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"CONDITIONS FOR A CONSTRAINED SYSTEM
TO HAVE A SET OF IMPULSE ENERGY MEASURES

R. M. UMESH

Necessary and sufficient conditions are developed for the existence of an sth order single-input
single-output linear time-invariant dynamical system without zeros to have a prespecified set
of n impulse energy measures. A method is proposed for determining the parameters specifying
the transfer function of such a system, if it exists.

1. INTRODUCTION

Given the transfer function T(s) of a linear time-invariant dynamical system
it is possible to determine the system’s impulse energy measures, where the ith
impulse energy measure

© i 2
¥, sj (d—,L—l(T(s))) dt, i=0,1,2,...
o \dr

The problem posed and solved in this paper is: Given
Y=[Y,Y,Y,..Y_,]", Y, finteandreal, i=0,1,2,....,n— 1
does there exist a system whose transfer function is

1
s" + Pn-1 sn—l + Pp-2 8

T(s) = — , p;real, i=0,1,2,...,n—1

+ ot Do

such that the impulse energy measures of T(s) are Y,, Y3, Y, ..., ¥, ,? If the answer
is in the affirmative the paper proposes a method to determine p,—q, Py—2s --+5 Po-

Several results relating to the computation and application of the impulse response,
impulse energy measures and quadratic moments of a system have been reported
[1], [2], [3], [4]. [5]- In this paper the technique used by Baklanov [2] to compute
impulse energy measures has been used to advantage. At first sight, it may appear
that the form of T(s) indicated above is too constrained, there being no zeros and
the feedforward gain being unity, for the solution to have any significant application.
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Such, however, is not the case; the impulse energy measures of such a system have
been employed to achieve exact and approximate model matching of multivariable
systems by state feedback [6].

The structuring of this paper is as follows. First a set of linear algebraic equations.
are developed to determine the impulse energy measures of a given system which
has a transfer function without any zeros. Next, the set of algebraic equations are
taken as the starting point and conditions are derived for the solution to represent
the impulse energy measures of an asymptotically stable system. This result paves
the way for a theorem specifying the necessary and sufficient conditions for the
existence of a T(s) having a prespecified set of n impulse energy measures. An algo-
rithm is then proposed to determine the parameters specifying T(s), if it exists.

2. DETERMINATION OF IMPULSE ENERGY MEASURES

Lemma 1. If
1
"4 Pue1S" T H PueaS" P L+ Do

T(s) = , p;realfor i=0,1,2,...,n -1,

is asymptotically stable and Y; is its ith impulse energy measure,

FY =@,

where

| Po —P2 Pa ... O] [ Yo ] [ O] N

0 Py —Pps . 0 Y, 0
O FUREAIIE R I 2 B AT

0 ..o -1 Yo . 0

_0 e . Pn-1] __Y;a—l__ __%_
Proof.

1
A PuetS T PSP+ D

T(s) =

Hence, in the time domain we can write

YOUE) + Pacy YOTI(E) + pue2 YOTB(1) + oo+ poy(t) = u(?)
where y(O(¢) is the ith derivative of the output y(t) and u(f) is the input. If u(t)
is a unit impulse and the initial conditions are zero, y(r) becomes the impulse re-
sponse. In such a case we have
(2) YO 4 P YO 4 P YT 4+ Py =0
with
y(O) = yO > y(l](o) = yl: e y(n—l)(O) = yn—l .
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The argument ¢ has been dropped for convenience. Let us expand T(s) as
T(s) = hofs + hq/s* + hy[s® + ...

Then
() W& = LYT(s)) = ho + hyt + hyt?j2! + ...
From (3) we have
¥(0) = yo = ho, yP(0) = yy = hy, ooy YOTO(O) = yuoy = By
From the expansion of T(s) we have
(4) L=(s"+ pots" U+ oo+ po) (Rofs + hy[s> + hyfs® +..).
From (4) :
(5) hg =y,=0, hl =y; =0, .., hn—2 =0, hn—l = Vy-1 = L.

