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The contribution deals with expert systems the deduction machines of which are based on 
production rules with observations as antecedents and hypotheses as succedents. To each rule 
or sentence in the databasis its lower and upper weights or degrees of validity are ascribed, the 
values of these weights being formulas of an appropriate propositional language interpreted 
as sets of worlds in which the sentences are certainly (lower weight) or possibly (upper weight) 
valid. A simple way is presented how to deduce the weights of a given hypothesis, and how to 
decide about its acceptability, given some empirical data (observations, e.g.). 

1. INTRODUCTION 

For the sake of this short contribution we may take expert system as a software 
collection consisting of data, rules and inference engine which enables to deduce 
new statements from the given data by an appropriate use of the rules. Data are 
sentences of a language describing empirical facts being at our disposal (observations, 
results of experiments, . . . ) . Only very simple rules will be taken into consideration, 
namely implication-like formulas A -*• C, where A is a conjunction At A A2 A .. . 
... A A„ of empirical facts and C is a disjunction Ct v C2 v ... v Cm of particular 
elementary formulas called hypotheses. 

At this level the inference machine is nothing else than a purely logical deduction 
or its fragment working within given time and space limitations. However, what is 
typical of expert systems is the fact that neither the rules nor the data can be stated 
as certain, there is always a degree of uncertainty or weight of validity connected 
with each rule and datum. One of the main philosophical and methodological 
problems of expert systems is how to quantify these uncertainties or weights. 

The difficulties connected with the most common numerical weights, usually 
taking their values within a finite interval of reals, are well known and it is not our 
aim to discuss them here in details. They arise mainly from the problem how to 
combine the weights ascribed to data and rules used during a deduction in order 
to obtain the weight with which the resulting statement holds. The extensional 
approach combines the weights according to a fixed combination procedure so 
that the resulting weight depends on the data and rules used during the deduction 
just through their weights. This viewpoint usually results in relatively simple computa
tions and in simple explanations how the values have been obtained (supposing the 
user asks for such an explanation). On the other hand, it reduces very strictly our 
possibilities to interpret weights as probabilities with which data and rules hold, 
as this approach is not able to reflect all the richess and flexibility of mutual statistical 
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dependences among data and rules. The intensionai approach, at least in its prob
abilistic version, treats all the weights as marginal or conditional probabilities 
uniquely defined by and computable from the simultaneous probability distribution 
covering all the data and hypotheses in question as one vector-valued random 
variable. In case the assumption of existence of the simultaneous distribution is 
ontologically justified, this viewpoint seems to be acceptable, but it leads to computa
tional difficulties if the simultaneous distribution in question and the corresponding 
marginal and conditional probabilities are to be computed or estimated. As suggested 
by Bundy [1], the contradictory positions of the two approaches need not be taken 
as absolute but rather as resulting from the numerical nature of the weight functions. 
In other words said, ascribing to data and rules weights with values in a richer and 
more flexible space than the unit interval, we would be able to express statistical 
dependences by weight values themselves, so preserving the extensional nature of the 
combination procedure computing the output weights. Probably the most intuitive 
and straightforward idea is to consider weights as taking their values in the space 
of all subsets of a fixed nonempty set — universe of discourse. The idea was in
vestigated in [2], cf. also [3], at a purely set-theoretical level; in what follows we shall 
discuss it from a more semantical point of view. 

2. SOME ALTERNATIVES FOR POSSIBLE-WORLDS SEMANTICS 

In the Kolmogorov probability theory probabilities are numerical values of func
tions defined on certain subsets (measurable sets or random events) of a fixed ab
stract nonempty space Q. Hence, each numerical weight ascribed to a datum or rule 
and supposed to be interpretable as probability in the Kolmogorov sense, must be 
a value taken by a probability measure on a measurable subset of Q. So the idea 
arises to define the value of the weight in question just by the corresponding subset 
of Q. Obviously, the advantages of both the extensional as well as the intensionai 
approaches are preserved. Or, ascribing subsets e(A) and e(B) of Q to formulas 
(data or rules) A and B as their weights, the weights e(A) u e(B) for A v B (dis
junction), and e(A) n e(B) for A A B (conjunction) are defined extensionally through 
the weights e(A), e(B), but reflect the statistical relations between A and B. E.g., 
e(A u B) == e(A) 0 e(B) -= e(A), if e(A) => e(B), i.e., if B -* A holds, on the other 
hand, e(A) u e(B) is "maximum", if A and B are mutually exclusive, i.e. if A -> ~]B 
and B -* ~] A hold. Like as in the axiomatic probability theory, the abstract nature 
of the set Q enables to transform probabilities of qualitatively different events onto 
a common unifying level so that they may be easily combined with each other. 

