DISTRIBUTION OF THE WEIGHTED L.S. ESTIMATES IN NONLINEAR MODELS WITH SYMMETRICAL ERRORS

ANDREJ PÁZMAN

The nonlinear regression model $y=\eta(\theta)+\epsilon$ with the error vector ϵ having an elliptically symmetrical probability distribution is considered. An approximative formula for the non-asymptotical (= small sample) probability density of the weighted L. S. estimates of θ is obtained by geometrical methods. The considered weights are general (i.e. not related to the variance matrix Σ of ϵ). The difference between the true and the approximative densities is evaluated. Earlier author's results are thus extended from the case of normal errors, and of weights depending on Σ , to a more general case.

1. INTRODUCTION

Let

(1)
$$\mathbf{y} = \mathbf{\eta}(\mathbf{\theta}) + \mathbf{\varepsilon}$$

be a nonlinear regression model. Here $\mathbf{y} := (y_1, ..., y_N)^T$ is the vector of the observed data, $\boldsymbol{\theta} := (\theta_1, ..., \theta_m)^T$ is the vector of unknown parameters, m < N, $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ where $\boldsymbol{\Theta}$ is the (given) parameter space which is an open subset of \mathbb{R}^m . The mapping $\boldsymbol{\eta} \colon \boldsymbol{\theta} \in \boldsymbol{\overline{\Theta}} \mapsto \boldsymbol{\eta}(\boldsymbol{\theta}) \in \mathbb{R}^N$, defined and finite on the closure $\boldsymbol{\overline{\Theta}}$ of the set $\boldsymbol{\Theta}$, is supposed to be known, continuous, and to have continuous second order derivatives on $\boldsymbol{\Theta}$. The vectors of the first order derivatives $\partial \boldsymbol{\eta}(\boldsymbol{\theta})/\partial \theta_1, ..., \partial \boldsymbol{\eta}(\boldsymbol{\theta})/\partial \theta_m$ are supposed to be linearly independent for every $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ (i.e. the model is regular).

In this paper we consider the case when the probability density of the error vector ε is elliptically symmetrical, with a zero mean $E(\varepsilon)=0$, and a positive definite variance matrix Σ , $Var(\varepsilon)=\Sigma$, defining the elliptical symmetry. Such a probability density (with respect to the Lebesgue measure in \mathbb{R}^N) is given by the formula (cf. [5])

(2)
$$f(\mathbf{\epsilon}) := \det^{-1/2} (\mathbf{\Sigma}) h(\mathbf{\epsilon}^{\mathsf{T}} \mathbf{\Sigma}^{-1} \mathbf{\epsilon})$$

where $h: (0, \infty) \mapsto (0, \infty)$ is a function such that

$$\int_0^\infty z^{N/2} h(z) dz < \infty.$$

To ensure that $f(\varepsilon)$ is a probability density and that $Var(\varepsilon) = \Sigma$ we have to suppose that

$$\int_{\mathbb{R}^N} h(\|\mathbf{v}\|^2) \, d\mathbf{v} = 1$$
$$\int_{\mathbb{R}^N} h(\|\mathbf{v}\|^2) \, \|\mathbf{v}\|^2 \, d\mathbf{v} = N.$$

If the function h does not satisfy these two norming conditions, we can always find two positive numbers α and β such that the function $\mathbf{z} \mapsto \alpha h(\beta \mathbf{z})$ has the required properties. (We note that, like in Section 2, these two N-dimensional integrals can be changed to two onedimensional integrals when using spherical coordinates in \mathbb{R}^{N} .)

The set $\{\varepsilon: f(\varepsilon) = \text{const}\}\$ is an ellipsoid in \mathbb{R}^N , therefore we speak about the elliptical symmetry. In the case of $\Sigma = I$, $f(\varepsilon)$ is spherically symmetrical. Another equivalent definition of the spherical symmetry is that $f(\varepsilon) = f(U\varepsilon)$ for every orthogonal $m \times m$ matrix U (i.e. such that $U^TU = I$). Thus spherically symmetrical densities are invariant to every rotation of the sample space of ε .

Elliptically symmetrical distributions are studied in several papers [2, 5, 6], and we resume their properties in Section 2.

A special case of an elliptically symmetrical density is the normal density $N(0, \Sigma)$ with

$$h(t) = (2\pi)^{-N/2} \exp\{-t/2\}.$$

Other choices of the function $h(\cdot)$ are presented in Section 2.

A standard estimator of the vector θ is the weighted least squares (= L. S.) estimator given by

(3)
$$\hat{\boldsymbol{\theta}} := \hat{\boldsymbol{\theta}}(\mathbf{y}) := \arg\min \left[\mathbf{y} - \boldsymbol{\eta}(\boldsymbol{\theta}) \right]^{\mathrm{T}} \mathbf{V}^{-1} \left[\mathbf{y} - \boldsymbol{\eta}(\boldsymbol{\theta}) \right],$$

where $\theta \in \overline{\Theta}$ and V is some given positive definite (= p.d.) matrix. Usually (if possible) the matrix V is proportional to the covariance matrix Σ . This leads to an optimal unbiased estimator of θ when the model (1) is linear (i.e. $\eta(\theta) = A\theta + a$) (cf. [6]), and such a V is considered as preferable also in the nonlinear case. However, if Σ is unknown, the matrix V is to be chosen and hoc. Since the estimate (3) is not influenced by setting a matrix cV (c > 0) instead of V, we can always choose Vsuch that it dominates the matrix Σ , i.e. that

$$\mathbf{a}^T \mathbf{V}^{-1} \mathbf{a} \leq \mathbf{a}^T \mathbf{\Sigma}^{-1} \mathbf{a} \; ; \quad (\mathbf{a} \in \mathbb{R}^N)$$

(see Proposition 3).

The normal equations corresponding to (3) are

equations corresponding to (3) are
$$\frac{\partial [\mathbf{y} - \mathbf{\eta}(\mathbf{\theta})]^{\mathsf{T}} \mathbf{V}^{-1} [\mathbf{y} - \mathbf{\eta}(\mathbf{\theta})]}{\partial \theta_i} = 0 \; ; \quad (i = 1, ..., m) \; ,$$

hence, if $\hat{\theta}(y) \in \Theta$, it is a solution of

(4)
$$[\mathbf{y} - \mathbf{\eta}(\theta)]^{\mathsf{T}} \mathbf{V}^{-1} \frac{\partial \mathbf{\eta}(\theta)}{\partial \theta^{\mathsf{T}}} = \mathbf{0} .$$

In this paper we present an approximative nonasymptotical probability density

of $\hat{\theta}$, and we present a formula for the upper bound for the difference between the true and the approximative densities. Earlier author's results [7, 8] are thus extended from the case of normal errors to the case of elliptically symmetrical errors, and from the case of $\mathbf{V} = \boldsymbol{\Sigma}$ to the case or arbitrary, p.d. matrices \mathbf{V} and $\boldsymbol{\Sigma}$. However, the main geometrical ideas remain unchanged since the elliptical symmetry has been important also in the investigation presented in [7, 8].