Now multiply both sides of (2) by and integrate with respect to ¢ from 0 to oco. This
yields ;
(6) [Eyy™dt + § puoyyy® Vdt + ...+ [ poyydt = 0.

Consider a term of (6), say [ yy¥~1 ds,
jgo yy“'*l) dt = 580 yd(y(j_z)) = yy(j*Z)lgo - ff.)o 'y(l)y(j-2)dt_
Since T(s) is asymptotically stable

y(0) =0, yI(0)=0, i=0,12,...
Thus
O yyudr = —yop,—p + [5 yIyUTP dt.

The second term can again be integrated by parts to yield a product term compris-
ing initial condition and an integral involving the product of derivatives of y. Two
possibilities exist with regard to the final result of such operations. Apart from
terms explicitly dependent on the initial conditions, the term containing the integral
can become [ y@y“@*Vdr or [§ y@y@ dt. In the former case y(4)2/2|8° is the
result while in the latter case it is ¥,. Thus we can reduce the terms of (6) to product
terms dependent on the known initial conditions and unknown terms involving the
impulse energy measures. From (5) it follows that the terms dependent on the initial
conditions are zero. Next (2) can be multiplied by ¥, i =1,2,...,n — 1 and
the process of integration by parts repeated. For i = 1,2,...,n — 2 all the terms
dependent on the initial conditions will be zero, while for i = n — 1 one term will
be nonzero, this being y© =172 lff = 0-5.

In matrix form the concerned equations become

Do — D2 Pa -0 JIY, 1 " 0 07
0 py, —p3 --- 0 Y, 0 0
R (A
o 0 ... 1 ]y, 0 0
o o ... P dl Y, 1 |-0s] Lo ]
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3. VALIDITY OF THE SOLUTION AND STABILITY CONSTRAINTS
Lemma 2. Given FY = @, formed as in (1) and Y finite,

1
T(S) = n n—1 n—2
8"+ Dp—1S + Pn-2S + ...+ po

has impulse energy measures Y, Y, ..., Y, if and only if

123 ... .
detF[1 23 i]>0, i=1,23...,n

123 ...
JEEERN

is the matrix formed by rows 1,2, 3,...,i and columns 1,2,3,...,i of F taken
in that order.

where

Proof. Suppose Y,, Yy, ..., Y,_, are the impulse energy measures of T(s). Since
Y,i=0,1,2,...,n — 1 are finite T(s) is asymptotically stable. Hence p, + pys +
+ pys® + ... 4 p,_1s""1 + s"is a strictly Hurwitz polynomial. The necessary and
sufficient conditions for a polynomial of this type to be strictly Hurwitz are known
to be

Po>0, p;>0 and detD; >0, i=2,3,...,n
where

Dy Po0 0 ... 0
D3 P2 Pi Po --- 0

D;=|ps Ps P3Py --- 0 |, with p;
: : and p;

0 for j>n,
1 for j=n.

D2i-1 .- D;

Since the coefficient of s*is unity, det D, = 1.detD,_; = D,_;.SoD;,i = 1,2, 3, ...
...,n — 1 alone need by considered.
Let B, = ATDTA,, where

T—10 00...0
01 00...0

/ A,=| 00-10...0
0

00 O01...
Dl Dl (ixi)
Now,

det B; = det AT . det DT . det A; = det ATA;.det D; = 1.det D; = det D;.
In the light of the above, the stability conditions can be reformulated as p, > O,
pop; >0, detB; >0, i=2,3,....,n ~ 1.
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Here

Py —P3 DPs ...
—Po P2 —Pa ---
B, = 0O —p¢ p3 ...

0 Do =Pz --.
: o lxi
It can be readily seen that the above n conditions are equivalent to

123 ... ;
detF[l 53 I_:l>0, i=1,2,3...,n.

Thus the necessity part of the lemma stands proved.
Now suppose that we start with

123 ... .
detF[l 5y J>0, i=1,2,3..n.

Then, proceeding as before, but backwards, we have
Po>0, p,>0 and detD; >0, i=2,3,...,n.