However, these advantages may quickly become disadvantages supposing the 
designer or user of an expert system is to ascribe set weights to data and rules in 
question. Or, not having at hand any semantical interpretation of the points in Qy 

i.e., not being able to ascribe any extra-mathematical meaning to them, the user 
must know a priori all the statistical dependences between the corresponding events 
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to be able to ascribe the set values appropriately. E.g., considering the example in 
[1] with Q = {0, 1, ..., 99} and two formulas A, B with probabilities p(A) = 0-75, 
p(B) = 0-25, the expert, having ascribed {0, 1, ..., 74} as weight to A, must know 
the statistical dependence between A and B to decide, whether to ascribe either 
{0, 1, . . . ,24; , or {0,4, 8, . . . ,92, 96), or even {75, 76, . . . , 99}, or something else 
to B. Hence, from the viewpoint of practical applications the situation looks like 
a vicious circle the only escape from which is to consider the points in Q as endowed 
by meaning. Ascribing subsets of Q to formulas, the expert takes substantial profit 
of their semantics not considering explicitly their statistical dependences, he or she 
does so rather implicitly, just through the meanings. In [3] we consider an ecological 
example of dependences between occurrences of various species of plants in a territory. 
Here weights ascribed to corresponding implications are simply subsets of this 
territory where the expert believes (or has observed) the dependence in question 
to hold. These weights can be drafted into a (copy of) map of the territory and com
bined with other drawings, e.g., by a superprojection, the statistical dependences 
between various assertions being implicitly hidden in the drawings. 

In this example, as well as in a number of other ones, the space Q can be identified 
with an extra-mathematical universe of actual topological places, each of them being 
called a "possible world". However, the idea of possible worlds goes much further 
and a "possible world" can be defined as the subset of a universe of discourse, 
where some sentences Sx, S2,..., Sn of an appropriate language take given truth 
values, so that we have 2"-element space of possible worlds supposing the sentences 
are logically independent. To take subsets of such a space of possible worlds as 
weights ascribed to data and rules is the same as to take, in the role of weights, 
the propositional formulas built from the sentences Slt..., Sn and defining the sets 
of worlds in question. Hence, weights can be understood as more conditions expres
sed in, maybe, different language than that in which data and rules are, and condi
tioning, in the expert's opinion, the validity of the data and rules in question. In the 
rest of this contribution this interpretation of rule-based expert systems with set-
valued weights will be described in more details. 

3. PROPOSITIONAL SENTENCES AS SET-VALUED WEIGHTS 

Consider three sequences G = <o1 ,o2 , . . .>, M' = </z1? h2, ...>, and iV = 
= (wu w2, ...> of propositional indeterminates (no assumptions concerning their 
mutual disjointness or inclusion being taken in this moment). Let <£\ (££\, =S?3, resp.) 
be the propositional language generated by the indeterminates in (9 (M', iV, resp.) 
and by the propositional connectives "1 (negation), v (disjunction), A (conjunction), 
-> (implication) and = (equivalence) in the usual way, let ££\ be generated by 0 u 
u 2/? u iV in the same way. By Lh i = 1, 2, 3, 4, denote the set of all well-formed 
formulas of the language ££'h so that L, cr L4 for i ^ 3. Data are formulas from Lx, 
rules are formulas of the form A -> C with AeLx and C e L2, weights are formulas 
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fromL3. The most simple and easy to interprete are data of the form oti A oh A . . . 
. . . A oin and rules of the form (oh A ih A ... A oin) -> (hji v hJ2 v v hJm). 
Finally, consider a fixed model or relation structure 9JI such that all indeterminates 
from (9 u Jf u # " are ascribed just one truth value by 9JI, hence, for each formula 
<t> e L4 either 9)t | = </> or 9JI | = "10 (either $ or its negation are valid, i.e. ascribed 
the truth value TRUE, in 9JI or by 9Ji). By Tt (Ft, resp.), i ^ 3, we shall denote a fixed 
proposional tautology (negation of Tt, resp.) in Lh evidently, Tu T2, T3 are also 
tautologies and El5 E2, E3 negations of tautologies in L4. 

