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MULTIDIMENSIONAL RANDOM PROCESSES
WITH NORMAL COVARJIANCES

JIRI MICHALEK

The definition and basic properties of multidimensional locally stationary and normal co-
variance functions are given. Necessary and sufficient conditions characterizing these covariance
functions are presented and a close connection with normal operators is shown too.

1. INTRODUCTION

Let {x(t), te R,} be a second-order random process with vanishing mean and
a covariance function R(-, +). Silverman suggested in [8] a generalization of weak
stationarity, named by local stationarity, in the following way. A covariance function
R(-, +) is called locally stationary if for every pair s,  of reals (s, t € Ry)

R(s, 1) = R® (”2’) R®(s — 1)

where R(?)(+) is a weakly stationary covariance. Thanks to the facts that R(s, s) = 0
for every s e R; and R®(0) = 0 this definition yields R‘")(s) = 0 for every se R,.
The definition of local stationarity for random sequences is given in [4]. In this
case a covariance function R(-, -), definedonZ x Z (Cartesian product of integers),
can be expressed as

R(n,m) = R®(n + m) RP(n — m)

where R@)(+) is a stationary covariance. Here, the function R1)(+) need not be
nonnegative.

Under assumption of continuity of R™(:), R®(:) and nonnegative-definite
property of RW(+), in the case of a random process, the corresponding locally
stationary covariance function can be written in the form

R(s, 1) = J[22 e T aF,() dFa(u), (2= A+ in, == 4= in),

as it is shown in [5]. This expression is a special case of a normal covariance func-
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tion introduced and investigated in [5], [6]. For completeness, we present the
definition here.

Definition 1. A covariance function R(*, *) defined on the plane is said to be normal
if for every s, t of reals ’
R(s, 1) = [[Z2e="#ddF(h ), z =1 +iu,
where F(., .) is the distribution function corresponding to a bounded nonnegative

measure on the Borel sets in the plane.

The definition of a normal covariance function due to a random sequence is given
in [4]. The main aim of this paper is to give the definition of multidimensional
locally stationary and normal covariance functions together with presenting ne-
cessary and sufficient conditions describing these classes. A close connection with
groups of normal operators in a Hilbert space is also given.

2. MULTIDIMENSIONAL LOCAL STATIONARITY

Let xT(t) = {(x4(1), x5(t), ..., x5(t), te R;} be a multidimensional second order
random process with vanishing mean value. Let

R(s, t) = E{x(s) x"(2)}

be the corresponding covariance function.

Definition 2. We say the process x'(+) is locally stationary (or its covariance
function R(-, -) is locally stationary) if for every N-tuple z" = (zy, z,, .... zy) of
complex numbers the random process

N
) =Yz x(t), teR,
i=1
has a locally stationary covariance function.

Lemma 1. If an N-dimensional covariance function R(-, *) is locally stationary
then for every u e R, the matrix R(u, u) is positive semidefinite and the matrix
R(s — t,t — s) is an N-dimensional stationary covariance function.

Proof. If R(-, +) is locally stationary then 2" R(s, f) zis for every z' = (zy, ..., zy)
a one-dimensional local stationary covariance. Then, according to the definition
of local stationarity,

T R(s, 1) z = R§1)<Lizt> RP (s —1).
This fact means z" R(u, u) z = R{"(u) R{V(0) and
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Hence,
Z' R(0,0) zz" R(s, ) z = z' R §~+—1,S—+—E T R(2Z t, t=s z
2 2 2 2
where R{V(0) R{P(0) = z¥ R(0, 0) z. As local stationarity demands R{V(u) = 0 for

every u € R,, and R%*)(v) must be a stationary covariance, we obtain that for every z

2" R(u,u)z=0 and RC;‘ ’j)

’

2 2
is an N-dimensional stationary covariance function.

o
Theorem 1. An N-dimensional covariance function R(-, +) is locally stationary if
and only if for every s, t € R, and every multiindex « = (i, j, k, )€ {1,2,3, ..., N}*

R;(0, 0) Ryfs, 1) + Ry(0,0) Ry (s, t) + R, ;(0, 0) Ryfs, 1) +
+ R0, 0) R;j(s, 1) =

=Ri,-s+t,t—+~§ szs_t,t_s _*_R”ert,ertRkjs—t’;;ﬁJr
+Rkjs+t,s-{~tR”s—t’t—s + R, i:k_t’t+s R, s_:_f,t;s

where R(+, +) = {R;;(*, )}¥

i,j=1°

Before proving Theorem 1 it is suitable to introduce the following
Lemma 2. Let V, be an n-dimensional complex vector modul and

OV, xV,xV,xV,->C
be a mapping having the form

n n

n n
CD(", v, X, .V) = z Z z lz U0 % Y P
=1

i=1 j=1k=1

n n n n
where u =Y ue,v=> vie;, x =) X,y =) ye, and &, = ?(e;, e, e, e)
1 1 k=1 =1

for a fixed basis {e;}};., of V,. Then & is vanishing on the principal diagonal (i.e.
®(u, u, u, u) =0 for every ue V,) if and only if

(1) Dijy + Pjia + Pyjue + P = 0 .
for every i, j, k, 1 = 1,2,...,n.

