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EVALUATION OF CLARKE'S GENERALIZED GRADIENT 
IN OPTIMIZATION OF VARIATIONAL INEQUALITIES 

TOMAS ROUBICEK 

Optimization of systems governed by variational inequalities with linear constraints in IR" 
yields nonsmooth cost functions to be minimized. After discussion about various numerical 
methods to solve such optimization problems, we propose usage of a bundle or a subgradient 
algorithm and deal with the only problem how to evaluate in such case the generalized gradient 
of Clarke, required by it. As the problem in general is very complicated, an effective procedure 
is proposed only for certain special data. However, using the transversality theory, it is shown 
that "almost all" (possibly in the generic sense) sufficiently smooth data fulfil the conditions 
that guarantee the validity of the procedure proposed. 

1. FORMULATION OF THE PROBLEM AND CLASSICAL METHODS 

This paper contains a new approach to such optimization problems where the 
state is' governed by a variational inequality on a finite-dimensional space. For 
simplicity we confine ourselves to the elliptic case with control-independent linear 
constraints. Yet, our method could be extended to evolution variational inequalities 
(after a discretization both in space and in time) or to linear constraints depending 
on a control parameter as well. On the other hand, general convex constraints or 
nonlinear monotone operators in the variational inequality v/ould cause probably 
considerable complications. 

First we formulate our problem. Let bi e W, ct e U, i eIK, IK be a finite index set, 
<•, •> denote the usual scalar product in IR", n ^ 1. We consider the convex poly
hedral set: 

K = {xe W; VieIK: (bt, x> = c j . 

Let A: Um -> Un x IR" be a matrix-valued function, m }> 1, and / : Um -> W. For 
every control parameter u e IRm we consider the variational inequality: 

(Pu) find x = x(u) e K such that <A(w) x, y — x} ^ </(«), y — x> Vy e K 
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Furthermore, let j : Um x R" -> U be a cost function. We will suppose: 

(1) A: Um -> R" x R", / : Rm -> R", and j : Um x R" -> R are 

^-mappings, A(u) is a symmetric positive definite matrix for all u e Um 

(C1 means continuously differentiable). As for the convex set K, we will suppose: 

(2) K is nonempty, and 

Vx G R": {/3,-; (bh x> = ct} is a linearly independent set, 

(in other words, the binding constraints are always linearly independent). It is well 
known that (P„) has exactly one solution x(u) which is, at the same time, the only 
minimizer of the quadratic function x i—> <A(M) x — 2f(u), x> over the convex set K. 
Also, x(u) is the projection of A~x(u)f(u) onto K with respect to the metric induced 
by the matrix A(M). We will denote the respective projector by PrJCjA(„): R" -> R", and 
write x(u) = Pr/c^(„) A~1(u)f(u). Thus we can see that the family of the variational 
inequalities {(P„); u e Rm} forms by « h-> x(«) a state operator Rm -> R", and the 
following optimization problem may be introduced: 

(&) minimize J(u) = j(u, x(u)) where x(u) solves (PM), u e Um. 

Problems of such type appear, after a discretization, in optimization (e.g. optimal 
control, optimal shape design, identification of coefficients, etc.) of an elliptic partial 
differential equation with, say, a unilateral boundary condition (or another unilateral 
elliptic problem; see [4]). We suppose that (&) has got a solution, which can be 
ensured, e.g., by some coercivity off The question analysed in this paper is how 
to solve the optimization problem (0>) numerically by existing optimization algorithms. 
First we briefly touch some more or less standard methods. Of course, the main 
difficulty lies in the fact that the state operator is nonsmooth, thus also J: Rm -> R 
is nonsmooth. 