It follows that py + pys + p,s® + ... + p,—s" ' + s" is strictly Hurwitz. So T(s)
is asymptotically stable. By Lemuma 1, the impulse energy measures of T(s) are such
that the vector Y generated from them satisfies FY = @. Now

[123 ... n
= F .
detF_123“.n:| detF > 0
So the solution of FY = @ is unique. It follows that
(123 ... .
detF—123”.i:|>O, i=1,2,3,....n
implies that Y, Yy, Y,, ..., Y,_, are the impulse energy measures of T(s). O

4. CONSTRAINED INVERSE PROBLEM

The matrix equation FY = @Q and the conditions on F for the solution to be
relevant provide the basis for developing explicit conditions to be satisfied by
Yy, Y., Y,,..., Y, _, to guarantee the existence of a T(s) which has them as its impulse
energy measures. The following theorem embodies a major result in this direction.

Theorem 1. Given Y = [Y, Y, ... Y,_]', Y, is finite and real for i = 0, 1,2, ...
..., n — 1, there exists a system with a transfer function

1
4 PuaS i+ Py

T(s) = — p; finite and real, i=0,1,...,n — 1

M
st + Pn-1S
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whose impulse energy measures are Yo, Y;, Y3, ..., ¥, if and only if M, is positive

definite where

- Y, 0 —-Y, O Y, ... 7]
0 Y, 0 -V, 0

-Y, 0 Y, 0 —-Y; ...

i

0
0%,

Proof. Suppose that there exists a system with transfer function T(s),

|
T(S) = n n—1 =2
S" 4 Pp-1S + Pp-2S + ...+ po

p;realfori =0,1,2,...,n — 1,

?

which has impulse energy measures Y, Yi, ..., Y,_; which are finite. Then T(s) is
asymptotically stable. Hence, by Lemma 1,

[P0 =2 po-.. OT[TY, | [O]

0 Py —p3; -.. O Y, 0

O —po py ... O Y, =10

0 o0 U N 0

‘0 0 cee Pu—q _Ynf 1] _0'5_ ~
That is
(7) FY - Q.

Next, by Lemma 2,

123 ...
(8) awL73 ﬂ>mi=LLme
Define
LGRS NSRS A A IS
(=D P2 Yorpp - =, =Y, Y Y
P= 0 LY, Y, Y, T, "M
0 0 —dp-1 n—2 n—2
1 0 .. 0 0 0 Y,_,|
(=" Yopoy oo =Y, =Y Yy Y ]
(_1)"/2‘1 }};1/2 e \YZ "“YZ Yl Yl
- 0 oo Y Y, Y, 5 Y, 5 - neven-
0 e 0 =Y, Y, Yo,
L 0 0 0 0 KI_I_A(HX”)
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The structure of P is apparent when its columns are examined commencing with the
nth. Use of (7) and expansion, for different n, readily yield

ey, ... 0 0 0 0 7]
Ak vloo0 0
©) FP = X x 050 0
; X X x Y,.,0
| X ... X X X 05 ]uxn

Here x stands for entries with which we shall not be concerned at present and
€4 = Y,-y, N even
=05, n odd
In the light of (8), F can be represented as [7]
(10) F=LDU.

Here L is a lower triangular matrix with unity as the diagonal elements while U
is an upper triangular matrix with unity as the diagonal elements. D is a diagonal
matrix such that

D(1, 1) = o, = detFl}]

ar[123-]
D(i,i) =a; = ,
detF[l 23 ... i 1]
123 ...i-1
By (8)«;, i = 1,2, ..., nareall positive.
Combining (9) and (10) and noting that D! is a diagonal matrix with diagonal

entries 1/a;, i = 1,2,...,n and that L™! is a lower triangular matrix with unity
as the diagonal elements ,we get

—qll .. 0 0 0 —-‘
X 3 ! 0 0
Oy —
(1) UP=D'L'FP = * oy
: n—1
’ X X 0
an—l
1
X X X _
B 22, |

/
g1, = Y,_4/ay, n even,

= 1/(22;), n odd.
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Y, _, is positive since, by assumption, it is an impulse energy measure of T(s). Thus,
from (11) and (8) we have

(u)aa(up[;g:i;ii'“;j>>o, i=n, n—1, n—2,.,1.