Proof of Lemma 2. Let the condition (1) hold. Then for every xe V,, x =
= 2 Xi€;,

1
4d(x, x, x, x) = YN YUY F X[ Pijir + Piyy + Prune + Pija) = 0.
i j k1

Hence, @ is vanishing on the principal diagonal. Now, assume (D(x, x6x)=0
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for every xeV, Then ®(x + te'’y, x + te'y, x + te'“y, x + te'®y) for x,
yeV, and real t, w presents a polynomial function of the 4th degree in ¢t having
complex coefficients and vanishing everywhere The coefficient standing by ¢ must
satisfy

[®(y, x, x, x) + D(x, p, x, x)] ' + [®(x, x, p, x) + (x, x, x, p)] e =0.
Hence, ®)(x) = &(y, x, x, x) + ®(x, y, x, x) = 0 for every x, y € V,. Now, we shall
repeat this consideration twice. First, the coefficient by ¢ in the term ®)(x + te'“y)
equals

[2(y, z, x, x) + &(z, y, x, x)] ' + [D(y, x, x, 2) + B(y, x, 7, x) +
+ &(x, y,x,2) + ®(x, y, z,x)]e” = 0.
This fact gives
<P(y, Z, X, x) + (P(z, Yy, X, x) = ¢;’,z(x> =0
for every x, y, z € V,. Finally, the expression of @, (x + t¢'“u) yields immediately
for every x, y, z, ue V,
(y, z,x, u) + P(y, z, u x) + B(z, , x, u) + Dz, y,4,x) = 0.
' This implies easily condition (1) O

Now, the proof of Theorem 1 is an easy matter.

Proof of Theorem 1. Let an N-dimensional random process {x(f), e R,} be
locally stationary. It means that for every z' = (zy, ..., zy), an N-couple of complex
numbers, and every s, te R,

T R(0,0) 277 R(s, f) z = 2 R(s-!—t,s—zl—t)zzTR(S—t’t—s)z

2 2 2

This equality may be rewritten into the following form

0 T4 2 i ; ZiZJZkZl< (0, 0) Ryfs, 1) —

_R s+t iil R s—t t—s
i 2 H 2 kl 2 ) 2 .

At this moment, we can apply Lemma 2 to the function

o(u, v, x,y) = Z Z Z Z TR AT (R,](O 0) Ry(s, t) —

i=1j=1k=11=1

+t +t -t t—
- Ry 3 ’S Ry L—a””—s . ' O
2 2 2 2

Silverman in [8] proved an assertion dealing with harmonizable locally stationary
random processes. This result can be generalized to the multidimensional case.

Theorem 2. Let {x(t), t € R;} be an N-dimensional random process with harmoniz-
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able (in the strong sense) locally stationary covariance function having a spectral

density function. Then, this spectral density function is locally stationary and vice
versa.

Proof. Being strongly harmonizable {x(t), t € R;} can be expressed in the follow-
ing form

x(1) = [T2 e dE(R)
where {&(1), A€ R,} is an N-dimensional second-order random process with co-
variance function
F(, 1) = {E{&(A) Z{m}}i -1
possessing finite variation f Y YAAF (A )] £ C < o0 (Fif(2, p) =
= E{&(4) €;(n)}). Then, th::éol;arliance function of {x(t), 1€ R,} can be written as
R(s,1) = [[12 ™™ (2, p) dA dp

because we assume existence of 0%F;;(1, pu)[oA op = fi;(A, ). As {x(t), teR,} is
locally stationary, then by definition, for every z* = (zy, z,, ..., zy)

T R(s, 1)z = [[12 AT f(3, 1) zdA dp

must be a locally stationary covariance function. The inverse formula, see [3],
gives under local stationarity of R(+, *).