In principle we have two possibilities: either minimize J given by the implicit 
state operator without any constraint (i.e. the problem (&)), or minimize j over the 
product of the spaces of controls, states, and here also the Lagrange multipliers, 
but with constraints characterizing the state operator. For the latter possibility we-
can use the Kuhn-Tucker necessary (and here also sufficient) conditions for x to 
solve (P„): 

(3) A(u)x-f(u) = YJZ-ibi 
ieIK 

Xi = 0, V . = 0 , ri=(bi,x>- ci = 0, 

where lt = Xt(u) are the uniquely determined (thanks to (2)) Lagrange multipliers, 
regarding to the constraints forming the polyhedral set K. However such approach 
has the following disadvantage: in applications, n is typically far larger than m. 
E.g. in optimal shape design of an elastic 2D-body we have got, say, m = 10 design 
parameters, while the elliptic partial differential equation (i.e. the Lame system) 
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is discretized by the finite element method using, say, 500 mesh point (hence n = 
= 1000), and the boundary with a unilateral boundary condition (e.g. the Signorini 
problem) has got, say, card(Ix) = 20 mesh points. Thus we would replace the un
constrained problem with 10 variables by a constrained problem with 1030 variables, 
which is certainly not much effective. This disadvantage hardly can be compensated 
by the fact that we need not to solve the variational inequality (P„) (recall that we 
have enough effective numerical methods to solve (P„); see [4]). 

Hence we will consider only the former approach: minimize J over the space 
of controls. We have still two possibilities: either approximate (0>) by the usual 
smoothing technique, or treat directly the nonsmooth problem (0>). In our special 
problem the former, quite efficient method is based on the usual smooth penalty-
function technique: replace the original variational inequality (P„) by a smooth 
variational equality (Pu): 

(P*) find x = x(u) e U" such that 

(A(u) x, y} + s-\P(x), y} = (f(u), y} Vye U", 

or we may also write briefly: A(u) x + P(x)js = f(u), where & > 0 and /?: U" -> Un 

is an appropriate monotone Cx-mapping with Ker /? = K; cf. [4; Chap. 1, §3.2]. 
However this approximation method has got all unpleasant properties of the penalty 
technique: for e large we get smooth problems but (PE

() approximates (PM) badly, 
while for small s > 0 we get a good approximation but with "rapidly changing" 
gradients, hence the approximation is "numerically nonsmooth" like the original 
one. Moreover, the approximate equation, being nonlinear, can be solved only 
iteratively with a certain prescribed accuracy. Yet, even small errors in evaluating of 
the cost function and its derivatives are very unpleasant for optimization algorithms 
and often cause their failure. 

During last decade, efficient optimization algorithms for nonsmooth cost functions 
have been developed, thus we may solve directly the original nonsmooth problem. 
We have again two possibilities: either use an optimization algorithm for quasi-
differentiable functions (see V. F. Demyanov [3]) requiring the directional derivatives 
of J, or use a bundle algorithm (see C. Lemarechal et al. [8]) or a subgradient 
algorithm (B. T. Polak [10]) requiring some element of Clarke's generalized gra
dient of J. In any case, we need an efficient procedure yielding gradient information 
about J. However, it is not a trivial matter at all, and classical approaches do not 
seem much effective as explained below. 

For every u e Um we classify the indices from IK: 

In(u) = {ieIK; rt(u) = (bhx(u)} - ct > 0} , 

Ia(u) = {i eIK; Xt(u)y 0 } , 

Io(u)=IK\(In(u)[JIa(u)), 

where x(u) = ~PrK>Mu) A_1(u)/(M) is the solution of (P„), and Xt(u) are the Lagrange 
multipliers from the Kuhn-Tucker conditions (3) for the projection Prjf>^(„) of 
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A_1(M)/(M). The indices from I„(M), Ia(u), and I0(u) will be referred to as non-active, 
strongly active, and semi-active, respectively. As a consequence of (1) and (2), both 
the mappings u i—• x(u) and u i—> X-^u) are locally Lipschiz continuous (cf. W. W. 
Hager [5; Theorem 3.1]). If I0(M) is empty at some u e Um, then J is differentiable 
at M. Indeed, by the mentioned continuity of x(u) and Xt(u), we have I„(y) = I„(u) 
and Ia(v) = Ia(u) for every v belonging to a sufficiently small neighbourhood B 
of u. Then we have also J(v) = Jj (u)(y) for all v e B, where Jx: Um -> [R is defined 
by: 

(4) J7(M) =j(u,~PrK(IhA(u) A-1(M)/(U)), with 

K(I) = {x e R"; Vi eI : <&,., ;c> = c j . 

Obviously, for I = Ia(M), K(I) is a nonempty linear variety in B~~, and Jt is a C1-
function. Therefore J is differentiable at u because it coincides with Jr on B. 