The approximative nonasymptotical probability density of $\boldsymbol{\hat{\theta}}$ proposed in this paper is equal to

(5)
$$q(\hat{\boldsymbol{\theta}} \mid \overline{\boldsymbol{\theta}}) := \frac{\det \mathbf{Q}(\hat{\boldsymbol{\theta}}, \overline{\boldsymbol{\theta}})}{\det^{1/12} \mathbf{B}(\hat{\boldsymbol{\theta}})} h_m(\|\mathbf{P}\hat{\boldsymbol{\theta}}[\boldsymbol{\eta}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\eta}]\|_{\mathbf{E}}^2)$$

where

$$\eta:=\eta(\overline{\theta})$$

is the true mean of y,

$$B(\theta) := \frac{\partial \eta^{T}(\theta)}{\partial \theta} \mathbf{V}^{-1} \mathbf{\Sigma} \mathbf{V}^{-1} \frac{\partial \eta(\theta)}{\partial \theta^{T}},$$

$$(6) \qquad \mathbf{Q}(\theta, \overline{\theta}) := \mathbf{M}(\theta) + \left[(\mathbf{I} - \mathbf{P}^{\theta}) \left(\eta(\theta) - \eta \right) \right]^{T} \mathbf{V}^{-1} \frac{\partial^{2} \eta(\theta)}{\partial \theta \partial \theta^{T}},$$

$$\mathbf{M}(\theta) := \frac{\partial \eta^{T}(\theta)}{\partial \theta} \mathbf{V}^{-1} \frac{\partial \eta(\theta)}{\partial \theta^{T}},$$

$$P^{\theta} := \Sigma V^{-1} \frac{\partial \eta(\theta)}{\partial \theta^T} B^{-1}(\theta) \frac{\partial \eta^T(\theta)}{\partial \theta} V^{-1}$$

(Po is a projector),

$$\|\boldsymbol{\sigma}\|_{\boldsymbol{\Sigma}}^2 := \boldsymbol{\sigma}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\sigma} \; ; \quad (\boldsymbol{\sigma} \in \mathbb{R}^N) \; ,$$

and where $h_m: (0, \infty) \mapsto (0, \infty)$ is defined by the formula

(8)
$$h_m(t) := \frac{\pi^{(N-m)/2}}{\Gamma(\frac{N-m}{2})} \int_0^\infty u^{(N-m)/2-1} h(t+u) du.$$

The expression in (5) becomes simpler when $\Sigma = V$. Then $M(\theta) = B(\theta) = the$ Fisher information matrix for the case of normal errors, and $Q(\theta, \overline{\theta})$ is the information matrix $M(\theta)$ corrected by a term reflecting the curvature of the model (1). $(Q(\hat{\theta}, \overline{\theta}))$ is a measure of the observed information gained from the experiment when $\hat{\theta} = \hat{\theta}(y)$ is obtained from the observation and $\overline{\theta}$ is the true value of θ (cf. [9]).)

In the case that the model (1) is linear, $\eta(\theta) = A\theta$, $q(\hat{\theta} \mid \overline{\theta})$ is equal to the exact probability density of $\hat{\theta}$. In the case that $V = \Sigma$, it is equal to

$$q(\hat{\mathbf{\theta}} \mid \overline{\mathbf{\theta}}) = \det^{1/2}(\mathbf{M}) h_m [(\hat{\mathbf{\theta}} - \overline{\mathbf{\theta}})^T \mathbf{M} (\hat{\mathbf{\theta}} - \overline{\mathbf{\theta}})],$$

where $M := A\Sigma^{-1}A^T$ is the information matrix. In the normal case we obtain the

well known formula

$$q(\hat{\boldsymbol{\theta}} \mid \overline{\boldsymbol{\theta}}) = (2\pi)^{m/2} \det^{1/2} (\mathbf{M}) \exp \left\{ -\frac{1}{2} (\hat{\boldsymbol{\theta}} - \overline{\boldsymbol{\theta}})^{\mathrm{T}} \mathbf{M} (\hat{\boldsymbol{\theta}} - \overline{\boldsymbol{\theta}}) \right\}.$$

In the general case the approximative density $q(\hat{\theta} \mid \overline{\theta})$ is invariant to the change of parameters $\beta = \beta(\theta)$, i.e.

$$q(\hat{\mathbf{\theta}} \mid \overline{\mathbf{\theta}}) = \left| \det \left(\frac{\partial \mathbf{\beta}(\mathbf{\theta})}{\partial \mathbf{\theta}^{\mathrm{T}}} \right|_{\mathbf{\theta} = \widehat{\mathbf{\theta}}} \right) \right| q(\hat{\mathbf{\beta}} \mid \overline{\mathbf{\beta}}),$$

where $q(\hat{\beta} \mid \overline{\beta})$ is obtained by putting into the expression (5) the function $v(\beta) := = \eta[\theta^{-1}(\beta)]$ and its derivatives instead of the function $\eta(\theta)$.

Example. (The contaminated normal nonlinear regression.)

Suppose that the probability density of ϵ is equal to

$$f(\epsilon) = (2\pi)^{-N/2} \left\lceil (0.9) \exp\left\{ -\frac{1}{2} \|\epsilon\|^2 \right\} + \frac{(0.1)}{10^{N/2}} \exp\left\{ -\frac{1}{20} \|\epsilon\|^2 \right\} \right\rceil$$

and consider the non-weighted L. S. estimates. Hence $V=\Sigma=I,$ and

$$h(t) = (2\pi)^{-N/2} \left[(0.9) \exp\left\{-\frac{1}{2}t\right\} + 10^{-N/2-1} \exp\left\{-\frac{1}{20}t\right\} \right].$$

Consequently

$$h_m(t) = (2\pi)^{-m/2} [(0.9) \exp\{-\frac{1}{2}t\} + 10^{-m/2-1} \exp\{-\frac{1}{20}t\}]$$

because $h_m \left(\sum_{i=1}^m \varepsilon_i^2 \right)$ is the *m*-dimensional marginal of $f(\varepsilon)$ (see Section 2). Further

$$\mathbf{P}^{\boldsymbol{\theta}} = \frac{\partial \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^T} \, \mathbf{M}^{-1}\!\!\left(\boldsymbol{\theta}\right) \frac{\partial \boldsymbol{\eta}^T\!\!\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}} \, ,$$

$$M(\theta) = B(\theta) = \frac{\partial \eta^T(\theta)}{\partial \theta} \frac{\partial \eta(\theta)}{\partial \theta^T}$$

and

$$q(\hat{\pmb{\theta}} \mid \overline{\pmb{\theta}}) = (2\pi)^{-m/2} \frac{\det \left[\left[\mathbf{M}(\hat{\pmb{\theta}}) + \left[\mathbf{\eta}(\hat{\pmb{\theta}}) - \mathbf{\eta} \right]^{\mathrm{T}} \left(\mathbf{I} - \mathbf{P} \hat{\pmb{\theta}} \right) \frac{\partial^2 \mathbf{\eta}(\hat{\pmb{\theta}})}{\partial \mathbf{\theta} \; \partial \mathbf{\theta}^{\mathrm{T}}} \right]}{\det^{1/2} \mathbf{M}(\hat{\pmb{\theta}})} \times$$

$$\times \left[(0.9) \exp \left\{ -\frac{1}{2} \| \mathbf{P} \hat{\mathbf{\theta}} [\mathbf{\eta} (\hat{\mathbf{\theta}}) - \mathbf{\eta}] \|^2 \right\} + 10^{-m/2 - 1} \exp \left\{ -\frac{1}{20} \| \mathbf{P} \hat{\mathbf{\theta}} [\mathbf{\eta} (\hat{\mathbf{\theta}}) - \mathbf{\eta}] \|^2 \right\} \right]$$

Computing point by point both components of $q(\hat{\boldsymbol{\theta}} \mid \overline{\boldsymbol{\theta}})$, we can evaluate the influence of the contamination on the least squares in a gaussian nonlinear model.

2. PROPERTIES OF ELLIPTICALLY (SPHERICALLY) SYMMETRICAL DENSITIES

We write: $\mathbf{y} \sim S_N(\mathbf{\eta}, \mathbf{\Sigma}, h)$ iff \mathbf{y} has the density

(9)
$$f_{\mathbf{y}}(\mathbf{y}) = \det^{-1/2}(\mathbf{\Sigma}) h [(\mathbf{y} - \mathbf{\eta})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{y} - \mathbf{\eta})].$$

This density has all moments up to the kth order iff

(10)
$$\int_0^\infty u^{\frac{N+k}{2}-1} h(u) du < \infty$$

(cf. [5]). If $k \ge 1$, we have $E(y) = \eta$. If $k \ge 2$, we have $Var(y) = \Sigma$. (See Section 1 for the norming conditions on h.)