+ o0
ZTI(;L, #) 7 = [J\ ei(is-ut)zT R(S, t) zdsdt =

(2n)* JJ o

o= QIT)Z_U:C exp(—i<s ; t) (4 - u))exp(—i(s - t)(f_‘;ﬁ» 2T R(s, ) zds dt =
vo , R(T LS

=(271r)zﬂ_we><p(_i</v_§g>(s_t))z ( 12{9)(0)2 )zx

s+t ﬁ t)z

x/exp<~i<a_m(s+t)>“< 22 )

2 R2(0)

+ o0 A zTR< ’ E)Z + o0 T
= l—j‘ exp(—i (A + “) v) 2 2 dv x lJ‘ e‘i“*“)“g—R(u’ g)—fy'du

RO(0) ). RO(0)

This means

o)z = f;“(*—;-i‘-)f;“ (= 1)



where l : K v v
f‘”(x) _ 1 rw e i¥ R<§ 5)
* 2n ) o

) RV(0)
and 1 (" 2 R(u, u)
D) = 1| e Pl WZ,,
0= e

We have proved that for every 2" = (zy, z,, ..., zy) the covariance function z" f(-, *)z
is locally stationary because

fP(x) 2z 0
for every x e R, and f*)(+) is a weakly stationary covariance function. We can
summarize that the N-dimensional covariance function f(-, ) is locally stationary.

Now, assume f(-, *) to be an N-dimensional locally stationary covariance function.
Then, z" f(+, +) z is locally stationary for every z¥ = (zy, z,, ..., zy), i.e.

2" f(2 1) 22" £(0,0) z = Tf</1 ~H iﬂ) zsz(é—;—ﬂn ﬂii) z

Hence,
zTR(s, t) 7 = ”J_roo i(si—tp) Tf(/{ )zdld,u —

A+u A+ pa- -2
. f< Ly u) f< bon >
— eilsa—1tu) 2 2 2 didu =
o (0 £1(0)

7 f(z e)z
_ J‘-}ooexp (1 <S - t) U) 2 2 va’+ooei(s_t)u —M _
2

£9(0) e £:2(0)
_ R® (ig_‘) RO (s — 1)

It is easy to see that R{V(+) = 0 and R{?)(+) is a weakly stationary covariance. We
proved local stationarity of z" R(-, -) z hence, the process {x(1), t € R,} is locally
stationary. O

—

Theorem 2 affirms, roughly speaking, that the Fourier transform of a locally
stationary process is a locally stationary one again.

2. MULTIDIMENSIONAL NORMAL COVARIANCES

Let us suppose that an N-dimensional covariance function R(-, -) is locally
stationary, i.e. one can write

Z"R(0,0)z z'R(s,t) z = z' R s+t,s~i_—t z7'R s—~t,t—-s z
2 2 2 2
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for every z' = (zy, 2, ..., zy) of complex numbers and every s, t € R,. In general,
R(3(s + 1), #(s + t)) need not be an N-dimensional covariance function in s, t, it
is a positive semidefinite matrix for every fixed s, ¢ as it is proved in Lemma 1. Now,
let R(3(s + 1), 3(s + 1)) be a covariance function and R;(s,t), i,j=1,2,...,N
be continuous functions on the plane. Then, for every z the function zT R(%(s + 1),
1(s + t)) z is a covariance with the kernel (s + t), hence,

zTR<i:2j‘_t, s -2|' t) 7= jt: eMs+1) sz(l)

where F,(-) is a nondecreasing function with finite variation, for detail see [9].
Analogously, by means of Bochner’s theorem

-t t— .
zTR<S S S) 7= [12eCTdG,(n) .

Let us denote e'(j, k) =(0,0,...,1,...,1, ..., 0) if 1 stands on the jth and kth place
(j < k); similarly, d"(j, k) = (0, ..., 1, ..., —1, ...., 0). Then,

(2)  €(j, k)R(s, 1) e(j, k) = Ry(s, 1) + Ru(s, t) + Ry(s, 1) + Ry(s, 1),
d°(j, k) R(s, £) d(j, k) = R,,(s, 1) — iRu(s, 1) + iRe/(s, 1) + Reals, 1)
The choice of zf = (0, 0,..01,0,..., 0), where 1 stands on the jth place, gives

z}R(S = e an)

and

—t — .
z§R<S 5 ) 4 = [22eH0 dG ().
This means, of course, that

©) R;(0, 0) Ry(s, 1) = [[1%XH0 ™00 ddF (1) G,(u) -
Similarly, for every 2" = (zy, z,, ..., zy) local stationarity yields

2" R(0,0) zz" R(s, t) z = [[I% e*eFD =D ddF,(2) G,(u) .

