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ASSOCIATED SPECTRA 
OF SOME NON-STATIONARY PROCESSES 

JIŘÍ MICHÁLEK 

In this paper asymptotic stationarity of some classes of nonstantionary random processes 
is investigated. 

The notion of weak stationarity was generalized gradually in several directions. 
The first extension, suggested by Loeve, see [1], is called strong harmonizability 
in contemporary times. Weak harmonizability was studied first by Rozanov, [2], 
another approach based on Fourier analysis methods was proposed by Bochner 
under the name V-boundedness [3]. 

Further extensions, considered by Kampe de Feriet and Frankiel in [4], are the 
notions of associated spectrum and of asymptotic stationarity. This was also con
sidered under the same name "asymptotic stationarity" by Parzen [5] and by Roza
nov [2] without a name. Rozanov established that every strongly harmonizable 
process is asymptotically stationary and hence it possesses an associated spectral 
function. A generalization of this result for a weakly harmonizable process one can 
find in [6]. The goal of this work is to prove asymptotic stationarity for some classes 
of non-stationary processes. 

Let [x(t), t e R,} be a random process, complex in general, with finite second 
moments. Let us assume, for simplicity, its expected value is vanishing every
where. We shall say that the process {x(t), t eUt] is asymptotically stationary if 
there exists a finite function r(-): Ut -» C such that for every /) e R, 

r(h) = Urn 1 J< E{x(s + h)J(s)} ds . 

As far as the function r(-) exists then it is positively semidefinite as was shown 
in [2] e.g. and hence, there exists a unique bounded Borel measure /*(•) such that 

r(h)= $l™c[hudn(u) 
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a.e. with respect to the Lebesgue measure. The measure fi(-) represents the associated 
spectrum of the process {x(t), ( e R , } . 

Following Silverman [7], a random process {x(t), ( e R , } , is locally stationary 

if its covariance function R(s, t) = E{x(s) x(t)} can be written in the form 

Я M - Ä I ^ ) *-(-- ') 

where Ri(*) 2: 0 and R2(-) is a stationary covariance function. In this case we shall 
call covariance function R(-, •) locally stationary, too. 

Let us assume that the process {x(t), r e R , } is locally stationary. In order to 
consider 

J0 R(s + /?, s) ds 

we must require measurability of the function R2(-) and the existence of 

JIi*i(.)d-
for every pair f, < t2 of real numbers. Under these assumptions the integral 

J0 R(s + h, s) ds 

exists for every h e R, and every t > 0 because 

JS R(* + K -) d s = Jo Ri(s + hl2) R2(h) ds = R2(fc) J0 R,(s + fc/2) ds = 

= i?2(fc)j;;r Rt(u) d». 

This fact immediately implies that the locally stationary process {x(f), ( e R , } is 
asymptotically stationary if and only if there exists a finite limit 

lim - J o R,(s + /i)ds 
( - 0 0 ( 

for every fceR,.lt is easy to see that this limit, if exists, is not depending on h. It holds 

| j 0 R , ( s + /,)ds = ijr-"R ,(u)du = 

= I J0 H.(«) du + 1 j ; + * R,(u) d« - J J0 R. (u) dM . 

As follows from the last equality 

exists if and only if 

lim - Jó R,(s + fc) ds 

lim - J0 Я t(s) ds 
Í-OO ř 
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exists and then both the limits are equal. Thus, we can state if 

lim - J 0 R ! ( s ) d s = A 
t~*CO t 

exists then the process {x(t), t e Rj} is asymptotically stationary and 

r(h) = A R2(h). 

The corresponding associated spectrum, given by the function /-(•), in this case, is 
determined by the limit value A and by the spectral measure of the stationary co-
variance R2(-). This analysis yields that asymptotic stationarity of a locally stationary 
process depends fully on the behaviour of its covariance function along the principal 
diagonal in the plane because 

R(s + h, s) = R!(s + /i/2) R2(h) = R(s + h\2, s + ft/2) R2(h) 

thanks the relation 

holding for locally stationary covariances. The obtained results can be summarized 
in the following assertion. 

