , w2[ l] , w4[ l] , 

(~]C => -]~]A) => (-\C => A)[l; ru?], ~]C => A[l; rMP] 

is a proof of the formula (11). • 

Note that to each of all the above formulae there exists a proof with the value equal 
to 1. 

Lemma 7. 

T\-AoB iff T\-A=>B and Tt-B=>B. 

Proof. Let T\~A o B and let wt be a proof of A o B, Val r (wt) = a and w2 

a proof of a theorem (A o B) => (A => B) (D2), Val (w2) = 1. Then 

w := wt[a~] , w2[l] , A => B[a; rMP] 

is a proof of A => B, Val r (w) = a. But V{Valr (w); w j = 1 due to the assumption 
which gives T\-A=>B. Analogously, using theorem (D3) we obtain T\-B => A. 

Conversely, let wx be a proof of A => B, Val r (w._) = a and w2 a proof of B => A. 
ValT (w2) = b and w3 a proof of 

(1 => (A => B)) => ((1 =>(B=> A)) =>(l=>(Ao B))) 

(D5), Val (w3) = 1. Then 

w := w^fl], 2 => (A => B) [1 -> a = a; r R 1 ] , w2[b], 1 => (B => A) [b; r R 1 ] , 

w 3[ l ] , (1 => (B => A)) =>(l=>(Ao B)) [a; rM P] , 1 => (A o B) 

[a ® b; rM P] , 1[1; LA], A o B[l ® a ® b; rMP] 

is a proof of A o B. But V{Valr (w); wu w2) = 1 by the assumption which gives 
Tv-AoB. Q 

Lemma 8. Let T, T be theories and A, A' formulae. If for any a, be L 

TV-a A and T \-b A' implies a S. b 

59 



and at the same time for any c,deL 

T'\-CA' and T\-dA implies c = d 
then 

T\-aA iff T'\-aA'. 

Proof. Obvious. Q 

Lemma 9. 

(a) CsynAs £ CsemAs . 
(b) If T!-a A, 2 |= T and 2(A) = b then a = b . 

Proof. Due to Lemmas 2 and 3 2 is a Q-homomorphism i^: Fj{T) -*• L. Since 
every Q-homomorphism is closed with respect to the rules of inference we obtain (a) 
from the definition of Csyn and Csem. (b) is a consequence of (a). Q 

Theorem 3 (validity theorem). 

If T\-aA, T\=bA then a = b. 

Proof. This is a corollary of Lemma 9. Q 

This theorem demonstrates that the balance between syntax and semantics is 
sound. Saying freely, if we derive formally some result then its semantic inter
pretation is true at least in the same degree as the value of its formal derivation. 

Lemma 10. 

(a) Let T \-a A => B and Th-B<=> B'. Then T\-a A => B'. 

(b) LetT\-AoA'. Then 

T\-(A=>B)o(A'=>B). 

Proof, (a) Let w1 be a proof of A => B, Val r (wt) = a', w2 a proof of B<=> B', 
Val r (w2) = b' and w3 a proof of (B o B') => (B => B') (D2), Val (w3) = 1. Then 

w := Wl[a'l w2[b'l w3[ l] , B => B'[b'; rMP], 

(A => B) => ((B => B') =>(A=> B')) [1; LAT6] , 

(B => B') => (A => B') [a'; rMP] , A => B'[a' ® b'; rMP] 

is a proof of A => B'. Due to the assumption we obtain 

V{ValT (w); wl5 w2] = a ®1 = a . 

thence T\-cA=>B',a _i c. Analogously, from T\-B' => B we obtain Ti— d A => B, 
c —^ d and from the assumption a :_ c = d = a. 

(b) Let wt be a proof of A <=> A', Valr(w1) = a' and w2 a proof of (A <=> A') => 
=> (A => A')5 Val (w2) = 1. Then we can write down a proof 

w := Wl[a'l w2[ l ] , A => A'[a'; rMP], (A => A') => ((A.' => B) => 

• => (A => B)) [1; LAT6], (A' =>B)=>(A=>B) [a'; rMP] 
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and from the assumption 

T1-(A'=>B)=>(A=>B). 