If $\mathbf{z} = \mathbf{A}\mathbf{y}$, where **A** is an $N \times N$ nonsingular matrix, then

$$z \sim S_N(A\eta, A\Sigma A^T, h)$$

(cf. [5]). Consequently, if $\mathbf{y} \sim S_N(\mathbf{\eta}, \mathbf{\Sigma}, h)$, then there is a matrix A such that $\mathbf{z} = \mathbf{A}(\mathbf{y} - \mathbf{\eta}) \sim S_N(\mathbf{0}, \mathbf{I}, h)$.

If $\mathbf{y} \sim S_N(\mathbf{\eta}, \mathbf{\Sigma}, h)$, then

$$\mathbf{y} = \mathbf{\eta} + l \mathbf{\Sigma}^{1/2} \mathbf{u} \,,$$

where the vector \mathbf{u} is uniformly distributed on the unit sphere $\{\mathbf{z}: \mathbf{z} \in \mathbb{R}^N, \|\mathbf{z}\| = 1\}$, and where l is a nonnegative random variable which is independent of \mathbf{u} (cf. [6]).

If $\varepsilon \sim S_N(0, \mathbf{I}, h)$, then the marginal density of $(\varepsilon_{i_1}, \ldots, \varepsilon_{i_m})$ is equal to

$$h_m(\sum_{k=1}^m \varepsilon_{i_k}^2)$$

where

$$h_m(t) := \int_{\mathbf{R}^{N-m}} h(t + \|\mathbf{v}\|^2) \, \mathrm{d}\mathbf{v}$$

(cf. [5]). Using spherical coordinates in \mathbb{R}^{N-m} (like [5], p. 427) we obtain the formula (8).

Suppose that $\varepsilon \sim S_N(\mathbf{0}, \mathbf{I}, h)$. Denote $J := \{i_1, \dots, i_m\}$. The conditional density of $\{\varepsilon_j : j \notin J\}$ given $\{\varepsilon_j : j \in J\}$ is evidently equal to

$$k_{N-m} \left(\sum_{i \in J} \varepsilon_i^2 \mid \sum_{j \in J} \varepsilon_j^2 \right)$$

where

(11)
$$k_{N-m}(t \mid u) := \frac{h(t+u)}{h_m(u)}.$$

Hence this density is spherically symmetrical.

Let $\varepsilon \sim S_N(\mathbf{0}, \mathbf{I}, h)$. Then the probability density of the random variable $u := \|\varepsilon\|^2$ is equal to

(12)
$$\frac{\pi^{N/2}}{\Gamma\left(\frac{N}{2}\right)}u^{\frac{N}{2}-1}h(u)$$

(cf. [5]).

Evidently, if $\varepsilon \sim S_N(0, \mathbf{I}, h)$, then $\varepsilon_1, \ldots, \varepsilon_N$ are uncorrelated random variables. They are independent if and only if $f(\varepsilon)$ is the normal density (cf. [5] or [10], chpt. 3a.1).

We have a large choice for the function h(t) in the expression (9). Some examples of h(t) are (cf. [2]):

a)
$$h(t) = \alpha (2\pi)^{N/2} \int_0^{\infty} \exp \left\{ -\frac{1}{2}\beta t u \right\} G(du),$$

where G is a probability distribution on $(0, \infty)$ and $\alpha > 0$, $\beta > 0$. The corresponding densities are mixed normal densities.

b)
$$h(t) = ct^{k-1} \exp\left\{-rt^{\lambda}\right\}$$

for some $c>0,\,\lambda>0,\,r>0$ and k such that 2k+N>2 (the generalized gamma densities).

c)
$$h(t) = c \sqrt{(\pi/2)} \exp \{-\sqrt{(t)/s}\},$$

where c, s are positive constants (the spherical Laplace density), etc.

3. THE GEOMETRY OF THE MODEL

The set

(13)
$$\mathscr{E} := \{ \mathbf{\eta}(\mathbf{\theta}) \colon \mathbf{\theta} \in \mathbf{\Theta} \}$$

is the "expectation surface" of the nonlinear regression model (1). The point $\eta = \eta(\overline{0})$ is a fixed point of $\mathscr E$. Take r > 0. Denote by

(14)
$$G_{\eta}(r) := \{ \mathbf{y} : \mathbf{y} \in \mathbb{R}^{N}, \|\mathbf{y} - \mathbf{\eta}\|_{\Sigma} < r \}$$

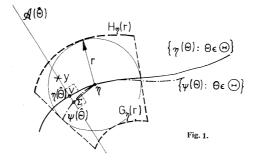
a sphere centred at η (see Fig. 1). Further denote by $A_{\eta}(r)$ a subset of the extended parameter space $\overline{\Theta}$ defined by

$$A_{\eta}(r) := \{\hat{\boldsymbol{\theta}}(\mathbf{y}) : \mathbf{y} \in G_{\eta}(r)\}$$
.

For every $\theta \in \Theta$ denote by

$$\mathcal{N}(\boldsymbol{\theta}) := \left\{ \mathbf{z} \colon \mathbf{z} \in \mathbb{R}^{N}, \, \mathbf{z}^{\mathrm{T}} \mathbf{V}^{-1} \, \frac{\partial \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{\mathrm{T}}} = \mathbf{0} \right\}$$

the subspace of \mathbb{R}^N which is V-orthogonal to the tangent plane to \mathscr{E} (the later being generated by the vectors $\partial \eta(\mathbf{0})/\partial \theta_1, \ldots, \partial \eta(\mathbf{0})/\partial \theta_m$).



Denote by $\mathbf{w}_1(\mathbf{\theta}), \dots, \mathbf{w}_{N-m}(\mathbf{\theta})$ a Σ -orthogonal basis of $\mathcal{N}(\mathbf{\theta})$. It is V-orthogonal to the tangent plane, i.e.

(15)
$$\mathbf{w}_{i}^{\mathsf{T}}(\boldsymbol{\theta})\mathbf{V}^{-1}\frac{\partial\mathbf{\eta}(\boldsymbol{\theta})}{\partial\boldsymbol{\theta}_{j}} = 0 \; ; \quad \begin{pmatrix} i = 1, \dots, N-m \\ j = 1, \dots, m \end{pmatrix}$$
$$\mathbf{w}_{i}^{\mathsf{T}}(\boldsymbol{\theta})\boldsymbol{\Sigma}^{-1}\mathbf{w}_{j}(\boldsymbol{\theta}) = 0 \quad \text{if} \quad i \neq j$$
$$= 1 \quad \text{if} \quad i = j$$

Evidently, the Σ -orthogonal projector onto $\mathscr{N}(\theta)$ is equal to the matrix

$$R^{\theta} := W(\theta) W^{T}(\theta) \Sigma^{-1}$$

where $\mathbf{W}(\mathbf{\theta}) := (\mathbf{w}_1(\mathbf{\theta}), ..., \mathbf{w}_{N-m}(\mathbf{\theta}))$. Let us denote by

(16)
$$\psi(\theta) := \eta(\theta) + R^{\theta} \lceil \eta - \eta(\theta) \rceil$$

the Σ -orthogonal projection of the point η onto the set

$$\mathscr{A}(\theta) := \mathscr{N}(\theta) + \eta(\theta)$$

(see Fig. 1 for V=I). We introduce the vector $\psi(\theta)$ because $\psi(\hat{\theta})$ is equal to a conditional mean of y (see Section 4). We have

$$\psi(\hat{\theta}) - \eta = \left[I - R^{\hat{\theta}}\right] (\eta(\hat{\theta}) - \eta),$$

and from (4) we obtain

$$y - \eta(\hat{\theta}) \in \mathcal{N}(\hat{\theta})$$
.