Especially,

4 + €'(j, k) R(0, 0) e(j, k) €"(j, k) R(s, t) e(j, k) =
= JJ2% X7 7D ddF . 1(4) Gugao(w) »

(5) ~d"(j, k) R(0, 0) d(j, k) d"(j, k) R(s, t) d(j, k) =

= [[I5 et ™D ddFy; 0(4) Gugyi(n) -

Assuming regularity of the matrix R(0, 0) and combining (2), (3), (4), (5) we obtain
that

2.67(j, k) R(0,0) e(j. &)

(6) Ry(s. 1) = [+ X640 it g {1 Fojio(%) Gegio(1)
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w1 _Fago® Gagu(w) 1+ i<Fj(1) Gi(w) | Fud) G*(“))} :
2d"(j. k) R(0,0) d(j, k) 2 R;;(0,0) R;,(0, 0)
We achieved a possibility to express the covariance function R(+, +) in the form
Q R(s, 1) = [[*2 ¢H+0 &s=0 ddF(J, 1)
where Fj(4, p) is defined by the formula (6). Thanks to the fact that z* R(s, t) z is
a one-dimensional normal covariance function, under our assumptions,
‘ ins—1y gq Fo(2) G:(w)
Z'R(s, t) z = [[freMstDginls—D dd 2222
(S ) jj 0 zTR(O, 0) z
and thanks to the one-to-one correspondence between a normal covariance function
and its spectral measure, see Theorem 3, we can assert
TF(Lp)z = F(2) Gw)
Z"R(0,0) z
As for every z' = (zy, z,, ..., zy) of complex numbers
Ay, A, F(A)G(w) 2 0

this inequality proves that F(-, +) is a matrix spectral measure. F(+, +) = {F;(*, ")} ;=4
is a matrix spectral measure, see [ 7], if every component F;(+) is a complex measure
defined on the Borel sets in the plane satisfying

1) Fi;(+) = F;(+) for every i,j = 1,2,...,N

2) % % ¢;¢; F;(4) 2 0 for every N-tuple ¢y, ¢y, ..., ¢y of complex numbers and
Fz:\ie:rly Borel set 4 in the plane R,.

The spectral decomposition of R(+, +) in the form (7) leads us to the following

Definition 3, An N-dimensional covaraince function R(-, +) will be called normal
if it can be expressed in the form

R(s,t) = [[I3 D i~ ddF(A, p)  (for every (s, t) € R,)

where F(+, *) = {F;(*, *)}};=1 is a matrix spectral measure.

Properties of Normal Covariances
The existence of R(s, t) for every pair (s, 1) € R, implies
|Rij(s, 1) ] < [[r2 it dle,-j(,l, ”)I , i,j=12,..,N,

where IFU()] is'absolute variation of the complex measure F; J() because the spectral
measure F satisfies the evident relation

) - |Fy(4)] = Fil?(4) Fi(4)
thanks to positive semidefiniteness of F(+). As Fi(4) 2 0 for every i = 1,2, ,N
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and every Borel set 4 in R, we see that every integral
[ftoetero e gdF, (A, ), i,j=1,2,..,N

is absolutely convergent. The above relation (8) gives that every component F;;(+)
is of finite absolute variation because

Var Fii(.) = Fii(RZ) = Rii(O, 0)
is finite for every i = 1,2, ..., N. Every component F,.j(-) can be expressed as the

sum Re F;;(+) + iIm F;(+) where both the signed measures are of finite absolute
variation. This fact implies that for every i,j = 1,2,...,N

9) F;[(4) = Re F;(4) — Re F;;(4) + i(Im F{;(4) — Im F7;(4))

where all the terms are measures with finite variations. As every one-dimensional
normal covariance function is continuous at every point in the plane R, see [6],
R;(+, +), which is a sum of normal covariances, cf. (9), must be a continuous func-

tion. We can state that every N-dimensional normal covariance function is continuous.
Further, every normal covariance can be expressed as
R(s,t) = S(s + t,5 — 1)
where S(+, *) = {Si(*, *)}};-1 and
Sij(u, D) = fjt: e;‘" ei‘"" ddFU(}" /l) .
ST

Every function S;(-, +) is continuous and S(u, —v) = S'(u,v) where T means °

the transposed matrix.

Theorem 3. Every normal covariance function R(-, +) determines unambiguously
a matrix spectral measure F(-, -).
Proof. Let the covariance function R(-, *) be normal and let

Ris, 1) = [[12 e*e*D =D ddF, (4, ), i,j=1,2,...,N.
The covariance function R(-, ) determines unambiguously the matrix spectral
measure F(-, ) if and only if every component R;;(+, +) determines unambigously
the corresponding complex measure F,;(+). We begin with the diagonal elements
Ry(+,*), i=1,2,...,N. Then the corresponding spectral measure F;(-) is non-
negative as follows from positive semidefiniteness of F(-). The element R, *)
defines in the unique way S;(+, *) because

Sii(u9v) = Rii<u ; v’u ; v).

The integral S;(u, v) = [[X2 e e ddF;(4, u) is absolutely convergent because .