Analogously we obtain 

T!-(A'=>B)=>(A=>B) 

which follows 

T!-(A'=>B)o(A=>B) 

by Lemma 7. • 

A theory Tis contradictory if there is a formula A and proofs wt and w2 of A and 
~\A, respectively such that 

ValT (wt) ® ValT (w2) > 0 . 

In the opposite case it is consistent. Obviously, if T is contradictory then T\-aA, 
T\-b ~]A and a ® b > 0. 

Lemma 11. Let T be a consistent theory. 

(a) If T \-a A and T\-bB then 

T h-c A => B implies c <, a -> b . 

(b) If T |-a (Vx) A then a<> /\{b;T[-b Ax[t\, teMj). 

Proof, (a) The case a <, b is trivial. Let b < a and c > a -> b and wt be a proof 
of A, ValT (wt) = a' and w2 a proof of A => B, ValT (w2) = c'. Then 

w := wjffl'], w2[c'], B[a' ® c', rMP] 

is a proof of B and 

V{ValT (w); wl5 w2} = a ® c 
whence 

TK.B, a® c <,d . 

But a -> /3 = V{e> a ® e =̂  b] < c and so b<a®c^Ld — a contradiction. 

(b) Let a > c = A{&; T h j i ^ . e M j J . Then there is b' e L and a term 
*' e Mj such that T\-b Ax[t'~\ and b' > a. Let wt be a proofof(Vx) A, ValT (wj) = a'. 
We write down a proof 

w := w^a'], (Vx) A => „,[*'] [1; LAT9], Ax[f] [a'; rMP] 

whence V{ValT (w); wx} = a, i.e. Tl— a Ax[t'~] and b' < a S d — a. contradiction. • 

Theorem 4. A theory T is contradictory iff T|-A holds for every formula FJ(T). 
Proof. Let w1,w2 be proofs of A and ~]A respectively, ValT(w1) = a and 

Valr (w2) = b, 0 < a ® /3 < 1 (the case a ® 6 = 1 is trivial). Let w3 be a proof 
of A => (nA => (A& ~]A)) (D8), Val (w3) = 1 and w4 a proof of A& HA => 0 
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(D2), Val (w4) = 1. We write down a proof 

w : = wx[a], w2[b], w 3 [ l ] , ~1A => (A& ~\A) [a; r M P ] , 

A& ~\A[a ® b: r M P ] , w 4 [ l ] , 0[a ® /З; r M P ] , a ® Ъ => 0 

p;TRa®b; *MP]» (a ® !3 -> 0) -> ~l(a ® 6) [1; LA T 1 ], l ( a ® /3) [1; rM P] , 

i.e. T\-c. for some truth value c < 1. Since c is nilpotent with respect to ®, let us 

take n such that c" = 0. Then using theorem (D8) we obtain T (- cn. Let w5 be a proof 

of cn, ValT (w5) = d and B e FJiT) be an arbitrary formula. Consider the proof 

w : = w5[d], cn => 0[cn -> 0 = 1; rR c„], 0[d; rM P] , 

B[e; SA], 0 =* B[0 -> e = 1; r R O ] , B[d; r M P ] . 

Then V{ValT (w); w5} = 1, i.e. T t-B. The converse implication is obvious. • 

Corollary, (a) Tis contradictory iff there is a formula A and a proof w of A & ~\A 

such that ValT (w) > 0. 

(b) Tis contradictory iff there are a < 1 and a proof w of it such that ValT (w) > a. 

Proof, (a) The proof proceeds analogously as that of Theorem 4 using theorem 

(D21). 