Hence we have the Pythagorian relation

(17)
$$\|\mathbf{y} - \mathbf{\eta}\|_{\Sigma}^{2} = \|\mathbf{y} - \mathbf{\psi}(\hat{\mathbf{\theta}})\|_{\Sigma}^{2} + \|\mathbf{\psi}(\hat{\mathbf{\theta}}) - \mathbf{\eta}\|_{\Sigma}^{2}.$$

Denote by

(18)
$$H_{\eta}(r) := \{ \mathbf{y} \colon \mathbf{y} \in \mathbb{R}^{N}, \, \hat{\mathbf{\theta}}(\mathbf{y}) \in A_{\eta}(r), \, \|\mathbf{y} - \mathbf{\psi}[\hat{\mathbf{\theta}}(\mathbf{y})]\|_{\Sigma} < r \}$$

a "tube" in the sample space around the surface $\{\psi(\theta)\colon \theta\in A_\eta(r)\}$ (see Fig. 1). We have

(19)
$$G_{n}(r) \subset H_{n}(r) .$$

In Section 4 we shall consider samples belonging to $H_{\eta}(r)$, but only such that the corresponding L. S. estimates are not on the boundary of $\overline{\Theta}$. Therefore we assume that:

A1:

$$A_{\mathbf{n}}(r) \subset \mathbf{\Theta}$$

(i.e. the point η is "sufficiently distant" from the boundary of $\overline{\Theta}$).

To avoid complications with the nonidentifiability of the parameter $\boldsymbol{\theta}$ we shall suppose that

A2: The mapping $\theta \in A_{\eta}(r) \mapsto \eta(\theta) \in \mathscr{E}$ is one-to-one.

To avoid that the expectation surface & could overlap the neighbourhood of its subset $\{\eta(\theta): \theta \in A_{\eta}(r)\}\$, we require that r is such that

A3: If

- i) $\mathbf{y} \in H_{\mathbf{n}}(r)$
- ii) θ^* is a solution of (4)
- iii) $\|\mathbf{y} \mathbf{\eta}(\mathbf{\theta}^*)\|_{\Sigma} < r$

then $\theta^* \in A_{\eta}(r)$ and $\theta^* = \hat{\theta}(y)$.

Finally we shall suppose that

A4: The surface $\{\eta(\theta): \theta \in A_{\mathbf{n}}(r)\}$ has no centre of curvature which is a point of $H_n(r)$.

How to compute numerically curvatures of the expectation surface is explained in [1] and in the appendix of [7]. For a further use we present the definition of a geodesics on &, like in [8].

By definition, a curve

$$\gamma: (-\delta, \delta) \mapsto \mathscr{E}$$

is a V-geodesics on $\mathscr E$ through the point $\gamma(0)=\eta(\overline{\theta})$ if there is a twice continuously differentiable mapping

$$\mathbf{z}\!:\!(-\delta,\delta)\mapsto\mathbf{\Theta}$$

such that for every $t \in (-\delta, \delta)$

i)
$$\gamma(t) = \eta \cdot \varkappa(t)$$

ii)
$$\left\| \frac{\mathrm{d}\gamma(t)}{\mathrm{d}t} \right\|_{\mathbf{V}} = 1$$

i.e. the parameter
$$t$$
 is the length of the curve γ ,

iii) $\frac{d^2 \gamma^T(t)}{dt^2} \mathbf{V}^{-1} \frac{\partial \mathbf{\eta}(\mathbf{0})}{\partial \mathbf{0}^T} \Big|_{\mathbf{0} = \mathbf{x}(t)} = \mathbf{0}$

i.e. the "vector of curvature" $d^2\gamma^T(t)/dt^2$ is always orthogonal to \mathscr{E} .

The radius of curvature of $\gamma(t)$ at t=0 is equal to

$$r_{\gamma}(0) := \left[\left\| \frac{\mathrm{d}^2 \gamma(t)}{\mathrm{d}t^2} \right\|_{\mathbf{V}}^{-1} \right]_{t=0}$$

and it is the radius of a circle which is "as tangent as possible" to the curve $\gamma(t)$. According to iii) this circle with centre (= the centre of curvature)

$$\left. \eta(\boldsymbol{\theta}) + \left. \frac{\mathrm{d}^2 \gamma(t)}{\mathrm{d}t^2} \right|_{t=0}$$

is also tangent to the expectation surface $\mathscr E$ at the point $\eta(\theta)$, and its radius-vector is V-orthogonal to the tangent plane. The centre of curvature of γ is considered as a centre of curvature of the surface $\mathscr E$ at the point $\eta(\theta)$. Since there are many V- geodesics on & going through the same point $\eta(\theta),$ we define the minimal radius of curvature

$$\varrho(\mathbf{\theta}) := \inf_{\mathbf{\gamma}} r_{\mathbf{\gamma}}(0)$$
.

Instead of A4 we can assume equivalently

A4*:
$$r < \varrho(\mathbf{\theta}); \quad (\mathbf{\theta} \in A_{\eta}(r))$$

The assumptions A1 – A4 are slight modifications of the assumptions formulated in $\lceil 7, 8 \rceil$. A heuristic discussion is in $\lceil 7 \rceil$.

The vector $\mathbf{y} - \boldsymbol{\psi}(\hat{\boldsymbol{\theta}})$ is V-orthogonal to the tangent plane (Eqs. (4) and (16)), hence we can write

$$\mathbf{y} = \mathbf{\psi}(\hat{\mathbf{\theta}}) + \sum_{l=1}^{N-m} b_l \mathbf{w}_l(\hat{\mathbf{\theta}})$$

where

$$b_l := [\mathbf{y} - \psi(\mathbf{\hat{\theta}})]^T \Sigma^{-1} \mathbf{w}_l(\mathbf{\hat{\theta}})$$
.

It follows that $\hat{\theta}_1,\ldots,\hat{\theta}_m,\,b_1,\ldots,b_{N-m}$ can be used as new coordinates of the point $\mathbf{y}\in H_{\mathbf{\eta}}(r)$. The corresponding coordinate transformation will be denoted by $\mathbf{g}(\hat{\mathbf{\theta}},\,\mathbf{b})$, i.e.

(20)
$$\mathbf{g}(\hat{\mathbf{\theta}}, \mathbf{b}) := \psi(\hat{\mathbf{\theta}}) + \sum_{l=1}^{N-m} b_l \mathbf{w}_l(\hat{\mathbf{\theta}})$$

Its Jacobi matrix ∇g is equal to

$$\begin{split} \nabla g(\boldsymbol{\hat{\theta}},\,\boldsymbol{b}) := \left(&\frac{\partial g}{\partial \boldsymbol{\hat{\theta}}^T} \,,\, \frac{\partial g}{\partial \boldsymbol{b}^T} \right) \\ = \left(&\frac{\partial g}{\partial \boldsymbol{\hat{\theta}}^T} \,,\, W(\boldsymbol{\hat{\theta}}) \right) \end{split}$$

Proposition 1. We have

$$\left|\det\left[\nabla \mathbf{g}(\hat{\boldsymbol{\theta}},\boldsymbol{b})\right]\right| = \frac{\det\left[Q(\hat{\boldsymbol{\theta}},\bar{\boldsymbol{\theta}}) + \mathbf{D}(\boldsymbol{b},\hat{\boldsymbol{\theta}})\right]}{\det^{1/2}\mathbf{B}(\hat{\boldsymbol{\theta}})} \ \det^{1/2}\boldsymbol{\Sigma}$$

where $\mathbf{Q}(\hat{\mathbf{\theta}}, \overline{\mathbf{\theta}})$ and $\mathbf{B}(\hat{\mathbf{\theta}})$ are defined in (6), and $\mathbf{D}(\mathbf{b}, \hat{\mathbf{\theta}})$ is an $m \times m$ matrix

$$\{\mathbf{D}(\mathbf{b},\mathbf{\theta})\}_{ij} := -\sum_{l=1}^{N-m} b_l \mathbf{w}_l^{\mathsf{T}}(\mathbf{\theta}) \mathbf{V}^{-1} \, \frac{\partial^2 \mathbf{\eta}(\mathbf{\theta})}{\partial \theta_i \, \partial \theta_j}.$$

The proof is in the Appendix.

