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A new model of probability generalizing combinatorial approach is introduced. It complies 
with some practical demands on modelling comparative probability for finite sets useful for 
application in ES. Though only initial ideas and a simple characterization is presented the ap
proach seems to be promising with respect to practical feasibility. 

1. INTRODUCTION 

An application of the probability theory to uncertainty management in expert 
systems has many advantages. One can profit by making use of both theoretical 
results and practical algorithms which were achieved by a number of outstanding 
mathematicians in the past. But still, there are situations when application of the 
classical (i.e. Kolmogorov axiomatic) probability model is rather improper and 
when it would be better to use some other model. For example, it involves situations 
when we have no statistical estimates of any probability and its subjective estimates 
are too vague. 

In this paper we shall generalize a rather unfamiliar Kolmogorov's combinatorial 
model (introduced in [1]) in such a way that it acquires comparative capability. 
Moreover, the described approach is convenient for direct application in computer 
programs being very promising with respect to algorithmical complexity of its 
implementation. 

2. C-DISTRIBUTIONS 

Let us consider a finite set S of elementary events. In a standard combinatorial 
model a probability of any event A c S is defined by the following ratio 

, v _ Number of element, events belonging to A card (A) 

Number of all elementary events card (S) 

and a conditional probability of an event A cz S given an event B cz S equals 

P(A\B)= ™d(A"B) . 
1 card(B) 

Therefore, there is no possibility to compare positive conditional probabilities 
of elementary events st, s2 given an event B cz S as it always holds 

p(K} | B)> o & P{52} | B)> o => p({Sl} | B) = p({S2} l B) - — L - . 
card (B) 
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To improve declarative capabilities of the model we assign to each elementary 
event s e S a nonnegative integer p(s) in such a way that p(s) = 0 if and only if s 
is an impossible event and p(st) > p(s2) declares that the event st is more probable 
than the event s2. But, an equality p(s1) = p(s2) should not be interpreted as equality 
of probabilities of the events sx and s2 but rather as an impossibility to decide (or 
an ignorance) which of them is higher. 

Definition 1. Let S be a finite set of elementary events (card (S) >. 2) and K be 
an integer, K >, 2. A C^-distribution on S is any function 

p: S-+{0,1,2,...,K- 1 ) . 

For any K >. 2 the class of all C^-distributions on S will be denoted CK(S). It is 
evident that 

CK(S)czCK+1(S). 

As we mostly will not be interested in exact values of K for which p e CK(S) we will 
speak simply about C-distributions denoting 

c(s) = u cK(s). 
K = 2 

To exclude trivialities we shall suppose for all C-distributions p YJP(S)
 > ® m t n e 

sequel. seS 

3. SIMILARITY OF C-DISTRIBUTIONS 

Definition 2. C-distributions p, p e C(S) are equivalent (p = p in notation) if there 
exists a positive number r such that 

p(s) = r . p(s) 

for all s e S. C-distributions p, p are similar (p ~ p) if 
(i) p(s) = 0 o p(s) = 0 and 

(ii) [p(st) < p(s2) => p(st) < p(s2)] & [p(sj) < p(s2) => p(Sl) = p(s2)] 
for any pair st, s2e S. 

The above definition introduces a nontransitive relationship. Consider e.g. S = 
= (s l 5 s2, s3) and three C-distributions pu p2, p3 defined on S: 

Pi(si) = 1 , Pi(s2) = 2 , px(s3) = 3 , 

p2(s1) = 1 , p2(s2) = 1 , p2(s3) = 3 , 

/^(s.) = 2 , p3(s2) = 1, />3(s3) = 3 . 

It is evident that px ~ p2 and p2 ~ p3, but, pt and p 3 are not similar. 
We shall not discuss this property in detail in this place, however, it should be 

mentioned that the property becomes advantageous when inconsistent pieces of 
knowledge are integrated in an expert system. Such a process of knowledge integra
tion can be based on the idea of finding a C-distribution similar to all input pieces 

53 



of knowledge (supposing they are expressed in a form of C-distributions). But, 
naturally, there may exist several such C-distributions. For example, the distribution 
p4 defined on S = {s1, s2, s3) 

P*(si) = PA(SI) = I^a) = 1 

is (as well as p2) similar to both p1 and p3 from the above example. Therefore, we 
need a tool enabling to express a measure of similarity. For this purpose we can 
use a function 

D(P> 9) = Z Xs) lo§ ( Z «(s)) - Z IXs) loS 4(s) 
seS seS seS 

derived from the well-known Shannon relative entropy. Using the known properties 
of this entropy we can deduce the following simple assertions. Formulating them S 
is a finite set (with at least two elements) and K, Lare integers greater than 1. 