Taking profit of the Dempster-Shafer idea of two-values weights, cf. [2], we ascribe 
to each formula E from the database (datum or rule) a pair <WsN(E), W*(E)> e 
e L 3 x L3 of formulas such that 9ft |= (W*(E) -> E) A (E -> W*(E)); W*(E) is 
the lower weight ascribed to E and W*(E) is the upper weight. More generally, 
a formula may occur twice or more times in the database with different weights 
(obtained, say, from different experts), but in every case W*(E) is objectively (i.e. 
w.r. to 9Ji) a sufficient and W*(E) a necessary condition for E. Hence, the expert's 
subjectivity is expressed by his choice of these two conditions and his uncertainty 
is expressed by the fact that W*(E) -+ W*(E) need not hold, in 9Ji, except of ideal 
or optimal cases (the inverse implication being valid trivially). Evidently, if <E, W*(E), 
W*(E)> is in the database, "IE can be joined with this database together with 
WjlE) = 1W*(E) and W*(~]E) = ~IW*(E), moreover, each formula E can be 
joined with database together with trivial weights W*(E) = Ft and W*(E) = Tv 

Let us write E1 ^ E2, if 9JI |= (E1 -*• E2) for two formulas El5 E2 eL 4 . Evi
dently, if <E, W*i(E), W*(E)> and <E, W*2(E), W*(E)> are two occurrences of 
a formula E in the database such that W^E) = W*2(E) and W*(E) = W*(E), 
then <E, W^t(E), W*(E) can be erased from the database without any loss of in
formation. More generally, for each two occurrences <E, W#1(E), W*(E)> and 
<E, W*2, W*(E)> we can easily deduce that ^ ^ ( W ^ E ) v W*2(E)) -+ E and 
m | = E -+ (W*(E) A W*(E)), so that <E, W*i(E) v W*2(E), W!*(E) A W*(E)> can 
be add to the database (and the former two occurrences can be erased due to the 
argumentation above). A more powerful system of such rules can be obtained by 
an easy re-formulation of the ten rules And 1 — 6 and Not 1 — 4, from [1], from the 
set-theoretical languages into the propositional one (W*(E) and W*(E) denote the 
improved lower a,nd upper weights). 

(R 1) W*(E) = ("1W*(-1E)) A W*(E) 

(R 2) W*(E) = ( n W*( n E)) v W*(E) 

(R 3) W*(~1E) = (n W*(E)) A PY*(-|E) 

(R4) W*(1E) = (~]W*(E)) v W*( 1E) 

(R 5) W*(E) = [W*(E A E) v (n W*(E))] A W*(E) 

(R 6) WjE) = W*(E A E) v W*(E) 

( R 7) |^*(E) = [W*(E A F) v ("I W^E))] A W*(E) 
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(R 8) W*(E) = W*(E A E) V W*(E) 

(R 9) W*(E A E) = W*(E) A W*(F) A W*(E A E) 

(R 10) W*(E A E) = [W*(E) A W*(E)] V W*(E A E) 

If necessary or convenient, the rules for other propositional connectives can be 
easily deduced from (R 1 ) - (R 10). In each case W*(A) = W*(A) A ... and W*(A) = 
= JY*(A) v ..., so that W*(A) ^ W*(A) and W*(A) = W*(A). When applying 
these rules we may take profit of the algorithm presented in [1], but we shall not go 
into details. What is of importance is the fact that no information concerning the 
data, rules, and their mutual dependences is lost during the transformations by 
(R 1) — (R 10), in spite of the inevitable loss of information through each extensional 
manipulation with numerical weights. 