Hence we might arrange our computation as follows: to solve (P„) we use an algo
rithm that gives (after a finite number of steps) the solution x(u) together with the 
corresponding Lagrange multipliers Xt(u), hence we can determine the partition 
IK = In(u) u I0(u) u Ia(u). If it happens that I0(u) = 0, we compute the derivative 
DJ(u) ("D" will denote the derivative) as DJr(u) via the adjoint-equation technique 
considering only the constraints with the indices from I = Ia(u). This technique, 
though quite difficult to programme, is very efficient. Being standard in optimal 
control, we will not explain it here; for the case of the so-called simple constraints 
see also [6]. It should be emphasized that the case I0(u) = 0 may be expected as 
very frequent: by the well-known Rademacher theorem (i.e. the locally Lipschitzian 
function J is differentiable a.e. in Um) and by the transversality theory used below 
we could demonstrate that, roughly speaking, for "randomly" chosen smooth data 
A and / , and for almost all u e IR", the set I0(w) will be empty. 

Nevertheless, a minimizer of J cannot be considered as chosen randomly, and we 
may expect that I0(M) will be often nonempty when u is an optimal solution of (<?). 
Thus the analysis we will perform below is particularly useful at an optimal solution 
of (3P), or near it if round-off or other computational errors are taken into considera
tion; cf. also the numerical experiments made in [6; § 6]. 

Hence we have to analyse the case I0(u) 4= 0, i-e. the case when the so-called 
strict complementarity conditions for P„ are not satisfied. First we discuss the method 
based on the directional derivatives. K. Jittorntrum [7] proved that there exist 
directional derivatives of x(u) and Xt(u), and proposed a procedure how to evaluate 
them: take some IeJ>(u), where 

(5) J(u) = } / c IK, Ia(u) cz I c Ia(u) u I0(M)} , 

then evaluate the directional derivatives of the function Jt and of the corresponding 
multipliers, check whether these derivatives fulfils certain system of inequalities 
derived by differentiation (with respect to M) of the Kuhn-Tucker conditions (3) 
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for (P„), and possibly repeat all computation with another I e J(u); cf. [7; Remark 
(hi)]. Since I^ is finite, such algorithm actually find the directional derivative after 
a finite number of trials and error choices of the index set I. However, if there is, 
say, 10 semi-active indices, then there is 1024 possibilities how to choose I, and it 
may be expected that we make in average 512 error choices per one evaluation of the 
directional derivative, which is certainly too much computational effort wasted. 
K. Malanowski [9], using the results of [7], evaluated the directional derivative 
(somewhat more effectively) via solving a quadratic programming problem. However, 
in any case we obtain only the derivative of J in some direction, and thus we need 
additionally a procedure solving the so-called direction-finding subproblem (see 
e.g. [3]) which will require to evaluate the directional derivative in many directions 
at each current control. 

Now we come to our new approach based on employing a bundle or a subgradient 
algorithm to minimize J. Due to (1) and (2) the state operator u i-» x(u) is locally 
Lipschitzian ([5; Theorem 3.1]), hence also J is locally Lipschitzian. Thus the 
Clarke generalized gradient 8J(u) of J at u is well defined by the formula [2; Theorem 
2.5.1]: 

8J(u) = co {lim DJ(uk) ; J is differentiable at every uk and the limit exists) , 
uk-*u 

where "co" denotes the convex hull. Using the bundle [8] or the subgradient [10] 
algorithm to minimize J, we need an effective procedure that yields only one element 
of dJ(u). We will compute it again as DJr(u). As we have already seen above, there 
is the fundamental problem how to choose I. In the case of the directional derivative 
we may even expect that there is only one correct choice of I from J(u). Since the 
generalized gradient in the nondifferentiable points contains more than one element, 
we may expect that now there is a large amount of correct choices of I from «/(«). 
It is highly advantageous, compensating thus the fact that (from the optimization 
point of view) Clarke's generalized gradient describes local behaviour of J worse 
than the directional derivatives. 