(b) Let w be such a proof. Then there are proofs 

w : = 7 => 0[1 -> 0; LA], a => (7 => 0) [a -> 0; rR a] , 

w[fc], 7 ==> 0[6 <g) l a ; ^ ] 

w ' : = 7 [ l ; L A ] 

withValT(w) ® ValT(w') = l ® / 3 ' ® ~ l a > 0 , i.e. Tis contradictory. The converse 

is obvious. • 

This theorem is a surprizing result stating that if we find a proof of A & ~\ A 
in a non-zero degree then necessarily all the formulae of the given theory are theorems 
in the highest degree 1. Such a theory is, of course, useless just in the same sense 
as in classical logic. Thus, we cannot think of some general degrees of contradictori-
ness. However, interesting could be the analysis of the weaker case considering only 
A A ~~~\A. This is not done in the present paper. 

Lemma 12. Let T be a consistent theory, T[-aA and T \- A o B. Then T \-a B. 

Proof. Let T t-b B. Then by Lemmas 7 and 11(a) we obtain 

1 <. a -*• b t i.e. a ^ b 

and at the same time 

1' <. b —• a , i.e. b _̂  a 

whence b = a. Q 
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The following lemma is simple but important 

Lemma 13. Let T has a model B. Then T is consistent. 
Proof. Let 9(A) = a. Then 9(~]A) = la and let Tl- 6 A T\-c ~]A. Due to 

Lemma 9(b) b = a and c = ~[a which follows b (g )c__a® _ l a = 0. Hence, 
for any formula A and any proofs w of A and w' of ~l A 

ValT (w) ® Valr (w') = 0 . Q 

Lemma 14. Let A e EJ(T) and f _,..., t„ be terms substitutible into A for the variables 

x_,..., f„. Then T\-aA and T!--_ AX1 ...x_ [f_,..., f j implies a — b. 

Proof. Let w_ be a proof of A, ValT (w) = a'. Write down a proof 

w := w^a'l (Vx_) A[a'; rG], (Vx_) A. =* AXl[f J 

[1; LATJ, Axi[f J [a'; rMP] ... 

..>(Vx„)Axl...XH_l[tu...,tn-1']=>AXl...Xn[t1,...,ti] 

[l;LAT9],Axl...yn[tl,...,Q. 

Then V{ValT (w); w_} = a whence THb AX1... Xn [f_,..., f j , a __ b. D 

Corollary. Let y_,..., yn be variables which do not occur in a formula A. Then 

TH a A iff T | - a A X i . . . X n [y 1 , . . . , yJ . 

Proof. It follows from Lemma 14 that 

T\-bAXl...Xn[yu . . . , y j , a f_ fc . 

But, again from Lemma 14. 

i> f_ c since x_, ..., x„ are substitutible into AX1 ...Xn [yls ..., y j for y_,..., y„. 
But the resulting formula is A, thence 

a__i>f_c = a . D 

The following two theorems demonstrate that fuzzy logic behaves in a way analog
ous to the classical one. 

Theorem 5 (closure theorem). Let A e FJ(T) and A' be its closure. Then 

TY-aA iff Tv-aA'. 

Proof. Let w be a proof of A. Using the rule rG we obtain a proof w' of A' such 
that ValT (w) = ValT (w'). Hence 

T\-bA\ a = b. 

Conversely, let T1— c A' and w be a proof of A', Valr (w) = c'. Write down a proof 

w := w^c*], ^ ' => (V^2) ... (Vx„) AXl[yJ [1; LATJ, 
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(Vx2) ... (Vx„) Axi[yt\ [c'; rM P ] , . . . , AX1... Xn [yt,..., yn\ [c'; rMP] 

where Vi,..., yn are variables which do not occur in A'. Then 

V{Valr (w);w'} = c 
whence . r -. 

T\-Axl...Xnly1,...,yH\i c^d. 
Using the corollary of Lemma 14 we obtain Th-d A. The proposition then follows 
from Lemma 8. • 

Corollary. 

Th-flA iff Th-a(Vx)A. 