The presented model offers a degree of freedom to experts, users or knowledge 
engineers when deciding which conditions, connected with the validity of a hypo
thesis, will be explicitly stated as premises in a rule and which will play the role 
of weights ascribed to this rule. Or, consider a rule A -> C with weights <W*, W*> 
and suppose that W*, W* e Lx (hence, the expert conditions the validity of C by the 
validity of A together with some specified results of certain supplementary tests, 
treatments or observations, on the other hand he knows that some other results, 
namely those covered by ~| W*, of maybe different tests, treatments or observations 
make the validity of C impossible). So StR | = W* -> (A -> C), hence, $)l j = 
| = (W* A A) -> C, which implies Wfl | = T3 -> [W* A A) -> C] and WH | = 
| = [(W* A A) -> C] -> T3, recall that T3 e L 3 is a tautology. Hence, a new rule 
W* A A -> C can be joined with the database with the trivially optimal weights 
<T3, T3>, so that this rule is surely valid w.r. to SOL On the other hand, SOi | = 
j = (A -> C) -> W*, so that 9Ji | = C -> W* as well; combining this result with 
SJt | = (W* A A) -> C already proved we obtain, that the hypothesis C itself can be 
joined with our database together with weights <W* A A, W*>. Evidently, for each 
<E, W*(E), W*(E)> in the database, Wl | = W*(E) -> W*(E), hence, m | = "1 W*(E) v 
v W*(E). This idea of a free trade-off between conditions and weights stands close 
to that of "inversely-driven" expert systems presented in [4], when the system 
outputs, which premises and with which (numerical) weights should be verified so 
that the given conclusions (hypotheses) could be stated with desired weights. 

On the other hand, the language i ? 3 can be richer than J9?X SO that also the "true" 
randomness concerning the validity of data or rules can be expressed in our frame
works. This is reached in case the language JS?3 contains sentences expressing results 
of random experiments or values taken by random variables. In principal, this is 
always possible supposing the experiments or variables take values in a finite set, 
then the abstract space on which they are formally defined can be also taken as 
finite and can be embedded into the set of possible worlds generated by an appro
priate language J£?3. In a sense, an event can be defined as random w^th respect 
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to ie i supposing the set of worlds when this event occurs cannot be expressed as 
a set of worlds definable by $£\t hence, neither the complete knowledge of truth 
values taken by all sentences from <£\ suffices to decide, whether the random event 
in question has actually occurred or not. 

In expert systems with numerical weights a hypothesis is, as a rule considered as 
acceptable supposing we are able to ascribe to it a weight sufficiently great, most 
often, sufficiently close to one or to other maximum value. Within our framework 
we may consider two formulas, say U*, U* e L3, playing the role of threshold values 
in the sense that a hypothesis C with values W*(C), W*(C) is accepted iff 9Ji | = 
| = (U* -> W#(C)) A (U* -» W*(C)). Formula U* may be interpreted, in terms 
of heuristics, as defining the set of "typical" worlds for which validity of C should 
be assured, formulas "1U* defines, under the same interpretation, the set of "non-
typical" or even "pathological" cases for which the hypothesis C may be known 
not to be valid without affecting its acceptability. Even if C is accepted according 
to such a criterion, its application in an actual world may not be free of an uncertainty 
or risk. It is caused by the fact that actual worlds can be classified only on the ground 
of the language ££ <_, so that we may not be sure whether U* and U* actually hold 
(the same situation as when using heuristics proved for typical or non-pathological 
cases in a real world). 

4. CONCLUSIONS 

The aim of the model presented above is twofold. First, to enable, for experts, 
to express their knowledge, opinions and beliefs in a non-numerical, say, verbal form 
and, second, to handle with the obtained information at this non-numerical level 
as far as possible, postponing the definitions of numerical weights to data and rules, 
if necessary, till the moment when this can be done with the minimum risk or under 
minimum extra-conditions. (E.g., a condition A may occur in some rules concerning 
a hypothesis C, but it may disappear, due to an appropriate combination of rules 
and data, from the final weights ascribed to C so that it is not necessary to ascribe 
numerical weights to A and " l i as requested, when starting our manipulations 
immediately at a numerical level. Because of the limited extent of this contribution 
and with the aim to emphasize its discussion-open nature we have intently kept the 
text on a rather philosophical level not going into a deeper formalization and technical 
details. 
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