Since U is an upper triangular matrix with unity as the diagonal elements, its effect
is to leave the nth row of P unaltered and to make the ith row a linear combination
ofthei + 1,i + 2,i + 3, ..., nth rows without multiplying the ith row by a constant
that is not unity. Hence

ii+li+2...n ii+1i+2...n
P =
(13)  det [ii+1i-k2.“iJ da<up[ii+1i-+2.“ri)
i=n,n-—-1,n-2,..,1.

Combining (12) and (13) we have

i 1 i +2 ...
09 werp[[ TS 0 e 2,

We shall now use (14) as the starting point for what follows.

Case 1:(n — i + 1) odd.

Define

1 000... 00 00T
0 100... 00 00 v
0-110... 00 00

€=1lo 000... 10 00
0 000...—-11 00
0 000... 00 10
[0 000... 00 —1 Ll risyemoieny

Since det C = 1, we have
i i i+ 2 ... i+ 1i+2 ...
(15) detp|' PT1IT "o det(pc| i LEA "N>o.
ii+1i+2 ...n ii+1i+2 ... n
In the second determinant of (15) columnsn—i+1,n—i—1,n—-1i-3,..,1
are identical to the corresponding columns of the first determinant. Columns n — i,
n—i—2,n—1i—4,..,2 however contain one entry, + Y,,,, each in rows

n—i+1,n—in—i—1,...,(n — i+ 4)/2 respectively. Evaluating the second
determinant of (15) with respect to the columns containing the sole entry +7Y,_,

we have
det P t'l.+1{+2...n _
ii+1i4+2 ... n
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)(ﬂ n/2y

(-

iy/2 (=0 1)/. (n+i)/2
Y det :
(___1)(!1—i)/2 Yn—Z
(__1)(11—1')/2 }In—l (__

(Hl 2)/2§ 1( i+2)/2
1) n—i+

)(n—i+2)/2

(_~ 1)(nAi+2)/2 Xx——}
1)(7x—l+2)/2 K;—Z

Y(n+i-—4)/2 e
Y(n+i—2)/2 o Y

Yoy

i

. Y(n+i—4)/2
Y(n+i—2)/2 ((n—i+2)/2)x ((n—i+2)/2)

= (Y,_ )" P2 det E > 0

Eisthe((n — i + 2)/2) x ((n — i + 2)/2) matrix indicated above. Now define

0 0 ...0 17.
o 0...1 O
C =) v o . (n—1i+2)2 even
0-1...0 O
|1 0 ... 0 Olgu-it2yzyxcm-i+2)/2)
0 0. 0 17
0 0. -10
=] (n — i+ 2)/20dd
0 —-1. 00
|1 0. 0 Olin—i+2y2)x(n=i+2)/2)

Since det €, = 1, premultiplying E by C; will not alter the value of the determinant

of E. Thus we have

ii+1i+2.
(16) detP[ i litn

Y-
=Y.,
< Y7972 det
Y(n+i)/2
- Y(n+ i-2)/2

and

Y2772 det

- Y(n+ iy/2

| Yuei-2)2

Z:I > 0« Y,"772 det (C,E) 0 <>

Y,
Y3

—Yori-2y2 -
Yosi-ay2 -

Yori-oy2 -
Yovi-ayz ---

- Yv(n+ i—2)/2
Y'(n+ i—4)/2
: >0,
-,
Yi—'l

(n —i+2)2 even,

Y(n+i—2)/2
o i—4)/2

_Yin+i—-6)/2 > 0’

(n — i +2)2 odd.
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Case2:(n — i +

1) even.