Ji1% je* e ddF (4, p) = [fX2 e* ddF (4, p) = Sifu, 0) |
exists for every pair (u, v) € R,. Now, let us consider a complex number u = u,; +
+ iu,. Then, the integral

ff1o et el e ddF (4, u)
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is also absolutely convergent. In this way we can extend the function S,(-, -) for
every v € Ry into the complex plane

Si(uy + iuy, v) = (12 et ez el ddF (4, p) .
Let us prove that the function S;(u, v) is for every ve R, a holomorphic function
on the complex plane. We introduce, for this purpose, a complex measure %, )
defined by the relation :
G, (4, p). = [[*, ¥ ddF («, ).
Surely, |%,(2, u)l < F;(A, ). Hence, absolute variations of {%,(+, *),veR,}, are
uniformly bounded and

(10) Su(u, v) = [[12 e dd¥,(4, p) = [L2 e dgV(2)

where %.(+) is the first marginal measure of %,(, ). We see that, by (10), the
function S;,(u, v) is for every v e R, the bilateral Laplace transform of %,(+,-), and
hence, it is a holomorphic function of the variable u. The subset (— o0, +0) x {0}
is not isolated in the complex plane. This fact implies that S;(u; + iu,, v) is the
unique holomorphic extension that is determined by the values of S;(u;, v), u; €
€ (—o0, +00). Now, let u; be chosen quite arbitrarily. Then,

S,-i(ul + iuZ, U2) = J‘J‘t: e}'"z ei‘"" ddHul()'? l,t) N
dH,, (4, p) = [[*, ™t ddF(a, B) .
We see that for every fixed u; € (— oo, +00) the function S;(u; + iu, v) is in the
variables u,,v the two-dimensional Fourier transform of H,(:, ). Thanks to
properties of the Fourier transform the measure H, (-, -) is determined unambigu-
ously. As the function e is the Radon-Nikodym derivative of H, (+, *) with respect
to Fy(+, ), the measure F;(-, +) is determined by H, (-, -) and €™ in the unique
way. We have proved a one-to-one correspondence between R+, *) and Fy(+, ).
In the case of a complex measure F;(+, ) for i = j we shall proceed in the follow-
ing way. Let exist two complex measures such that
Ris, 1) = [[13 e**D ™D ddF,;(4, p) =
= [[torltD 6D ddG, (4, 1)
for every s, t € R;. Then,
[ A0 €60 dd(Fy (1 ) — Gyl ) = O
for every s, t € R;. This means, we have to prove that the only complex measure
satisfying for every u,ve R,
[ ¢ e A (A, 1) = 0

is zero.
Writing H(-, *) = H,(*, *) + iH,(, +) we obtain that

[f*2 e cos uo ddH (4, p) = [[1% e* sin pv ddH,(4, 1)
[f¥= e* cos uo ddH,(A, p) = — [[*2 ™ sin po ddH,(4, 1) -
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This fact yields
[fre e el ddH (A, p) =0, [[F2 e e™ ddH,(A, u)=0.
As we consider measures with finite variations we can decompose
Hy(,+) = H{ (", ) — Hi (. )
Ho, ) = HE( ) = H3 (-, )
by means of the Jordan decomposition. Then, we have for every u, v e R,
[fro et et ddH{ (A, p) = [[12 e* e ddHT (A, 1),
and similarly
[Jre et el ddH; (4, p) = {12 et e ddH; (4, p) .

The one-to-one correspondence between one-dimensional normal covariance and
spectral measure proved above gives that

H{()=Hi(-), H;(-)=H;(").
This fact completes the proof of the theorem. , O

Necessary and sufficient conditions given in the following theorem describe the
class of multidimensional normal covariances.

Theorem 4. An N-dimensional covariance function R(-, +) defined on the plane "
R, is a normal covariance if and only if there exists a continuous matrix function
S(+, +) defined on the plane such that

R(s,t) =S(s + t,5s — 1)

and

N

) Z Z Z 04 S (e + wp v — ) 2 0

i=1 j=1k=11=1
for the every 2n-tuple of real numbers u,, u,, ..., 4,, vy, V3, ...., v, and every n x
x N-matrix of complex numbers {o;},_; 5 .

i=1,2,..,N
Proof. The proof of this theorem is transformed into the one-dimensional case.
Let e” = (cy, ¢y, ..., cy) be any N-dimensional vector of complex numbers and
let us consider the function R,(:,*) = " R(, *) e. We shall prove that R,(-, *)
is a one-dimensional normal covariance function. At the first sight, Re(-, ) is defined

on the plane and is continuous here. Further R (s = R(t, s) because

R(s, 1) = cil; Ris, 1) = Z IZ:: Ryfs, 1) =

i= 1 i=

It

uMz {Mz

i 8 Ry(t, s) = R.(t, s).