However, it must be pointed out that, in some special situations, there may exist 
incorrect choice of I from J(u), i.e. DJT(u) £ dJ(u) for some I e <?(u); cf. the example 
in [6]. On the other hand, we demonstrate in what follows that, roughly speaking, 
for a "random" choice of a sufficiently smooth mapping / and for every ueR™ 
(thus for a minimizer of J too), every choice of I from J(u) yields an element of the 
generalized gradient and, moreover, taking all I from J{u), we obtain even the whole 
generalized gradient (of course, after making the convex hull). Supposing that we 
dispose of a package of, e.g., a bundle algorithm and of a solver for (P„), our strategy 
is now evident: 

i) for u stated by the bundle algorithm, solve (P„) by a method that yields also 

the Lagrange multipliers, 

ii) then determine J[u) from (5) and take some I e J>{u) (in other words, / contains 
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obligatorily all strongly active indices, and optionally some semi-active indices), 
iii) evaluate DJ7(w) by the standard adjoint-equation technique, 
iv) answer the bundle algorithm by the value of the cost function J(u) and by the 

gradient information DJ/(w). 

This very simple strategy is a straightforward extension of the standard technique 
used in smooth optimal control. For its simplicity and efficiency we must pay the 
only price: in some special situations the procedure may produce element DJt(u) 
that does not belong to dJ(u), which might cause a failure of the bundle algorithm. 
On the other hand, such situations will be shown to be rare in a certain sense, and 
thus we may rely on the algorithm to work without any failure (cf. also Remark 3.2). 

It may be also said that our algorithm is based on the fact, that, roughly speaking, 
for randomly chosen sufficiently smooth / and for every u e lRm, the set IQ(u) of the 
semi-active indices contains at most m elements, each of them can become strongly 
active or non-active (independently of the others) when u moves a little. 

The plan of the paper is the following: in Section 2 we deal with the evaluation 
of dJ(u) by the outlined way for the case that the mapping/is in a "good" position 
with respect to the other data of the problem, and then in Section 3 we investigate, 
by using the deep results of the transversality theory, the question when / is in such 
position. 

2. !P-TRANSVERSALITY AND EVALUATION OF dJ(u) 

First, in a simple case when A does not depend on u, we explain "geometrically" 
the principle we will use. Let Mk denote the set of all w e W such that the projection 
^TK,A of A-1w has at least k semi-active indices. In view of (2) we have obviously 
0 = Mn+1 cz Mn <=. ... Mx a M0 = W, and each Mk can be compound with 
some polyhedral parts of (n — /c)-dimensional hyper-planes (each Mk looks like 
the union of several "broken" (n — /<)-dimensional hyper-planes). This would not 
enable to use the results of smooth analysis (i.e. the transversality theory). Yet 
we can enlarge each Mk to Mk taking for Mk the union of not only the parts, but 
of all respective hyper-planes. It is important that the dimension of the hyper-planes 
forming Mk is again n — k. Now we consider the m-dimensional variety E = /(lRm). 
We intuitively feel that, taking / "randomly", there is hardly a chance for E n Mk 

to be nonempty for fe > m. If k S m> we may suppose that E intersects Mk, but 
again there is hardly a chance that, if w e F n Mk, the dimension of the space generat
ed by the tangent hyper-planes to E and Mk at w is less than m + n — k. These 
intuitive assertions actually hold provided / is smooth enough; cf. the Sard-Brown 
theorem below. The first assertion says that there is hardly a chance that for any 
control ueUm the set of the semi-active indices will contain more than m elements. 
The second assertion will enable to prove simply that these indices become actually 
either strongly active or non-active in a neighbourhood of u. Thus we can avoid 
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also somewhat complicated situations with an oscillating nature as in [7; the proof 
of Theorem 3, the case R2 4= 0], but the main aim is to avoid the situation when 
I0(u) contains more than m indices (recall an example in [6] showing that (6) actually 
need not be valid in this case). If / is in such a "good" position with respect to the 
other data A and K, we shall say that / is IF-transversal to A and K. 

Now we define the !F-transversality precisely. We treat straight the case when A 
depends on u, which requires making considerations not in the space IR" like in the 
above heuristical explanation, but in Um x IR". 

Definition 2.1. A triple (Ii ,I2 , I3) will be called admissible if It <= IK for i = 
= 1, 2, 3, I, nlj = 0 for i + j , and the vectors {/3i5 ielx u I 2 u I 3 ) are linearly 
independent. 