If we compare the right-hand side of Eq. (21) with the first term in the right-hand. side of Eq. (5) we see that we omitted the matrix $\mathbf{D}(\mathbf{b}, \hat{\boldsymbol{\theta}})$ in the determinant in (5). To evaluate the influence of this omission we shall need the following Proposition 2.

Let us use the notation $\mathbf{e} := (b_1, \dots, b_{N-m})^T / \|\mathbf{b}\| \ .$

We can write

(22)
$$\mathbf{D}(\mathbf{b}, \hat{\mathbf{\theta}}) = \|\mathbf{b}\| \mathbf{D}(\mathbf{e}, \hat{\mathbf{\theta}}).$$

For every $m \times m$ matrix **A**, and $s \le m$, denote by $\mathbf{A}^{(s)}$ the matrix of all $s \times s$ minors of **A**; hence tr $[\mathbf{A}^{(s)}]$ is the sum of all $s \times s$ principal minors of **A** (cf. [3]).

Proposition 2. For every $\hat{\theta} \in A_{\eta}(r)$ we have

$$\left|\operatorname{tr}\left[\mathbf{D}(\mathbf{e},\hat{\boldsymbol{\theta}})\mathbf{Q}^{-1}(\hat{\boldsymbol{\theta}},\overline{\boldsymbol{\theta}})\right]^{(s)}\right| \leq {m \choose s} \frac{2^s}{r^s}.$$

Proposition 3. If the matrix V is dominating Σ , i.e., $\|\mathbf{a}\|_{\Sigma} \ge \|\mathbf{a}\|_{V}$; $(\mathbf{a} \in \mathbb{R}^{N})$, then for every $\hat{\mathbf{\theta}} \in A_{\eta}(r)$ the matrix $\mathbf{Q}(\hat{\mathbf{\theta}}, \overline{\mathbf{\theta}})$ is positive definite.

The proofs of both propositions are in the Appendix.

4. THE PROBABILITY DENSITY OF $\hat{\theta}$

The probability density of y is given in Eq. (9). In the sequel we shall not take into account those samples y which belong to the set $\mathbb{R}^N - H_{\eta}(r)$. From (12) and (19) it follows that the probability of this set is bounded above by the number

$$1 - \int_{G_{\eta}(r)} f_{Y}(\mathbf{y}) \, \mathrm{d}\mathbf{y} = \int_{r}^{\infty} \frac{\pi^{N/2}}{\Gamma(N/2)} u^{N/2 - 1} h(u) \, \mathrm{d}u .$$

For points inside the set $H_{\eta}(r)$ we shall use the coordinate transformation (20), to obtain the joint density of $\hat{\theta}$ and b:

$$p_{\eta}(\boldsymbol{\hat{\theta}},\,\boldsymbol{b}) := \left| \det \left[\nabla g(\boldsymbol{\hat{\theta}},\,\boldsymbol{b}) \right] \right| \det^{-1/2} \left(\boldsymbol{\Sigma} \right) h(\|\boldsymbol{b}\|^2 \, + \, \|\boldsymbol{\psi}(\boldsymbol{\hat{\theta}}) \, - \, \boldsymbol{\eta}\|_{\boldsymbol{\Sigma}}^2)$$

where we used Eq. (17) and the equality $\|\mathbf{b}\|^2 = \|\mathbf{y} - \mathbf{\psi}(\hat{\mathbf{\theta}})\|_{\Sigma}^2$. Denote $I(r) := (-r, r)^{N-m}$. The density of $\hat{\mathbf{\theta}}$ is the marginal density

(23)
$$\tilde{p}_{\eta}(\hat{\boldsymbol{\theta}}) := \int_{I^{(r)}} p_{\eta}(\hat{\boldsymbol{\theta}}, \boldsymbol{b}) \, d\boldsymbol{b} =$$

$$= \int_{I^{(r)}} \frac{\det \left[\mathbf{Q}(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) + \mathbf{D}(\boldsymbol{b}, \boldsymbol{\theta}) \right]}{\det^{1/2} \mathbf{B}(\hat{\boldsymbol{\theta}})} h(\|\boldsymbol{b}\|^2 + \|\boldsymbol{\psi}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\eta}\|_{\mathbf{\Sigma}}^2) \, d\boldsymbol{b} \, (\text{Proposition 1}) =$$

$$= q(\hat{\boldsymbol{\theta}} \mid \boldsymbol{\theta}) \int_{I^{(r)}} \det \left[\mathbf{I} + \mathbf{D}(\boldsymbol{b}, \hat{\boldsymbol{\theta}}) \mathbf{Q}^{-1}(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) \right] k_{N-m}(\|\boldsymbol{b}\|^2 \mid \|\boldsymbol{\psi}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\eta}\|_{\mathbf{\Sigma}}^2) \, d\boldsymbol{b}$$

Here we used Eq. (11) and the equality

$$\psi(\boldsymbol{\hat{\theta}}) - \boldsymbol{\eta} = P \hat{\boldsymbol{\theta}} \big[\boldsymbol{\eta}(\boldsymbol{\hat{\theta}}) - \boldsymbol{\eta} \big]$$

which follows from Eq. (16) and (A2).

Denote by E* the (conditional) mean with respect to the density

$$\mathbf{b} \in I(r) \mapsto \varphi(\mathbf{b} \mid \hat{\mathbf{\theta}}) := k_{N-m}(\|\mathbf{b}\|^2 \mid \|\mathbf{\psi}(\hat{\mathbf{\theta}}) - \mathbf{\eta}\|_{\Sigma}^2).$$

Instead of Eq. (23) we can write

(24)
$$\tilde{p}_{\mathbf{n}}(\hat{\boldsymbol{\theta}}) = q(\hat{\boldsymbol{\theta}} \mid \overline{\boldsymbol{\theta}}) \, \mathsf{E}_{\hat{\boldsymbol{\theta}}}^* \{ \det \left[\mathbf{I} + \mathbf{D}(\boldsymbol{b}, \hat{\boldsymbol{\theta}}) \, \mathbf{Q}^{-1}(\hat{\boldsymbol{\theta}}, \overline{\boldsymbol{\theta}}) \right] \} .$$

From [4], III, §7 we obtain

(25)
$$\det \left[\mathbf{I} + \mathbf{D}(\boldsymbol{b}, \hat{\boldsymbol{\theta}}) \mathbf{Q}^{-1}(\hat{\boldsymbol{\theta}}, \overline{\boldsymbol{\theta}}) \right] = 1 + \sum_{n=1}^{m} \operatorname{tr} \left[\mathbf{D}(\boldsymbol{b}, \hat{\boldsymbol{\theta}}) \mathbf{Q}^{-1}(\hat{\boldsymbol{\theta}}, \overline{\boldsymbol{\theta}}) \right]^{(s)}$$

According to the definition of $\mathbf{D}(\mathbf{b}, \hat{\mathbf{\theta}})$, each term in the right-hand side of Eq. (25) is a homogeneous polynomal in the variables b_1, \ldots, b_{N-r} . Consequently, if s is odd, then

$$\mathsf{E}_{\hat{\boldsymbol{\theta}}}^* [D(\boldsymbol{b}, \hat{\boldsymbol{\theta}}) \, Q^{-1}(\hat{\boldsymbol{\theta}}, \overline{\boldsymbol{\theta}})]^{(s)} = \mathbf{0}$$
,

because $\varphi(\mathbf{b} \mid \hat{\mathbf{\theta}})$ is a spherically symmetrical density. It follows that