R,(+, +) is a covariance function because it is positive semidefinite as follows from
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the assumptions of the theorem

k; IZ % RB(S"’ s,) =
N n
P>

k=11

ey Rij(s s)) =

M=
M=
M=
M=

1

I

-

k=11

]

1i=1j

@) Si(se + spse —s) 2 0

|IM2
M=

]

1
if we put oc; = o and s, = u, = v,.

As we assume that R;j(s, 1) = S;,(s + t,5 — t)then R,(s,t) = €' S(s + t,s — t) e =
= S(s + t, s — t) and the function R,(*, ) is a function of s + ¢ and s — t. There
is no problem to prove that S(-, *) is positive semidefinite in the following sense

n
Y oy S(uy + up v, — v) 20
k=11=1

M=

n
Z ot,ﬁl S(uk + u’, vk —_ v,) =
1=1

D =

K

]
3 =

n

N N
= Z Z Z Z ciak(éj&,) Sij(uk + u’, vk - Ul) 2 0

i=1j=1k=11=1
for every matrix {c,0} of complex numbers and every 2n-tuple uy, us, ..., 4,, vy, Vs ...
., v, of reals. Finally, we have

R,(0,0) = 2 zcc,R,,(o 0) =

i=1j=1
and by means of results given in [6] we can assert that the covariance function
R,(+, +) is normal. Hence, there exists a spectral representation of R,(-, *) in the form

R(s, 1) = [[*2 e*e*D MG ddF (A, p)
where R,(+, +) is a two-dimensional measure with finite variation equal to R,(0, 0),
see [6]. Let us consider now special cases of the vector e. Let

et =(0,0,...,0,1,0,...,0,1,0, ..., 0)

where 1 stands on the kth and jth places (k < j); similarly, dj ;, = (0, ...,0, 1,0, ...
s 0, =, 0, ..., 0) (k < Jj).

Then,
Regep(s *) = Rul®s *) + Rij(5 *) + R+, +) + Ry, )
Rugesy = Rul*s *) + iRe(+s ) —iRu(+,) + Ryf*, *) 5
hence,
Rj = $(Rege,py = iRage,sy — (1 = 1) (R — Ryy))
and thanks to the one-to-one correspondence between R, and F, we can state that
Fij; = YFopy = iFagejy — (1 = i) (Fua — Fp)).
We obtain an expression of an off-diagonal component Ry;(+, +) in the form
Ry (s, 1) = {12 XD k=D 4dF, (1, p) .
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We have constructed in this way a matrix complex measure F = {F,;}}'._,. We have
to verify that F is a spectral measure. Surely,

F(-, ") = F'(-,")
R(. ") = R ).

The function F (-, -) defines for every e a measure, hence,
Aw Ay, F(A, 1) = 0

for every (4, u)e R, and every h; € Ry, h, € R,. This means, for every vector e
of complex numbers

because

N N
Z Z CiEj AhlAthij()‘” ,u) g 0 .

i=1 j=1

We see, immediately, that the matrix Fi (A) is positive semidefinite for every Borel

subset 4 in the plane R,. If F is a matrix spectral measure, then, every function
R(s,t) = [[12 Mt &G0 ddF(4, p)

is a normal covariance function, (we assume the existence for every pair (s, t) € R,).
The function R(+, *) satisfies:

1) ‘g _%aa Ryt 1) = ”J””Z Zacx e?* ddF (4, p) =

i=ij=1 i=1 j=1

= {[I%e “’l; Zocoz ddF;(4, p) = 0

because f“ ZN Fy(+, *) defines a nonnegative measure (F is a matrix spectral
measure) T : :
2) R(s, 1) = [[*2 Ho+D) G0 4dF (A, p) =
= [[*® eHe+s) glnt=9) dAFT(2, 4) = RT(t,5) .
3 [Rufs, )] = |12 4659 e 4R (3, )] =

< J[13 M0 dd|F (4, Il)l =
< (172 &% Ay (a7 (112 2% ARl )

This fact follows, from positive definiteness of F because for every complex a the
inequality

Fi(4) + |of* F;;(4) + & F;(4) + a Fi(4) 2 0
holds. Then, put « = F;(4)/F;{*(4)if F;;(4) + 0.
4) Let us consider the function S(u, v) = R(3(u + v), $(u — v)); then,

S(u, v) = [[T3 e e ddF(A, 1)

and R(s,t) = S(s + t,s — t). Let us prove that this function S(-, ) satisfies the
assumption of the theorem.
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For this purpose, we need the Karhunen theorem, see [2] By means of this theorem,
wa can express every random process {x(), 1€ R,} having a normal covariance as
a stochastic integral understood in the quadratic mean sense

x(f) = [f12 e* ddé(z)
where z =1+ ip and E{&(z,) &"(z,)} = F(min(z,, z,)); (min(z,, z;) =
= (min (Re z;, Rez,), min(Imz,;, Im z,))). At this moment, let us consider
random variables »
y(u, v) = [[T2 et et el ddé(z) ,
u = u,; + iu,, u;, U, € R,. These random variables exist because

’E y u, U)y X, y))" — “‘j'{—w ).(u1+xn 1l(u2—x2) xu(v ) ddF()u, )‘ <

< [Jf2 et 0 dd|F(2, p)| < .
Then,

0 €3 St ) -
5 ol {1ty 05) i 09} =

1 g=1

M=
u'\4= TlM;

=2

If we put u, = Re u,, then, we obtain

1

~.
]

Wi [[£2 Mo eta s =) ddF (1, p) .