Definition 2.2. A ̂ -mapping / : Um -> U" will be called !F-transversal with respect 
to the other data A and K (briefly f-transversal) if for every admissible (IX,I2,I$) 
and every ueUm such that ^(lx,I2,I3) (u,f(u)) = 0 we have 

Range DV(Ilt I2,13) (u, f(u)) = Up with p = card (I2 u I3) , 

where the function W(IX,I2,I3): Um x W -> Up is defined by 

M B J A - ^ B ^ ^ + BJA-^W)^ 

[W(Ix,I2,I3)(u,w)l = ( for iel2, 
\ [(B, A~\u) (w - BJ(B, A~\u) BJ)"1 (Cl + 

+ Bj A 1(u) w)) — c^ for i eI3 , 

where I = Ix u I 2 , [•], denotes the component with the index i, Br is the matrix 
whose rows are just the vectors bt with i el, BJ is its transpose, and ct is the vector 
with the components c( for i e I. 

Note that the components of W(IX, I2,13) (u, w) with i e I2 are just the correspond
ing Lagrange multipliers of the projection PrX(/)A(M) of A~x(u) w, while the compo
nents with i 6I3 are equal to <6£, x} — Ci with x = PrX(iM(l4) A_1(«) w, representing 
thus the violation of the constraints with i e I3 that are not included to K(l). Note 
also that (1) guarantees W to be a C1-mapping. For simplicity we have considered 
all admissible triples (I 1 ,I 2 ,I 3) , not only the triples which actually appear within 
the projection onto K. 

One point should be emphasized: we do not expect that, for a concrete da ta / , A, 
and K, the !P-transversality of / may be effectively verified, although under some 
quite restrictive assumptions it is possible (cf. Remark 2.1 below or a special case 
in [6; Theorem 5.2]). From our computational viewpoint the only important facts 
are the following: 

i) i f / i s ^-transversal, we state an effective procedure to evaluate the Clarke general
ized gradient of J (for the bundle algorithm it suffices even to find only one 
element of its), 

163 



ii) the cases when / is not f-transversal are rare in some sense, which justify our 
algorithm for practical cases (i.e. the !P-transversality need not be verified). 

The point i) is solved by Theorem 2.1 together with the algorithm outlined in 
Section 1; the point ii) will be treated in the next section by Theorems 3.1. and 3.2. 

Theorem 2.1. Let (l) and (2) hold. If / is !F-transversal, then for every u e Um: 

(6) 8J(u) = co {DJj(u); I e J(u)} , 

where Jt and J(u) are defined by (4) and (5), respectively. 

Proof. First, we will prove that DJj(u) e dJ(u) for every I e J(u). We employ 
the mapping W(luI2,I3): Um x Un -> Up defined above, taking I1 = Ia(u), I2 = 
= I\Ia(u), andI3 = IK\(In(u)ul). For brevity we denote this mapping as\]/I>u: Um x 
x Un -> R". Of course, p = card (I2 u I 3 ) = card (I0(M)), where I0(M) = IK \ (Ia(

u) u 
u I„(M)) is clearly the set of the semi-active indices of the projection in question. 
Note that, in view of (2), the triple of the index sets used for the definition of i]/I>u 

is admissible for any I e J(u). Obviously, PrK)A(u) A" 1(u)f(u) = Pr-(i)>i4(w) A_1(M)/(M), 
the Lagrange multipliers with the indices from I of both of these projections being 
the same. Since the multipliers Xt as well as the residua rt of the former projection 
are equal to zero for every i e I0(u), we see that 

^I,u(U,f(u)) = 0 . 

Thanks to the f-transversality, v.t-*-ij/ItU(v,f(v)) is a ^-mapping with a surjective 
derivative at u. Hence we may use the well-known inverse mapping theorem (see 
e.g. [1; Chap. 2, § 1]), and choose a sequence {uk} such that Mfc -*• u and 