Proceeding as before we get

ii 1i+2...n
(17) det P ._+ . >0«
ii+1i4+2...n
I K;—z -"Yn-3 _Y(n-i—3)/2—
-Y, 3 Y4 Yinsiosy2
- Y(n—1i+ 1/2 det ) —Y.-s _Y(n+i—7)/2 = 0
"— . . . .
},(n+i~l)/l _}’()1+i—3)/2 e _le
___)’(n+i*3)/2 Y(n+i—5)/2 e y’i—'l -
(n—i+1)2 even,
and
| Yn—z _Xx—'% Y(n+i—3)/2_
——Kx—3 Yn-—4 _}7(n+i—5)/2
Yn(z—li-i-l)/‘l det Yn—4 _Kx*S ?7(711—1'—-7)/2 >0 ,
—Y(n-i-i—ll/l },(n+i~3)/2 e —Yi
| ),(rx+i—3)/2 _Yin-ﬁ-i"S)/Z e Y’i—l _

(n—1i+1)2 odd.

The next step will be to show that the conditions (16) and 17 ensure the positive
definiteness of M,. For this we will start with M,, and note the conditions for its
positive definiteness.

M, is positive definite is equivalent to M, being positive definite, where

M, = CIM,C,

00...01
00...10
Cra|ii i i
01...00
10 ... 0 0luun

C, is nonsingular; else the positive definiteness of M, would not have implied the
positive definiteness of M,,.

Now /
[ Yo, 0 =%, 0]
0 Y. 0 -Y._;
=Y 0 Y., 0
M, = . .
. 0
| 0 " Yo
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M, is positive definite if and only if

~ 123 ... .
de:tM",:1 23 i]>0, i=1,2,3,....n.

Case 1: i even. Y-1 0O Y,_, O 7]
0 Yn—2 0 _Yvn—3
123 ... -Y_, 0 -Y 0
18 d M — dt n—2 n—3 _
()et"[123...i] i o T
. : . ) . 0
| 0 0 -
Y-y -Y. (—1)i+2r2 Y, i
= det ”‘Yn—z ?,;_3 : ("1.)l+4/2 Y;‘—(i+2)/2 x
(_'1)(i+2)/2 Y;x-i/Z (_1)(i+4)/2 Kl—(i+2)/2 e },n—i%—l
Y,_, ~Y,_; (* l)(Hz)/z Y;x—(i+2)/2
_ i+a
det .n—3 }.’;‘_4 . (-1)( . "2 Ki_(f+4)/2 > (
(=DT22Y oy ()Y gy o Y 2% if2)
Case 2: i odd. '
123 ...
tM —_— —
(19) det M, [1 23 ... i]
Y,y 0 A(=DYORY, i
0 Y, , ... 0
= det —.Y,,_z 0 . (—U(HWZ Yo i+3y2
(D)UY, (ii1y2 O e :Y;z~i
) —Y,_ e (DO G
(=D Y, ey (DT Y sy Y,
Y,_, -Y,_; cen —(1)(lj+1)':2 Yo_ivun
det| ~ T2 Ta-s U |
(—1)(i+1)/,2 KI_(,'+1)/2 (‘1)“—'—3)/2 Y;x‘(i+3)/2 e Yn—i+1

A careful comparison of (16) and (17) with (18) and (19) reveals that the conditions

are equivalent. Hence ..
ii+1...n
det P{ >0,
ii+1...n

i=n,n—1,..,1< M, positive definite < M, positive definite.
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Thus if a T(s) exists with finite impulse energy measures Yy, Yy, ..., ¥,_; then
M, is positive definite. The necessity part of the theorem stands proved.

To prove sufficiency let us start with the assumption that Yy, Y, Y5, ..., Y,
are such that M, is positive definite. py, py, -.., Ps—; can then be determined from

T Y, 0 —Ys 0 TP 05 7
0 Y. O — I3 Du-2 Y-1
(20) =Y,-, 0 Y,-3 O Pi-3| _ 0
AR | R Rl A
. -0 P1 0
L 0 Yoiipo | N

(20) has a unique solution because the positive definiteness of M, ensures the positive
definiteness of M, and so the (n x n) matrix on the left hand side of (20)is non-
singular. Rearranging the terms of (20) we get

[Po =P2 pPa - O 1Y ] [0 ]
0 pr —p3 ... O Y, 0
0O —-py p,... O Y, _ 0
o ... ... ... -1 ) 0
o0 ... ... .. p_ LY.l 105]
or .
(21) FY = Q.