N n n
Z Z “;075 Sij(up + Uy Uy, — vq) z0.
i=1 j=1p=1g=1
5) Every component R; J( ) of R(+, *) is a continuous function because all diagonal

elements are one-dlmenswnal normal covariances and off-diagonal elements can be
expressed as a linear combinations of one-dimensional normal covariances. This
completes the proof of the theorem. O

3. NORMAL COVARIANCES AND NORMAL OPERATORS

In the multidimensional case we can show also a close connection between normal
covariances and normal operators. Let a process x(+) = {x,(-)}}-; be a random
process with a normal covariance function R( R ), ie.

R(s, ) = [[+2 e*6*0 i6=0 ddF(4, ).

As it was mentioned above such a process can be expressed in the form of a stochastic
integral

x(1) = {[*% e ddé(z) .
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Let L(£(+)) be the linear set of all linear combinations

Z]“l{f i(zi)
and let H(&+)) = L(&(+)) be a closure of L(&(+)) with respect to the convergence
in the quadratic mean sense. Let us denote by H(z) the subspace of H(&(+)) generated

by all random variables

M=

“if'i(zi): z; £z,
i=1
let P, be the orthogonal projector in H(&()) on the subspace H(z). Thanks to
properties of the spectral measure F one can easily prove that the family {Pz; ze C}
forms a complex resolution of the identity in H(&(-)). We can construct normal
operators

A, = [[T2e"dP,, teR;

with the definition domain

DA,) = {xe H(E(+)): [[12 e* dd(P.x, x) < o} .
As x(0) = [[Z2 ddé(z) = Lim. &(z) then x,(0) € H(&(+)) for every i€l,2,...,N

z—* 00

and P, x{(0) = £(z). Then, we see that
x(t) = [[t2e"dP,x,(0), i=12,..,N
because dd( P, x;(0), x,(0)> = dd{¢,(2), x,(0)> = dd{&(z), &(z)> = ddF;(z) and the’
integral
[fre e ddF (4, )
exists for every te R; and every i = 1,2,..., N as we assume. We obtained that
x(t) = 4,x(0), i=1,2,..,N, teR.

Corollary to Theorem 4. An N-dimensional covariance function R(-,-) is
normal if and only if for every N-tuple z' = (zl, Zpy eeny zN) of complex numbers
z" R(+, ) z is a one-dimensional normal covariance function.

Another connection between normal covariances and normal operators in a Hilbert
space is shown in Theorem 5.

Theorem 5. Let a group {T, se R,} of normal, in general unbounded, operators
be given in a Hilbert space (#, (-, *»). Let, for every x, y € 9 = (\ 2(T,), {Tx, T,y)

seRy
be a continuous function on the plane. Then for every N-tuple x,, x,, x3, ..., Xy

of elements in # belonging to the subset &
R(s, t) = {<’I:sxi’ ’Ttxj>}?:j=1
is an N-dimensional normal covariance function (2(T,) is the definition domain
of T, in o#).
Proof. The subset & is not empty because 0 € ¥ in every case. Let x,, x5, ..., Xy
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belong to 2. First, we need to show that the matrix function R(-, -) is a covariance
function. Let n be an arbitrary natural number, let oy, «,, ..., o, be an arbitrary
n-tuple of complex numbers and sy, s,, ..., s, an arbitrary n-tuple of reals. We must
prove that |

n n
Z ka&l<T;kxik’ 51 H> =

k=11=1
where x; € {X,, x,, ..., Xy} for every k = 1, 2, ..., n. This inequality holds evidently
because i
2

For next steps, it is suitable to introduce the function S,,(u, v), x, y € @, defined
by the relation

NM;;

: n
- 2
(T Ty = | L aTx[* 2 0.
k=

S-W(u’ U) = <T(u+v)/2x’ T(u—v)/z y> .
We immediately see
R (s, 1) = Syy(s + t,5 — 1) 3
hence, S,,(*, *) is continuous on the plane. Let z* = (zy, z,, ..., zy) be an arbitrary
N-tuple of complex numbers and we must prove that