Vuk:i]/i,u(uk,f(uk))>0, 

i.e. each component is positive (if m = p, then use the inverse mapping theorem 
directly, and if m > p, the first employ an arbitrary C1-mapping <p: Um -> Um~p 

such that the mapping vt-+(i]/I<u(v,f(v)), <p(v)) has a surjective derivative at u, and 
afterwards apply the mentioned theorem). Thus we observe that, if uk is sufficiently 
near to u, all the components of the vector (Bj A~1(uk)B\)~x (ct + B/A~1(Mfc) . 
. /(Mfc)) are positive (note that these components are just the multipliers of the pro
jection Pr- ( I M („k ) of A-\uk)f(uk)), and also (bu Pr-(I)fA(fJfc) A_1(Mfc)/(Mfc)> - ct > 0 
for every ieIK\I. From these facts we conclude that Pr#(/))A(Mfc) A

_1(Mfc)/(Mfc) = 
= Pr-,A(iik) 4""("*)/(«*) and, moreover, Ia(uk) = I and I„(Mfc) = IK\L Particularly, 
^o(M/c) = $ a n d therefore J is differentiable at Mfc with DJ(Mfc) = DJr(Mfc). Since Jt 

is continuously differentiable, the sequence D J/(Mfc) has a limit, and we have clearly 

lim D J(uk) = DJj(u) . 
uk-*u 

From the definition of dJ it immediately follows that DJ^ujedJfy). Because of the 
convexity of dJ(u), we have proved the inclusion 

co {D Jj(u); I e J(u)} c dj(u). 
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To prove the converse inclusion, we consider a neighbourhood M of the set 
{DJ /(w);/e J(u)}. Since J7 are ^-functions, we can take a neighbourhood Nu 

of u such that D Jr(v) e M whenever v e Nu and I e J(u). Moreover, taking N„ 
sufficiently small, we may suppose that Ia(u) c Ia(v) and In(u) c In(v) for all v eNu 

as a consequence of the continuity of the mappings v i-> rj(u) and u i-> /l/(u). Therefore, 
I0(v) c 70(M) and also J(v) <= ,/(«). Now, we will investigate the set S = {ve Nu; 
I0(v) 4= 0}. For every v e Nu, iel0(v), and I e J(v), we have [«/t/,,.(tf,/(u))]i = 0 
because the values r, as well as the multipliers A, with iel0(v) of the projection 

P-KC/uiodOMCtO o f ^ _ 1 ( y ) / ( u ) a r e equal to zero and [»>/,«,(»,/(«))]. = tyi ,•.(»,/(*>))]»• 
Hence the following inclusion is obviously valid: 

S c U SIti 
IeJ(u) 
ieIo(u) 

where SI>i = {veNu;[\l/I>u(v,f(v))']i = 0}. Employing again the !F-transversality, 
which implies local surjectivity of the ^-mapping vt-^\l/I)U(v,f(v)) at the point u, 
and taking N„ sufficiently small, we conclude that SIti has the Lebesgue measure 
zero in IRm (use the well-known implicit function theorem to construct a C1-function 
from a subset of Rm_1 to U whose graph is just Su). Thus also S has zero measure. 
We have already explained that J is differentiable on Nu\ S and, considering 
VENU\S, we have got DJ(y) = DJt(v) with I = Ia(v) = IK\In(v) (then obviously 
J{v) = {I}). Therefore DJ(v) = DJz(v) for some I e J(u) and we observe that 
DJ(v) eM whenever v GNU\S. Since M has been an arbitrary neighbourhood 
of {DJ 7 (M); I e J(u)}, we obtain the estimate 

{ lim D J(Mfc); ukeNu\S and the limit exists} c 
uk-*u 

c {DJj(u); I e J(u)} . 

This inclusion is preserved for the convex hulls as well. Since S has zero measure, 
from Thm. 2.5.1 in [2] it immediately follows that 

co {lim DJ(uk); ukeNu\S and the limit exists} = 8 J(u) , 
uk-*u 

which completes the proof. • 

Remark 2.1. There is one particular case in which the ¥r-transversality is simply 
ensured: the matrix A does not depend on u e Um and the mapping / h a s a surjective 
derivative, i.e. Range Df(u) = IR" for all u e Um, This case has been investigated 
by a slightly different technique in [6; § 5]. For the special case that / : IR" -> IR" 
is identity cf. also K. Malanowski [9; §4] . The surjectivity condition is, however, 
very restrictive: e.g. it cannot be fulfilled when m < n. 