Theorem 6 (equivalence theorem). Let A be a formula, Bt,..., Bn some of its 
subformulae and T\-Bto B't, i = 1, ...,n. Then 

TV-AoA' 

where A' is a result of replacing the subformulae Bt,..., Bn in A by B[,..., B'n re
spectively. 

Proof. By the complexity of A: If n = 1 and A := Bx then the proposition follows 
trivially from the assumption. 

If A is atomic formula then the only its subformula is A and so the proposition 
follows again from the assumption. 

Let A : = B => C, Th- B <=> B' and T\-CoC. Then 

Th-(B=>C)<*>(B'=>C) 

due to Lemma 10(b). Furthermore, using theorem (Dl) we immediately obtain 

Th-(B'=>C)o(B'=>C). 
TheB Th-(B=>C)o(B'=>C) 

using Lemmas 10(a) and 7. 
Let A : = (Vx) B and T h- B o B' and let w' be a proof of A => A', ValT (w') = a 

and w" a proof of (Vx) (A => A') => ((Vx) A => (Vx) A') (D18), Valr (vv") = 1. Write 
down the proof 

w := w'[a\, (Vx) {A => A') [a; rG\, w"[X\, (Vx) A => (Vx) A' [a <g> 1; rMP] . 

Due to Lemma 7 and Theorem 2 

V{Valr(w);w'} = l , 

i.e. Th-(Vx) A. => (Vx) A'. Analogously we obtain 

Th-(Vx)A'=>(Vx)A 

which follows 

Th-(Vx)Ao(Vx)A' 

due to Lemma 7. • 
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6.2 Completeness of fuzzy theories 

In this section, we introduce the generalisation of the classical notion of a complete 
theory. Such a theory inherits the properties of the lattice S£ of truth values. 

A theory T is complete if it is consistent and 

T \-a A implies T h- A => a 

for every closed formula A and every a. Using the rule rRa we easily prove that 

Th-a A implies T\-Ao a 

holds in a complete theory. 

Lemma 15. Let T be a complete theory and T\-aA. Then 

Th-A => b 

for every b ^ a. 

Proof. This can be easily demonstrated using theorem (Dl) when realizing that 
AL(a => b) = 1. D 

Lemma 16. Let Tbe a complete theory. Then 

T\~aA implies Th-nfl 1A 

for every closed formula A and every a. 

Proof. Let T\-aA and w' be a proof of A => a, Val r(w') = b. Write down 
a proof 

w := 0[O; LA], a => 0[a -» 0; rR a] , w'[fc], (A => a) => ((a => 0) => 

=> (.4 => 0)) [1; LAT6], (a => 0) => (A => (?) [fc; rM P] , A => 

=>0[~la (g) &;rMP]. 
Then 

V{ValT (w); w'} = l a 

whence Tf-c HA , "la =? c. Since T is consistent it follows from Lemma 11(a) that 

c S a-+0 

i.e. c = la. D 

It is obvious that if T is a complete classical theory then Th- A implies Th- A => 1 
and Th- 1A is the same as Th-A => 0. 

Lemma 17. Let Th-aA and Th-na lA. Then 

9(A) = a, @(lA)=ia, ®(A => a) = 1 and ®(l(A => a)) = 0 

holds in every model Q) of the theory T. 
Proof. Let Q) be a model of T. Then we have 

0 (A ) ^ a as well as ®(lA) = ~1^(A) = l a 
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due to validity theorem. It follows that 

-\-\®(A) S ~\~\a , 
i.e. 

a ^ 2(A) ^ a . 

The rest is obvious. Q 

Theorem 7. Let Tbe a complete theory and T\-aA and T\-b B. Then 

Th-CA=>B iff c = a-+b . 

Proof. It follows immediately from Theorem 6 and Lemma 12 if we realize that 
in a consistent theory 

T!-Ca=> b, c = a -> b . • 

The existence of complete theories will be proved in [8]. 
(Received November 30, 1988.) 
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