(26)
$$\mathsf{E}_{\boldsymbol{\theta}}^{\mathsf{a}}\{\det\left[\mathbf{I} + \mathbf{D}(\boldsymbol{b}, \hat{\boldsymbol{\theta}}) \mathbf{Q}^{-1}(\hat{\boldsymbol{\theta}}, \overline{\boldsymbol{\theta}})\right]\} \leq$$

$$\leq 1 + \sum_{s=1}^{\mathsf{INT}(m/2)} \mathsf{E}_{\boldsymbol{\theta}}^{\mathsf{a}}\{\left|\operatorname{tr}\left[\mathbf{D}(\boldsymbol{b}, \hat{\boldsymbol{\theta}}) \mathbf{Q}^{-1}(\hat{\boldsymbol{\theta}}, \overline{\boldsymbol{\theta}})\right]^{(2s)}\right|\} \leq$$

$$\leq 1 + \sum_{s=1}^{\mathsf{INT}(m/2)} \mathsf{E}_{\boldsymbol{\theta}}^{\mathsf{a}}(\|\boldsymbol{b}\|^{2s}) \binom{m}{2s} \binom{2}{r}^{2s}$$

(Eq. (22) and Proposition 2.).

Similarly we obtain

(27)
$$\mathsf{E}_{\widehat{\boldsymbol{\theta}}}^{*}\{\det\left[\mathbf{I}+\mathbf{D}(\boldsymbol{b},\widehat{\boldsymbol{\theta}})\,\mathbf{Q}^{-1}(\widehat{\boldsymbol{\theta}},\overline{\boldsymbol{\theta}})\right]\} \geq 1 - \sum_{s=1}^{\mathsf{INT}(m/2)} \mathsf{E}_{\widehat{\boldsymbol{\theta}}}^{*}(\|\boldsymbol{b}\|^{2s}) \binom{m}{2s} \binom{2}{r}^{2s}.$$

Further, we have from Eqs. (8) and (12)

$$\begin{split} \mathsf{E}_{\hat{\boldsymbol{\theta}}}^*(\|\boldsymbol{b}\|^{2s}) & \leq \int_{\|\boldsymbol{b}\|^2 \leq (N-m)r^2} \|\boldsymbol{b}\|^{2s} \frac{h(\|\boldsymbol{b}\|^2 + \|\boldsymbol{\psi}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\eta}\|_{\mathbf{\Sigma}}^2)}{h_m(\|\boldsymbol{\psi}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\eta}\|_{\mathbf{\Sigma}}^2)} \; \mathrm{d}\boldsymbol{b} = \\ & = \frac{\int_0^{(N-m)r^2} u^s u^{(N-m)/2-1} \; h(u + \|\boldsymbol{\psi}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\eta}\|_{\mathbf{\Sigma}}^2) \; \mathrm{d}\boldsymbol{u}}{\int_0^\infty u^{(N-m)/2-1} \; h(u + \|\boldsymbol{\psi}(\hat{\boldsymbol{\theta}}) - \boldsymbol{\eta}\|_{\mathbf{\Sigma}}^2) \; \mathrm{d}\boldsymbol{u}} \; . \end{split}$$

Consequently, if h is a nonincreasing function, then from $\|\psi(\hat{\theta}) - \eta\|_{\Sigma} < r$ we obtain

(28)
$$\mathsf{E}_{\theta}^{*}(\|\mathbf{b}\|^{2s}) \leq \frac{\int_{0}^{(N-m)r^{2}} u^{(N-m)/2+s-1} h(u) \, \mathrm{d}u}{\int_{0}^{(N-m)r^{2}} u^{(N-m)/2-1} h(r^{2}+u) \, \mathrm{d}u}.$$

From Eqs (24) – (28) follows the proof of the following theorem.

Theorem. If $h: (0, \infty) \mapsto (0, \infty)$ is non-increasing then

$$\frac{\tilde{p}_{\eta}(\hat{\mathbf{\theta}}) - q(\hat{\mathbf{\theta}} | \bar{\mathbf{\theta}})}{q(\hat{\mathbf{\theta}} | \bar{\mathbf{\theta}})} \leq \sum_{s=1}^{\mathsf{INT}(m/2)} \binom{m}{2s} \left(\frac{2}{r}\right)^{2s} \frac{\int_{0}^{(N-m)r^2} u^{(N-m)/2 + s - 1} \, h(u) \, \mathrm{d}u}{\int_{0}^{(N-m)r^2} u^{(N-m)/2 - 1} \, h(r^2 + u) \, \mathrm{d}u}$$

APPENDIX

Proof of Proposition 1. We shall write θ instead of $\hat{\theta}$. We have

(A1)
$$\frac{\det^{2} \left[\nabla \mathbf{g}(\mathbf{\theta}, \mathbf{b}) \right]}{\det \mathbf{\Sigma}} = \det \begin{pmatrix} \frac{\partial \mathbf{g}^{T}}{\partial \mathbf{\theta}} \, \mathbf{\Sigma}^{-1} \, \frac{\partial \mathbf{g}}{\partial \mathbf{\theta}^{T}}, \, \frac{\partial \mathbf{g}^{T}}{\partial \mathbf{\theta}} \, \mathbf{\Sigma}^{-1} \, \mathbf{W} \\ \mathbf{W}^{T} \, \mathbf{\Sigma}^{-1} \, \frac{\partial \mathbf{g}}{\partial \mathbf{\theta}^{T}}, \, & \mathbf{I} \end{pmatrix} = \\ = \det \begin{pmatrix} \frac{\partial \mathbf{g}^{T}}{\partial \mathbf{\theta}} \, \mathbf{\Sigma}^{-1} \big[\mathbf{I} - \mathbf{W} \mathbf{W}^{T} \mathbf{\Sigma}^{-1} \big] \, \frac{\partial \mathbf{g}}{\partial \mathbf{\theta}^{T}} \end{pmatrix} \, ([4], \, \mathbf{II}, \, \S 5) \\ = \det \begin{pmatrix} \frac{\partial \mathbf{g}^{T}}{\partial \mathbf{\theta}} \, \mathbf{\Sigma}^{-1} \big[\mathbf{I} - \mathbf{R}^{\mathbf{\theta}} \big] \, \frac{\partial \mathbf{g}}{\partial \mathbf{\theta}^{T}} \end{pmatrix}.$$

From the equation

$$R^{\theta}\Sigma V^{-1}\,\frac{\partial\eta(\theta)}{\partial\theta^{T}}=\,W(\theta)\,W^{T}(\theta)\,V^{-1}\,\frac{\partial\eta(\theta)}{\partial\theta^{T}}=0$$

we see that the linearly independent vectors

$$\mathbf{t}_{i} := \Sigma \mathbf{V}^{-1} \frac{\partial \mathbf{\eta}(\mathbf{\theta})}{\partial \theta_{i}}; \quad (i = 1, ..., m)$$

span the linear space $\{z:z\in\mathbb{R}^N, (I-R^0)|z=z\}$. Hence the Σ -orthogonal projector onto this space is equal to

$$\mathbf{I} - \mathbf{R}^{\mathbf{\theta}} = \sum_{i,j=1}^{m} \mathbf{t}_{i} \{\mathbf{T}^{-1}\}_{ij} \mathbf{t}_{j}^{\mathrm{T}} \mathbf{\Sigma}^{-1}$$

where $\{\mathbf{T}\}_{ij} := \mathbf{t}_i^T \Sigma^{-1} \mathbf{t}_j$. It is easy to verify that $\mathbf{T} = \mathbf{B}(\boldsymbol{\theta})$, and that