Remark 2.2. The qualification hypothesis (2) excludes equality constraints (e.g. 
(J}t, x} = c( with bt = —b2 and cx = —c2), but such constraints are not important 
from the viewpoint of nonsmooth analysis. Also situations of the type K = 
= {x e IR"; (bh x} = 0 Vi e IK , where IK has more than n indices, are not allowed 
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because, in such situations, the analysis of local behaviour of J must be performed 
finer than it has been by (6). Nevertheless, it seems that in tasks arising by dis
cretization of unilateral problems for partial differential equations the latter situation 
will not appear. 

3. GENERICITY OF THE f-TRANSVERSALITY 

In this section we apply Thorn's and Sard-Brown's theorems to show that, under 
some additional assumptions, the cases when / is not !P-transversal are "rare". 
The theory we will use is usually referred to as transversality theory; for a survey 
see [1; Chap. 2, §§6, 7]. 

Here we briefly present some definitions and assertions from the transversality 
theory, generality being restricted to our special case for the sake of simplicity. 
Let P(f) be a statement about the points / of a complete metric space. V. We say that 
P(f) is a generic property on Fif the set {/e V; P(f) is true} contains a dense Gd 

subset of V. A ^-mapping </>: X -> Up, X is a Banach space, is said to be transversal 
to a linear subspace M c Up at a point # e x if either <p(x)$M or Dq>(x)(X) + 
+ M = Up. Furthermore, <p is called transversal to M if it is transversal to M at 
every / e l ; in other words, D(p(x) (X) + M = Up whenever # e x , (p(x)eM. 
If V is a Banach space, $: Um x V-+ Up is a Ck-mapping (i.e. fc-times continuously 
differentiable) with k = max (1, m + 1 — codim M) and $ is transversal to M, 
then the statement P(f) = {$(• , / ) is transversal to M} is a generic property on V. 
This assertion (in somewhat more general form) is known as Thorn's transversality 
theorem. The space of all Cfe-mappings from X to Y will be denoted by Ck(X, Y). 

Theorem 3.1. Let (2) hold, A e Ck(Um, U" x R") for some k = m, A(u) be sym
metric positive definite for all u e IRra. Then the statement P(f) = {/ is !F-transversal} 
is a generic property on Cft(Rm, R"). 

Proof. We take an admissible triple (IUI2,I3) and investigate the mapping 
d ) : r x C ' ( r ( R " ) ^ B p , defined by $(u,f)=xF(l1,I2,I3)(u,f(u)) with p = 
= card(L2 vl3). Denote by Df<P the partial derivative of <Z> with respect t o / It is easy 
to see that, for any u0 e IRm, the mapping <P(u0, •): Ck(Um, R") -* Up is affine, its deriva
tive at a point /„ is equal to Df<P(u0,f0), and Df$(u0,f0) (f) = G(u0)f(u0), where 
G(M0) is the matrix of the rank p x n, whose r'th row is equal to ith row of the matrix 
H = (Bj A_1(M0)BJ)_1 BjA'^Mo) if iel2, and to the vector vt = A_1(M0) bt — 
- A~\u0) BjHbi if i el3 (where I = Ix u I2). The matrix A~\u0) BJ(B7 A_1(M0) . 
. B J ) - 1 ^ represents the projector with respect to the metric induced by A(u0) 
onto the space generated by {A~1(u0)bi; id], from which immediately follows 
that the matrix H has linearly independent rows (recall that bh iel, are linearly 
independent since the triple (lx,I2,I3) is admissible). Now, suppose that, for some 
i el3, v( is a linear combination of the vectors Vj, j e l 3 \ {i}, and the rows of H. 
In other words, for every y e W, (Vj, y} = 0,j el3\ {i}, Hy = 0 implies <vt, y} = 0. 
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Obviously, <t>;, Y> = (A~l(u0) bj, y} for every jel3 and y such that Hy = 0. 
Moreover, since the matrix Bj A~x(Uo) B] is regular, the condition Hy = 0 is 
equivalent to (A~x(u0) bp .y> = 0 for each jel. Consequently, for every y e U", 
<^A~1(u0)bJ,yy = 0 for each / e I u I 3 \ { i } should imply <A_1(w0) bh yy = 0, 
which is obviously impossible because the vectors bf, j el u I3, are supposed to be 
linearly independent. Consequently, G(u0) has linearly independent rows and 
Range Df = Up at every point (u0,f0). 