Theorem 1. A locally stationary process with a covariance function R(*, •) is 
asymptotically stationary if and only if there exists a finite 

lim - J 0 R(«, u) dw . 
I^OO t 

One sees immediately that in case A = 0 the associated spectrum is vanishing. This 
case occurs e.g. if the covariance function JR(-, •) is integrable along the principal 
diagonal. 

The existence of an associated spectrum, can be used for estimation of the asymptotic 
mean square error of prediction. Let T > 0 and let us consider a prediction x(t) 
of x(t) where x(/) belongs to the subspace Ht_z generated by all random variables 
of the type 

y(t) = Ŷ  y.Xj x(t - T ;) , T; ^ T , aT. complex . 

Under the assumption that the process {x(t), r e R j j is asymptotically stationary 

there exists for every y(t) 

lim - J 0 E{|л-(s) - v(s)\2} ds = J í » 11 - £ «tJ e - ' ^ | 2 dџ(u) = aľ(y(-)). 
í-oo t J~ì 

The value 

ax = inf az(v(-)) = inf J í » |l - (j)(u)\2 d^(u) (<K«) = Z % e "'") 
) ' ( 1 ) E H , - , <ř.(.) J~l 
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is said to be the asymptotic mean square error of prediction. It is clear that in case 
of locally stationarity the error ax is proportional to the mean square error derived 
from the stationary covariance R2(')- If A = 0 we reach, of course, a singular case. 

At this moment, let us assume that the locally stationary process {x(t), t e U,} 
is strongly harmonizable, too. Then its covariance function can be expressed as 

R(s,t) = HtZe'M-'rtddyiX,!*) 

where y(-, •) is a covariance function with finite variation in the plane. Hence, 
there exists 

lim - \'0 R(s + h, s) ds = r(h) 

as proved in [2]. Fisrt, we assume ddy(X, fi) = f(X, fi) dX d/.. The Rozanov result 
yields that 

lim - J{, R(s + h, s) ds = ^A ei,,;'/(A, p) dA d/< 
t-no t 

where A = {{A, fi): X = /j,}. This limit can be expressed as follows 

r(h) = lim - j'0 R(s + h, s) ds = J!~ e1"" d/j(u) 
(->oo t 

where /<(B) = j § B x B n A ddy(A, //), Bis a Borel set in R«. In case a density/(•, •) exists 
we obtain /((B) = 0 for every Borel set B c R , and we get a singular case. In a general 
case, the function ?-(•) can be written in the form 

/•(/,) = JJAe iWddy(A,/A. 

Let us denote T(w, v) = jj""^ tyJX, fi) ddy(A, /t), t//A(\ •) is the indicator of the prin
cipal diagonal A. Then, evidently, 

r(h)=^^drt(X) 
where 

r,(A) = r(X, +oo) = J J i ^ <M«, P) ddy(«, P) = J J ^ ttV4(«, p) ddy(«, /J). 

Now, we can use the results obtained in [8]. Making use of the transformation 

T: U2 -» R2 T(A, /<) = f ^ t t . A - /. 

the complex measure ddy(A, /() can be transformed into a product complex measure 
dF1(«)dF2(i)) where F t(*) is non-negative even. The relation between these 
measures and locally stationary decomposition R(s, t) = Rt((s + t)j2) R2(s - t) 
is given by 

R.(x) = J J lS e t e dF2(t>), R2(y) = J !^ e1*" dF.(«) . 

Under the transformation T the principal diagonal A of the plane (A, /.) becomes 
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the axis u in the plane (u, v), hence 

A(A) = JJiA„ <h(«,.«) ddy(a, /?) = JJ„+ W 2 , ; . ^„,0 >(", *) dE,(M) dE2(«) = 

= E1(A)AE2(0) 

where >/'<„io> is the indicator of the axis u and AE2(0) is the jump of the function 
E2(-) at 0. It is easy to see that a strongly harmonizable locally stationary process 
has a non-vanishing associated spectrum if and only if the stationary component 
E2(-) of its spectrum has a jump at 0. This fact implies, further, a close connection 
between asymptotic stationarity and the law of large numbers. 