$$\mathbf{I} - \mathbf{R}^{\mathbf{\theta}} = \mathbf{P}^{\mathbf{\theta}} ,$$

where P^{θ} is defined in Eq. (7). Putting the expression for P^{θ} into (A1) we obtain

$$\frac{\det^{2}\left[\nabla \mathbf{g}(\mathbf{\theta}, \mathbf{b})\right]}{\det \mathbf{\Sigma}} = \frac{\det^{2}\left(\frac{\partial \mathbf{g}^{T}}{\partial \mathbf{\theta}} \mathbf{V}^{-1} \frac{\partial \mathbf{\eta}}{\partial \mathbf{\theta}^{T}}\right)}{\det \left[\mathbf{B}(\mathbf{\theta})\right]} = \frac{\det^{2}\left[\frac{\partial \mathbf{\psi}^{T}}{\partial \mathbf{\theta}} \mathbf{V}^{-1} \frac{\partial \mathbf{\eta}}{\partial \mathbf{\theta}^{T}} + \sum_{l} b_{l} \frac{\partial \mathbf{w}_{l}^{T}}{\partial \mathbf{\theta}} \mathbf{V}^{-1} \frac{\partial \mathbf{\eta}}{\partial \mathbf{\theta}^{T}}\right]}{\det \left[\mathbf{B}(\mathbf{\theta})\right]}.$$

From

$$\psi(\theta) - \eta(\theta) = R^{\theta} [\eta - \eta(\theta)] \in \mathcal{N}(\theta)$$

we obtain that

$$[\psi(\theta) - \eta(\theta)]^T V^{-1} \frac{\partial \eta(\theta)}{\partial \theta^T} = 0 \; .$$

We differentiate this equality, and obtain

$$(A4) \quad \frac{\partial \psi^T(\theta)}{\partial \theta} V^{-1} \, \frac{\partial \eta(\theta)}{\partial \theta^T} \, = \, M(\theta) \, + \, \big[\eta(\theta) \, - \, \psi(\theta) \big]^T \, V^{-1} \, \frac{\partial^2 \eta(\theta)}{\partial \theta \partial \theta^T} = \, Q(\theta, \overline{\theta}).$$

Further, differentiating the first equations in (15) we obtain

$$\mathbf{D}(\boldsymbol{b},\boldsymbol{\theta}) = \sum_{l} b_{l} \frac{\partial \boldsymbol{w}_{l}^{T}\!\!\left(\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}} \mathbf{V}^{-1} \frac{\partial \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{T}}.$$

Finally, from (3) it follows that the matrix $\partial^2/\partial\theta$ $\partial\theta^T\{\frac{1}{2}\|\eta(\theta)-\mathbf{y}\|_{\mathbf{E}}^2\}_{\theta=\hat{\theta}}$ is p.d., and we can verify that it is equal to $\mathbf{Q}(\hat{\theta},\bar{\theta})+\mathbf{D}(\mathbf{b},\hat{\theta})$ when putting $\mathbf{y}=\mathbf{g}(\hat{\theta},\mathbf{b})$.

The matrix $M(\boldsymbol{\theta})$ is positive definite. Therefore, there is a nonsingular matrix U such that

$$\mathbf{U}^{T} \mathbf{M}(\boldsymbol{\theta}) \mathbf{U} = \mathbf{I}$$
.

Denote

$$\begin{split} D^*(\textbf{e}) := & \ D^*(\textbf{e}, \theta) := \ U^T \ D(\textbf{e}, \theta) \ U \\ Q^* & := \ Q^*(\theta) \ := \ U^T Q U \ . \end{split}$$

For any eigenvalue λ of the matrix $D(e, \theta)$ we have the inequality

(A5)
$$|\lambda| \le \frac{1}{\varrho(\mathbf{0})}$$

(cf. [7], Proposition 2).

Proof of Proposition 2. For any matrices A, B we have (cf. [3], theorem 6.13)

$$\mathbf{A}^{(s)}\mathbf{B}^{(s)} = (\mathbf{A}\mathbf{B})^{(s)}.$$

Hence

$$\begin{split} \left(\mathsf{A6}\right) & \qquad \mathsf{tr}\left[\mathbf{D}^*(\mathbf{e})\;\mathbf{Q}^{*^{-1}}\right]^{(s)} = \mathsf{tr}\left\{\left(\mathbf{U}^T\right)^{(s)}\left[\mathbf{D}(\mathbf{e})\;\mathbf{Q}^{-1}\right]^{(s)}\left(\mathbf{U}^{T(-1)}\right)^{(s)}\right\} \\ & = \mathsf{tr}\left[\mathbf{D}(\mathbf{e})\;\mathbf{Q}^{-1}\right]^{(s)} \end{split}$$

Denote by $\mathbf{C} := (\mathbf{c}^{(1)}, ..., \mathbf{c}^{(m)})$ and by $\mathbf{\Lambda} := \operatorname{diag}(\lambda_1, ..., \lambda_m)$ the matrices of the orthonormal eigenvectors and of the eigenvalues of $\mathbf{D}^*(\mathbf{e})$. From $\mathbf{D}^*(\mathbf{e}) = \mathbf{C}\mathbf{\Lambda}\mathbf{C}^T$ we obtain

$$\text{tr}\left[\boldsymbol{D^*(e)}\;\boldsymbol{Q^{*^{-1}}}\right]^{(s)} = \,\text{tr}\left[\boldsymbol{\Lambda^{(s)}(C^T)^{(s)}}\left(\boldsymbol{Q^{*^{-1}}}\right)^{(s)}\boldsymbol{C^{(s)}}\right].$$

The matrix $\Lambda^{(s)}$ is diagonal, having diagonal entries of the form $\lambda_{i_1}, \ldots, \lambda_{i_s}$; $(i_1 < \ldots < i_s)$. Hence from (A5) we obtain

$$\begin{aligned} \left(\mathsf{A7} \right) & \left| \operatorname{tr} \left[\mathbf{D^*(e)} \ Q^{*^{-1}} \right]^{(s)} \right| \leq & \left[\varrho(\theta) \right]^{-s} \operatorname{tr} \left[(\mathbf{C}^T)^{(s)} \left(\mathbf{Q}^{*^{-1}} \right)^{(s)} \mathbf{C}^{(s)} \right] = \\ & = & \left[\varrho(\theta) \right]^{-s} \operatorname{tr} \left(\mathbf{Q}^{*^{-1}} \right)^{(s)} \end{aligned}$$

since $C^{(s)}(C^T)^{(s)} = (CC^T)^{(s)} = I^{(s)} = I$.

From (A3) we obtain

$$\mathbf{Q} = \mathbf{I} + \mathbf{U}^T \big[\boldsymbol{\eta}(\boldsymbol{\theta}) - \boldsymbol{\psi}(\boldsymbol{\theta}) \big]^T \mathbf{V}^{-1} \, \frac{\partial^2 \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \, \partial \boldsymbol{\theta}^T} \mathbf{U} \, .$$

According to Eq. (A3) we can write

$$\eta(\boldsymbol{\theta}) - \psi(\boldsymbol{\theta}) = -\sum_{i=1}^{N-m} d_i \boldsymbol{w}_i(\boldsymbol{\theta}),$$

where $d_i := [\psi(\theta) - \eta(\theta)]^T \Sigma^{-1} \mathbf{w}_i(\theta)$. Hence

$$[\boldsymbol{\eta}(\boldsymbol{\theta}) - \boldsymbol{\psi}(\boldsymbol{\theta})]^T \mathbf{V}^{-1} \frac{\partial^2 \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} = \mathbf{D}(\boldsymbol{d}, \boldsymbol{\theta}).$$

Thus

$$\mathbf{Q}^* = \mathbf{I} + \|\mathbf{\psi}(\mathbf{\theta}) - \mathbf{\eta}(\mathbf{\theta})\|_{\mathbf{E}} \, \mathbf{D}^*(\mathbf{f})$$

where $\mathbf{f} := \mathbf{d}/\|\mathbf{d}\|$.