Theorem 1. Let p, q, q e C(S). If q s q then D(p; q) = D(p; q). 
Proof. The equality follows from the definition of the equivalence of C-distribu

tions. Denote r the positive number for which q(s) = r . q(s) holds for all s e S. 
Then one can compute 

HP-> q) = Z P(S)
 l o§ (Z «(«)) - Z Ks) lQg q(s) = 

= £ p(s) log (J> q(s)) - £ p(s) log r q(s) = 

= X P(s) log QT q(s)) + £ p(s) log r - £ p(s) log q(s) - £ p(s) log r = 

= HPl q) • • 

Theorem 2. Let p e C^S) and p e CL(S). If p = p then 

D(p; p) = min (D(p; qj). 
qeCL(S) 

Proof. The assertion follows immediately from the properties of the Shannon 
relative entropy. Let us define classical distributions P and Q on S by 

P(S) = P(»)/£PM. eoO-««/E«0-
seS seS 

It is known that the Shannon relative entropy 

H(P;Q) = ZP(S)log^l 
seS Q(S) 

is nonnegative arid equals 0 iff P = Q. 
Elementary computations show that 

D(P; q) = Z Xs) H(P; Q) + Z P(S) l°g ( Z P(S)) ~ Z Ks) log p(s) , 
seS seS SeS seS 

and therefore, if p = q then P = Q, H(P; Q) = 0 and D(p; q) is minimal. • 

Theorem 3. Let p e Cj<;(S) and p e CL(S). If 

D(p; p) * min (D(p; g)) 
<?eCi.(S) 

then p ~ p. Moreover, if L ^ K then p = p. 
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Proof. If p(s) > 0 and p(s) ~ 0 for an s e S then D(p; p) = + oo which contradicts 
the assumption. Therefore p(s) = 0 => p(s) = 0 for all se S. If we define a CL 

distribution q 
q(S) = p(s) if p(S) > 0 , 

q(s) = 0 if p(s) = 0 , 
we get 

zm 
D(p; q) = D(p; p) - £ p(s) log f — . 

seS 2. W 
seS 

Since it is supposed that D(p; j?) is minimal 

Z <?(*) = I IXs) • 
seS seS 

must hold. Thus we have proved that 

p(s) = 0 o p(s) = 0 . 

Now, let us suppose that there exists a couple slt s2 e S such that 

K s i ) < X s 2 ) & K s 0 > jfe) • 

Analogously to the previous part of the proof we define 

q(s) = p(s) if s. + s + s2 , 

«(«l) = KS2) » 

c?(s2) = p(sl) • 
Since 

we get 

I ^(s) = Z P(s) 
sєS 

D(p; q) = D(p; p) + p(sx) log p(Sl) + JJ(S2) log p(s2) -

- p(sx) log q(Sl) - p(s2) log q(s2) = 

= D(p; p) + [p( S l ) - p(52)] . [log (p(sl)lp(s2))] < D(p; p) 

which contradicts the assumption that D(p; p) is minimal. 

Up to now, we have proved the similarity of p and p. The last statement of the 
theorem follows from the inclusion CK(S) <= CL(S) and from the fact that H(R; Q) 
minimizes only when P = Q. • 

4. EXAMPLE 

In this section we shall illustrate on a very simple example how the introduced 
apparatus can be used for inference in decision support systems. 

Let us consider 3 predicates A, B, C describing possible results when casting 
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of a die (with numbers 1 — 6) 

A the result is greater than 3 
B the result is odd 
C the result is 5. 

With help of them we can define several finite sets of elementary events. Define S0 

consisting of 8 elementary events 

S = {ABC, ABC, ABC,..., ABC, ABC} 

and Slt S2, S3 consisting of only 4 events each 

Si = {AC, AC, AC, AC} , 
52 = {BC, BC, BC, BC} , 

53 = {AB, AB, AB, AB} . 

For every C-distribution q defined on S0 we can define a triplet qx, q2, q3 of C-
distributions defined on Su S2, S3 respectively according to the following scheme: 

qt(AC) = q(ABC) + ^(ABC), 

qi(AU) = q(ABC) + q(ABC) , 

q2(BC) = q(ABC) + q(ABC) , 

q3(AB) = ^r(ABC) + q(ABC) . 

Let us suppose that the input pieces of knowledge describe all dependencies 
between any two predicates. They are expressed in a form of three C-distributions 
defined on Sx, S2, S3 

A A B B B B 

1 0 

2 3 

1 0 

2 3 

1 2 

2 1 

with an interpretation that 

Prob. (AC) = Prob. (BC) = 0 , 

Prob. (AC) > Prob. (AC) > Prob. (AC) , 

Prob. (BC) > Prob. (BC) > Prob. (BC) , 

Prob. (AB) < Prob. (AB) > Prob. (AB), 

Prob. (AB) < Prob. (AB) > Prob. (AB) . 

In order to be able to determine any predicate when values of the two others is 
known we are looking for a C-distribution q defined on S0 which induces C-distribu
tions qi, q2, q3 (on St, S2, S3 respectively) similar with C-distributions pt, p2, p3 

respectively. 
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It is evident that for any such q 

q(ABC) = q(ABC) = q(ABC) = 0 

Denoting all others values of q according to the table 

B B 

A A A A 

С 

Č 

a 

b 

0 

c 

0 

d 

0 

e 

we get from the definition of the similarity the following inequalities 

a^b+d^c+e 

a^b+c^d+e 

a + b g d 

a + b S c 

e ^ d 

e f£ c 

There is an infinite number of C-distributions on S0 meeting these conditions. 
3 

Taking J D(Pi> <?>) a s a criterion the following distribution is the optimal one 

B B 

A A Л | Л 

С 

č 
1 

0 

0 

2 

0 

2 

0 

1 

which really describes the underlying example best. Ftom this C-distribution q one 
can deduce e.g. 

q(ABC) = 0 , q(ABC) = i 

corresponding to the fact 
Prob. (C | AB) = i 

or 

q(ABC) = q3(AB) = 2 , q(A^c) ^ 

which can be interpreted 
Prob. (A i EC) > Prob f : r . 

v ' ; U \BC\ and 
Prob. (A | B) > Prob. r~~ 

4з(AB) = 1 

B"C) 

Ą 
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