Theorem 2. If a strongly harmonizable locally stationary process has a vanishing 
associated spectrum then fulfiles the law of large numbers in the quadratic mean 
sense. 

Proof. It follows immediately from the results of [9] and the previous conclusions. 

D 
The contrary of Theorem 2 does not hold because the condition 

AF.(0) AE2(0) = 0 

is necessary and sufficient for fulfilling of the law of large numbers in case of locally 
stationary processes. We can end this part by the statement that for every strongly 
harmonizable locally stationary process there exists an associated spectrum and 

r(h) = AF2(0)J+»e"" 'dE1(u). 

Some locally stationary covariances belong into the class of normal coVariances, 
which were studied first by the author in [9]. Let us now study asymptotic stationary 
of normal covariances. A covariance R(-, •) is normal if there exists a finite two-
dimensional non-negative measure E(-, •) such that for every s, teUt 

R(s, t) = JJ+£ eA(s+,) e ' * - 0 ddE(2, n) . 

We know, see [11], that every normal covariance is everywhere continuous, and 
hence we can consider 

- Jo R(s + h, s) ds for every t > 0 . 

With respect to unboundedness of the function eAs we are obliged to restrict our
selves to a suitable subclass of normal covariances. 

Theorem 3. Let R(-, •) be a normal covariance, let the corresponding measure 
E(, •) has a support in the left half-plane. Then the covariance R(-, •) possesses 
an associated spectrum. 

Proof. As the triple integral 

J0 JJ!^eA '"e2Ase i '" ,dsddE(A,^) 
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exists, we can write 

ij0R(s + h,s)ds = Ji^^e-{ljU-dSJddFa,). 

e « . j fl 
lim - J0 e

2*5 ds = Um — - — = 0 for X < 0 
. - c o . J ' — AXt [oo for A > 0 . 

As the function (e4At - l)/(4AO is a.e. [F(-., •)] bounded the Lebesgue theorem 
on the dominated convergence proves the existence of an associated spectrum 

lim - J< R(s + h, s) ds = JJ1S e"1" *><0>(A) ddF(A, p) = ^Z e1"" dG(/i) 
t-00 f 

where G(u) = J l £ J'i. , ^<0>(a) ddF(a, ft) = J<0> ^ x ddF(a, ft). We see, in this 
case, that the associated spectrum is given by the spectral measure 

M(B) = JBdG(«) = J < 0 > J B ddF(a ,^ ) . 

If there exists a density ddF(A, fi) = f(X, ji) dX dfi then the corresponding associated 
spectrum is vanishing. A very important class of nonstationary processes are those 
of the Karhunen type. Their covariance functions can be expressed as 

R(s,t) = J+»/(s ,A)/[rX)dF(A) 

where F(-) is, in general, a tr-finite non-negative measure. Assuming measurability 
o f / ( - , •) in the plane we can consider 

J . i J t S / ( s , A ) / ( U ) d F ( A ) d s , h<t2, 

which exists under the condition 

J ^ I - S | / ( s , A ) | 2 d F ( A ) d s < oo 

for every pair tt < t2 of real numbers. This assumption ensures the existence of 

J0 R(s + h,s) ds 

for every heU1. Surely, then 

1 J< R(s + h, s) ds = f t - j l J 0 / ( s + h, X)f(£X) dsl dF(A). 

At this moment let us suppose that for every h ^ 0 and for every X e R1 there exists 
(this assumption is not so restrictive) 

lim i J 0 / ( s + h, X)f(s,X) ds = 4>(h, X). 

r-»oo t 

There is no problem to prove the existence of <j>(h, X) for h < 0, too. We shall prove 

that the function </>(•, •) is positively semidefinite in h. Let a,, a2,..., a„ be arbitrary 
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complex numbers, let ft_, h2,..., hn be arbitrary real numbers. Then 

i i ^{hj - hk, X) = lira i i «,a„ - $'0f(s + hj - hk, X)f$J) ds = 
_ = 1 ft = 1 t-*oo j = l k = l £ 