Using once more the inequality (A4) we obtain that the eigenvalues $\mu_1, ..., \mu_m$ of the matrix \mathbf{Q}^* are bounded according to the inequalities

$$1 - \|\psi(\theta) - \eta(\theta)\|_{\Sigma} \varrho^{-1}(\theta) \leq \mu_i \leq 1 + \|\psi(\theta) - \eta(\theta)\|_{\Sigma} \varrho^{-1}(\theta).$$

Denote by $\mathbf{Z}:=(\mathbf{z}_1,\ldots,\mathbf{z}_m)$ the matrix of the orthonormal eigenvectors of \mathbf{Q}^* . We have

$$\begin{split} \text{(A8)} & \quad \operatorname{tr} \left(\mathbf{Q}^{*-1} \right)^{(s)} = \operatorname{tr} \left[(\mathbf{Z}^{-1} (\mathbf{Z}^{\mathsf{T}})^{-1})^{(s)} (\mathbf{Q}^{*-1})^{(s)} \right] = \operatorname{tr} \left[(\mathbf{Z}^{\mathsf{T}} \mathbf{Q}^{*} \mathbf{Z})^{-1} \right]^{(s)} = \\ & \quad = \sum_{i_1 < \dots < i_s} \mu_{i_1}^{-1} \, \dots \, \mu_{i_s}^{-1} \, \leq \binom{m}{s} \left[\frac{\varrho(\theta)}{\varrho(\theta) \, - \, \|\psi(\theta) - \, \eta(\theta)\|_{\Sigma}} \right]^{s} \, . \end{aligned}$$

From (A6)-(A8) we have

$$\left|\operatorname{tr}\left[\mathbf{D}(\mathbf{e},\boldsymbol{\theta})\;\mathbf{Q}^{-1}(\boldsymbol{\theta},\overline{\boldsymbol{\theta}})\right]^{(s)}\right| \leq \binom{m}{s}\left[\varrho(\boldsymbol{\theta})\;-\;\|\boldsymbol{\psi}(\boldsymbol{\theta})\;-\;\boldsymbol{\eta}(\boldsymbol{\theta})\|_{\mathbf{\Sigma}}\right]^{-s}.$$

We obtain the required inequality from $[\psi(\theta)-\eta(\theta)]_{\Sigma} \le \varrho(\theta)/2$ which follows from the assumption A4.

Proof of Proposition 3. Take $\theta \in A_{\eta}(r)$, It is sufficient to show that for every geodesics $\gamma = \eta \circ \varkappa$ going through the point θ the inequality

$$\frac{\mathrm{d}\mathbf{x}^{\mathrm{T}}(0)}{\mathrm{d}t}\,\mathbf{Q}(\boldsymbol{\theta},\overline{\boldsymbol{\theta}})\,\frac{\mathrm{d}\mathbf{x}(0)}{\mathrm{d}t}>0$$

holds. From Eqs. (A4) and (16) we obtain

$$\frac{d\boldsymbol{\varkappa}^T}{dt} \, \mathbf{Q}(\boldsymbol{\theta}, \overline{\boldsymbol{\theta}}) \frac{d\boldsymbol{\varkappa}}{dt} = \frac{d\boldsymbol{\gamma}^T(0)}{dt} \mathbf{V}^{-1} \, \frac{d\boldsymbol{\gamma}(0)}{dt} + \frac{d\boldsymbol{\varkappa}^T(0)}{dt} \Big\{ \big[\mathbf{R}^{\boldsymbol{\theta}} (\boldsymbol{\eta}(\boldsymbol{\theta}) - \boldsymbol{\eta}) \big]^T \, \mathbf{V}^{-1} \, \frac{\partial^2 \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \, \partial \boldsymbol{\theta}^T} \Big\} \frac{d\boldsymbol{\varkappa}(0)}{dt} \, .$$

Hence from the definition of the V-geodesics γ (Section 3) we have

$$\frac{d\mathbf{x}^T}{dt} \mathbf{Q}(\mathbf{\theta}, \overline{\mathbf{\theta}}) \frac{d\mathbf{x}}{dt} = 1 + \left[\mathbf{R}^{\mathbf{0}} (\mathbf{\eta}(\mathbf{\theta}) - \eta) \right]^T \mathbf{V}^{-1} \frac{d^2 \gamma(0)}{dt^2} =$$

$$= 1 - [\psi(\theta) - \eta(\theta)]^{\mathrm{T}} V^{-1} \frac{\mathrm{d}^2 \gamma(0)}{\mathrm{d}t^2}.$$

Therefore, from the Schwarz inequality and from the definition of $r_{\gamma}(0)$ (Section 3) we obtain that it is sufficient to prove that

$$\|\psi(\mathbf{\theta}) - \mathbf{\eta}(\mathbf{\theta})\|_{\mathbf{V}} < r_{\mathbf{y}}(0).$$

Since $\theta \in A_{\eta}(r)$, there is a point $\mathbf{y} \in G_{\eta}(r)$, i.e.

$$\|\mathbf{y} - \mathbf{\eta}\|_{\Sigma} < r < r_{\gamma}(0),$$

such that $\mathbf{y} \in \mathcal{A}(\mathbf{\theta})$ (see the definition of $A_{\eta}(r)$). Consequently

$$\|\psi(\theta) - \eta\|_{\Sigma} = \|P^{\theta}(y - \eta)\|_{\Sigma} < \|y - \eta\|_{\Sigma} < r_{\gamma}(0) \ .$$

It follows that $\psi(\theta) \in G_{\eta}(r)$. Evidently $\psi(\theta) \in \mathscr{A}(\theta)$. Consequently, according to the property A3, θ solves Eq. (3) for $\mathbf{y} = \psi(\theta)$. It follows that $\|\psi(\theta) - \eta(\theta)\|_{\mathbf{Y}} \le \|\psi(\theta) - \eta\|_{\mathbf{Y}} \le \|\psi(\theta) - \eta\|_{\mathbf{Z}} < r_{\gamma}(0)$ since \mathbf{V} is dominating Σ .

(Received March 10, 1988.)

REFERENCES

- [1] D. M. Bates and D. G. Watts: Relative curvature measures of nonlinearity. J. R. Statist. Soc. B 42 (1980), 1-25.
- [2] T. Cacoullos: On minimum-distance location discrimination for isotropic distributions. In: Proc. DIANA II Conf. on Discriminant Analysis, Cluster Analysis. Mathematical Inst., Czech. Acad. Sciences, Prague 1987, 1—16.
- [3] M. Fiedler: Special Matrices and Their Use in Numerical Mathematics (in Czech). SNTL, Prague 1981.
- [4] F. R. Gantmacher: Matrix Theory (in Russian). Nauka, Moscow 1966.
- [5] D. Kelker: Distribution theory of spherical distributions and a location-scale parameter generalization. Sankhya 32A (1970), 419-430.
- [6] Yu. G. Kuritsin: On the least squares method for elliptically countered distributions (in Russian). Teor. Veroyatnost. i Primenen. 31 (1986), 834—838.
- [7] A. Pázman: Probability distribution of the multivariate nonlinear least squares estimates. Kybernetika 20 (1984), 209—230.
- [8] A. Pázman: On formulas for the distribution of nonlinear L.S. estimates. Statistics 18 (1987), 3-15.
 [9] A. Pázman: On information matrices in nonlinear experimental design. J. Statist. Plann.
- Interference (in print).
- [10] C. R. Rao: Linear Statistical Inference and Its Applications. Second edition. J. Wiley, New York 1973.

RNDr. Andrej Pázman, DrSc., Matematický ústav SAV (Mathematical Institute – Slovak Academy of Sciences), Obrancov mieru 49, 81473 Bratislava. Czechoslovakia.