ZR(*, ")z

is a normal covariance function. To prove this fact we need validity of the equality
Tt*]; = T.T*

on 9. As {T,, se R,} is a group then T,,, = T,T, = T,T,, i.e. 2(T,s,) = T,T,) =

= 92(T,T,) must hold too. Next, it follows %(T,) = 2(T,) and simultaneously
A(T,) = 2(T,)(#(T,) is the range of T,. Let n be an integer. Then,

thanks to the group property holding for {T;%, s € R,} too. Now, let ¢ = n.s. Then
Tt*T T‘%« T — (7-;*)71 7-'5 — ];(7’;*)" — 7‘;7‘;*

because T,'T, = T,T.". Similarly, in case ¢ = s.(p/q), where p/q represents a rational
number, we can prove
T'T, = T.T
as
T'T, = Ts*p ¢ Tasia = ( s/q)p( Ty, = (Ty0)( Ts’/kq)p = LT}
Finally, let ¢ be quite arbitrary. Then, there exists a sequence {¢,},21 t, = 5. p,[q, —> ¢
where p,,/q,, are rational and continuity of the scalar product in # proves

TXT, = T.T}
for every pair s, t of reals. If xe & then T, xe 9 as well because T,x = T(T;x)

which implies T,x € Z(T,) for every real s. This proves that Txe 2. If Txxe @
then T;*(T,x) is well defined as 2(T*) = 2(T,). In case s = n.t, n is an integer,

T}Tx = T,T,'x
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as it is proved above and this gives T'xe 9( ,,,) for every n, T*x e @ too. That

means both the operators T;*T,, T,T," are well defined on the subset 2. Now, we are

ready to prove the ‘‘nonnegative-definite’” property of " R(+, -) z, see [6]. Let n

be a natural number, let «,, o,, ..., @, be an n-tuple of complex numbers, let u,, u,, ...
.y Uy, Uy, Vg, .., U, be a 2n-tuple of reals. Let us consider the sum

o _Z _z 22 St + uj 0, — v) =

i=1 j=1
N N n oo
=k§1 ;szli;l j§1“ﬁ K Tuituytvimopi2 ¥ Lugtupto—vpr2Xe) =
N 5o on
=kZ1 12‘1 x 12:1 ,Zl{x (7}1 ui)/2T(u,+u,)/zxks T;u, u,),zT(u,+u,)/2X1> =
N »n
= ikzl Z Zi%; T(u —v; )/7T(u +v,)/2xk| 20
Sy B

A necessary and sufficient condition characterizing normal covariances is proved,
see [6]. This inequality, together with continuity of R, (-, ), i, j = 1,2,...,N,
show that the matrix covariance function R(-, -) is normal.

4. CONCLUSION

In the literature, we can meet two types of generalization of the notion weak
stationarity. First generalization, originated by Loéve in [3], can be characterized
as the nonorthogonal integral representation

X(t) = 72 (1, 2) de(2)
in the quadratic mean sense where ¢(+, +) is a nonrandom complex function and
f( +) is a second-order random process with covariance function having finite varia-

tion on the plane. The second generalization, originated by Karhunen, see [2], can
be called the orthogonal integral representation

(11) () = 2 (6, 2) dn(2)

where ¢(+, +) is a nonrandom complex function and the process 7(+) defines an
orthogonally scattered random measure on the Borel field in reals. There is no
problem to generalize the Karhunen representation in the following way: instead
of the Borel sets with the Lebesgue measure we can consider a measure space (O,
o, m) and an orthogonally scattered measure #(*) satisfying

E(n(4,) 7i(42)} = m(d; 0 4,)

for every 4,, 4, € 6. Then, the corresponding covariance function of the process
{x(), e Ry} can be expressed as

R(s, 1) = [o @(s, 6) @(s, 6) dm(6) .
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Immediately, we see that a process with a normal covariance function belongs into
the Karhunen class with ® = R,, ¢ is the g-algebra of Borel sets in the plane, ¢(s, 8)=
= e"* ¥ je. 0 = (4, p). The measure m(-) defined on the Borel sets is determined
by a function F(-, -), see Definition 1. In a similar way, we can handle with the
multidimensional case.

As well known, the spectral decomposition of weakly stationary process is con-
nected with groups of unitary shift-operators in the Hilbert space of random process
values. Considering normal shift operators we reach, of course, the class of normal
covariance functions. In general, if a random process possesses a Karhunen re-
presentation (11) then there exists a self-adjoint operator 4 defined in the mentioned
Hilbert space such that

(1) = o(t, 4) x(0
(see [1]). In case of the nonorthogonal integral representation, mainly in the har-
monizable case, the question about the characterization of the corresponding shift
operators, has so far been open. '
(Received February 3, 1989.)
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