= lim i i *fik - JlT* Jj(s + ft,, X)f(s + hk,X) ds = 
t - » o o . = l „ = l t 

= lim - Jo I f «.«„/(s + ft,, A)/(s + ft,, A) ds = 
t^OO t J = l k=l 

= lim - J 0 | _ > _ / ( - + ft., A)|2 ds __ 0 . 
t^OO f . - 1 

This means that </>(•, A) is a.e. with respect to the Lebesgue measure a characteristic 
function, i.e. 

tfh,X) = Ji^e i f t"da(M,A) a.e.. 

Let us suppose that (/>(•, A) is continuous for every Ae R_. Further, let us suppose 
the existence of an integrable majorant function $(•) such that for every t > t0 

i j 0 | / ( s ,A) | 2 ds5_<KA) a.e. [E], *(•) _ _?_(F). 

The Lebesgue theorem on the dominated convergence ensures then the existence of 

lim - J0 R(s + ft, s) ds 
t->00 ( 

for every ft e R_ and the equality 

lim - J0 R(s + ft, s) ds = J_^ {{_£ eift" d_f(u, A)} dF(A) 
t->oo t 

holds for every ft e IR_. 
The function g(; •) is everywhere defined in the plane and thus 

G(«, v) = J_w {J'_M d_(-, A)} dE(A) = J_„ . (M, A) dF(X) 

defines a two-dimensional non-negative finite measure. As the function e1'"' is bounded 

JJ_»e"™ddG(„,t>) 

exists for every heUt. By means of the double integral properties 

J J ! » eift" ddG(M, v) = J_» eift" [J_S ddG(M, »)] = J_™ e!ft" d G ^ ) 

where Gr(u) = J__! dG(M, v). On the other hand, 

JJ_£ eift" ddG(W, t>) = $_™{$+_Z eiteddG(M, t>)} = J_Z~{f_I__ e1""dg(u, A)) ddE(A). 

This equality proves that the associated spectral measure is equal to the marginal 
measure G_(') derived from G(; •). The obtained result will be introduced as the 
following theorem. 
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Theorem 4. Let the covariance function R(-, •) of a random process {x(t), t e Ra} 
have the Karhunen form 

R(s,t) = $t™f(s,X)f(FJ)dF(X), 

s, te Uv Let for every pair tx < t2 of real numbers there exist 

JllJiS \f(siX)\2dF(X)ds. 

Let for every h > 0 and for every A e Ut there exist 

lim - J*/(- + h, A)7(s7I) ds = 4>(h, X) 
t-KO t 

provided that (/>(•, X) is continuous and for every / > r0 

J J 0 | j ( s , l ) | 2 d s ^ 4>(A) a.e. 

with respect to E(-) and let $(•) e .SfjjEj/)), Then the process [x(t), teU^ is 
asymptotically stationary and 

lim - J0 R(s + h, s) ds = J fJ+2 e1"" da(w, A)] dF(A) 
f->oo f 

where 

«Hh,A) = J!SeiA"dfl(M,yl). 

The associated spectral measure equals 

\t.Zg(u,X)dF(X). 

A similar result under analogical assumption can be derived for a wider class 
of stochastic processes than those of Karhunen, namely, for the class introduced 
by Cramer in [12]. Covariances of these processes can be expressed in the form 

(*) R(S, t) = tt+-™f(s> QfKfi ddF(^ M) 
where F(-, •) is a covariance function with locally finite total variation in the plane. 
The integral (*) is understood in the following sense 

R(s, t) = lim \b
a \

b
a:f(s, X)f(J~jx) ddF(X, n) . 

b',b'^ + oo 

Cramer constructed in [12] the corresponding stochastic integral, too. 