As A is a Cfc-mapping, <*>(*,/) e Ck(Um, Up) for every/G C*(R~, R"). Since $(u, •) 
is an affine (and hence also Cfc-) mapping, we see that <P is globally a Cfc-mapping 
on its domain. Since Range Df<P = Up, <& is transversal to every linear subspace 
M <= Up. We take M = {0}. Due to Thorn's transversality theorem and Lemma 6 
from [l;Chapt. 2, §6], the statement Q(li,I2,I3)(f) = {<P(-,f) is transversal 
to {0}, where <P is constructed by means of (Il5 I2,13) as described above} is a generic 
property on Ck(Um, U") provided k = max (l, m - p + 1). This condition is fulfilled 
since p — 1 (the case - = 0 is not interesting) and k 7z m (see the assumptions). 

However, saying that / is W-transversal means precisely that Q(Ii-I2,I3) (/) is 
true for every admissible triple (I l 5I 2 ,I 3) . Since I^ has been supposed as finite, 
the collection of all admissible triples is finite too, and the genericity is preserved 
for the 'F-transversality as well (because, in a complete metric space, the intersection 
of a finite number of dense Gd subsets is again a dense Ga subset). • 

The genericity works on infinite-dimensional spaces like Ck(Um, Un) where no 
analogue with the Lebesgue measure can be defined. However, on finite-dimensional 
spaces it may happen that a statement is generic, being false almost everywhere 
(a.e.). Nevertheless, if we confine ourselves to A independent of u and use the Sard-
Brown theorem, we can show that the '"-transversality holds a.e. on certain finite-
dimensional affine submanifolds of Ck(Um, Un). The mentioned Sard-Brown theorem 
sounds as follows (cf. [1; Chapt. 2, § 7, Thm. 1]): If <p e Ck(Um, Up), k = 

= max (1, m — p + 1), then the set of critical values of <p has Lebesgue measure 
zero in Up. We recall that q e Up is a critical value of <p if there is u e Um such that 
Range D(p(u) + Up and <p(u) = q. 

Theorem 3.2. Let (2) hold, feCm(Um,U"), and A symmetric positive definite 
independent of u e Um. Then / + a is •F-transversal for a.a. a e Un. 

Proof. Take an admissible triple (I l 5I2 ,I3) . Since A does not depend on u, we 
may write W(ll,I2,I?) (u, w) = Gw + g, where the matrix G, now independent 
of u, has been already derived in the proof of Theorem 3.1, and g is a vector from 
Up, p = card (I2 u I3). Due to the Sard-Brown theorem, the set of the critical values 
of Gf + g: Um -> Up has the Lebesgue measure zero in Up (note that / is smooth 
enough because p = 1; the case p = 0 is not interesting). Clearly, q e Up is a critical 
value of Gf + g iff there is a eUn such that Ga = q and zero is the critical value 
of G(/ + a) + g. Since G has linearly independent rows (see the proof of Thm. 3.1), 
the set {a e Un; 0 is the critical value of G(/ + a) + g} has the Lebesgue measure 
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zero in U". However, saying that / + a is not f-transversal means precisely that 

zero is the critical value of G(f + a) + g for some admissible triple (I l 5I2,I3) 

by means of which G and g has been constructed. Since there is only a finite number 

of possibilities how to choose (Ii.I2.-J3) ar*d the union of a finite number of sets 

with a zero measure has again a zero measure, the assertion is proved. • 

Remark 3.1. Since the number m of parameters to be optimized is usually large, 

the assumptions of Theorems 3.1 and 3.2 practically force us to use C°°-mappings 

for A and /(while j is to be only ^-function). 

Remark 3.2. Roughly speaking, Theorems 3.1 and 3.2 assert that for a randomly 

chosen/, we may expect / to be ^-transversal. On the other hand, we must be very 

cautious if there is a symmetry in the problem because then / cannot be considered 

as chosen randomly. In such case the index set I used for evaluation of an element 

of 8J(u) must be taken not only to fulfil the condition Ia(u) cz I c IK\In(u), but 

also to preserve the symmetry of the problem. Thus here it is particularly recommand-

able to exploit as much symmetry as possible to treat smaller problem without any 

symmetry. 
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