Let us form P, defined as before, from Y, Yy, ..., ¥,_ ;. Using (20) we get

[z,, 0 ... 0 0 O 0 7
Xy

(22) FP ={ x, .Y 40 0 0
Xy ..ox; 050 0
X o xXy o ox, Y, 0
| X, S T TR TR VR

x, stands for entries with which we shall not be concerned at present,
Zy, = Y,_y, n even,
, , =075, n odd.
The (n x n)matrix F can be uniquely represented as [7]
(23) F=LDU.

where L is a lower triangular matrix with unity as the diagonal elements, U is an upper
triangular matrix with unity as the diagonal elements and D is a diagonal matrix
with the ith diagonal entry being «;. We will show that o;, i = 1,2,..., n are all
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positive. Noting that L™! is a lower triangular matrix with unity as the diagonal
elements and using (22) and (23) we have

z,, 0 ... 0 0 0 0 7
X2

(24) DUP = | x, ... Y_.0 O 0
X, oo Xy 050 0
Xy e Xy X, Y, 0
| X, oo Xy Xy X3 05

X, stands for entries with which we shall not be concerned at present, z,, is as indicat-
ed earlier. The positive definiteness of M, ensures that ¥,_; > 0. So from (24)
we have

(25) det<DUP[’_‘+1"'"])>o, i=n, n—1,..,1.

ii+1...n

Since U is an upper triangular matrix with unity as the diagonal elements

(26) det [ UP l-l’+l Y et P z.z'—f—l cemy
ii+1 ... n ii+1...n
i=n, n—1,...,1.

The effect of premultiplication of UP by D can, in the light of (26), be seen to yield

(27 det(DUP [:D = a, det (up [Z]) — o, det P [Z]
et e (e )

n—1n
= q,_ det P
o, 1%, det [n—ln]

' 12 ...n 12 ..
(29) det(DUPI:1 . n])—alaz...zxndetP[l s

As was seen earlier

S
| E—

RS
(30) M,,positivedefmite¢>detP[; ii . Z] >0, i=n,n—1,..,1.

In the light of (25) and (30) it can be seen from (27), (28) and (29) that
(31) a; >0, o, >0,...,0,>0.

The unique form of (23) and (31) readily yield

detF[}] =0, >0
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12 1
detF | 2:] =0, detF[lJ = o0, >0

2.
detF 12 Z:Iz Uy 1Oz ovn Oy > 0,

So

2
detF| ! ’,]>o, i=1,2...,n.

12 ...

By Lemma 2, a T(s) exists with impulse energy measures Y, Yi, .

completes the proof.

Algorithm.
1. Given Y,, Yy, ..., Y,_,, form M,.

.., Y,_,. This

2. Check if M, is positive definite. If it is not then T(s) does not exist and the proce-

dure terminates. If M, is positive definite go to Step 3.
3. Determine p,—1, Pu—2; ---» Po using (20) and form T(s).

Example. Given Y, =2,Y, =1 and Y, = 3.
Then

2
M,={ 0
—1

o - o
w o -

This is positive definite. So the required T(s) exists. From (20)

30 —11{p, 05
01 Of|lp|=]3
—-10 2||po 0

Hence p, = 0-2, py = 3 and py, = 0-1. It follows that

1
T(s) =
) s34+ 0252 + 35 + 01

5. CONCLUSION ‘

Necessaty and sufficient conditions were derived for the existence of a system
with a transfer function which has no zeros and n poles having a prespecified set
of n impulse energy measures. A method was proposed to determine the parameters
of the system, if one exists. The procedure was illustrated by means of a numerical

example. (

(Received April 29, 1987.)
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