Theorem 5. Let a covariance function R(-, •) belong to the Cramer class. Let 
there exist 

n ^ | j ( ^ A ) 7 ( 7 ^ ) | d d | E ( ; ^ ) | < o o 

bounded in s, t on every compact rectangle in the plane. Let for every h > 0 and 
for every pair (A, /.) of real numbers there exist 

ĥ rn I J0
r/(s + h, X)fJJ^) ds = </>(h, X,n) 
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continuous in h and let for every T > T0 

±ti\f(s,X)\zds^<P(X) 

a.e. with respect to the total variation \F(', -)| with $$t™ (<P(X, X) <P(p, fi))1,z . 
. dd|T(A, j.i)\ < co. Then the covariance function R(% •) possesses an associated 
spectrum. 

Proof. The assumptions of the theorem ensure the existence of integrals 

J0
r{J7+Sj(s + h,X)/WJijddF(xti}ds 

for every h e Ut and the possibility to change the order of integration, i.e. 

JS { J7 - - / (5 + h, A ) / ? J ^ ) ddE(i, a)} ds = 

= U+~Z UTof(s + h, X)fJ7^) ds] ddF(X n). 

By means of the Lebesgue theorem on the dominated convergence we can assert 
that there exists a limit function r(') such that 

r(h) = lim ~ H R(s + h, s) ds = Jf + * 4>(h, X /i) ddT(A, fi). 

Let Aj, A2 , . . . , A„ be arbitrary real numbers. Let us prove that the matrix function 

{</>(-, A ; C , A ( ) ^ , = 1 

is positively semidefinite. We have for arbitrary complex at, a2,..., aN and real 
huh2,...,hN 

£ E«(«7*(*,-*;,V^) = 
; = i j = i 

= E £ «& lim ~ J J / ( s + fe, - fey, hj)f(s, K) ds = 
,= i , = i r-»oo T 

= I I «.«;lim - í í + *V(s + K Xkl)f(s + hj, Xhj) ds = 
/ = 1 j = l r->oo T 

= lim £ £ a ;«, ± J Г / ^ Л s + й„ Яfti)j(5 + /,„ K) ds = 
Г-»oo í = l , = l T 

= lim - ft I I «,-5y/(« + *«, K)fQ + ̂  ^ ) ds = ° 
T->oo T i = l j = l 

This fact implies the existence of a matrix spectral measure 

M - ^ y ) ; ? , y = i 
such that for every pair i, j 

4>(h, A;, A,) = J+ J e"m da(w, A;, A,) a.e. 

with respect to the Lebesgue measure in h. Since </>(•, A;, A,) is assumed to be conti-
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nuous this equality holds for every h e R t. Then, evidently 

r(h) = JJ-S ( J - : e*"" da(M, 2, „)} ddE(A, „) . 

Let us consider the complex measure G defined by the relation 

AAAG(w, A, «) = Afl(w, A, w) AAff(A, w) . 

As g(-, A, «) is a term of a matrix spectral measure 

\Ag(u, X, fi)\ = [Ag(u, X, X)]>'2 [Ag(u, tf, / , ) ] " 2 

and further, 

Thus, 

Ag(u, X, X) ^ g(+oo, X, X) = f í » ei0" dg(u, A, 2) = 

= ^(0, A, A) = lim - j"0
r |/(5,A)|2 ds g <Í>(A, A). 

r^oo T 

JAAAG(«, A, «)| g <2>(A, A)1/2 c/)1/2^, w) |AAF(A, «)| . 

We have proved that the complex measure G(-, •, •) is of finite total variation and 
hence 

JJJ-Se""dddG(«,A,Ai) 
exists. Then, of course, 

JJJ-S e"'" dddG(u, A, «) = J l £ e1*" {J| + » dddG(w, A, «)} 
where 

l\tZ MG(u, A, «) = JJ+» G(w, A, M) ddF(A, u) . 

On the other hand, there exists the following integral 

II-I {J-S e1"" dddG(», A, «)} = JJ1« {J!» e1*" dG(M, A, «)} ddF(A, /<) 

and both the integrals are equal. The proof of the theorem is finished by the assertion 
that the corresponding associated spectral measure is 

m(h) = J ! : e1"" {Jf±2 dG(n, A, /t)} ddE(A, /.) . D 

(Received April 13, 1988.) 
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