TABLES FOR AR(1) PROCESSES WITH EXPONENTIAL WHITE NOISE

JIǨí ANDĚL, KAREL ZVÁRA

A new method was recently proposed for estimating the parameter of the $\operatorname{AR}(1)$ process with non-negative values. The exact distribution of this estimator was derived for the case that the white noise has an exponential distribution. Here we present tables containing the expectation and standard deviation of the new estimator.

1. INTRODUCTION

Let X_{1} be a non-negative random variable such that $E X_{1}^{2}<\infty$. Let $Y_{2}, Y_{3}, \ldots, Y_{n}$ be i.i.d. non-negative random variables with a distribution function F having a finite second moment. Let Y_{2}, \ldots, Y_{n} be independent of X_{1}. Consider the $\operatorname{AR}(1)$ process $\left\{X_{t}, 1 \leqq t \leqq n\right\}$ given by

$$
\begin{equation*}
X_{t}=b X_{t-1}+Y_{t} \quad(2 \leqq t \leqq n) \tag{1.1}
\end{equation*}
$$

where $b \in[0,1)$. Bell and Smith [2] proposed this model for investigating nonnegative time series. The parameter b can be estimated by

$$
b^{*}=\min _{2 \leqq t \leqq n}\left(X_{t} / X_{t-1}\right)
$$

Theorem 1.1. The estimator b^{*} has a positive bias. As $n \rightarrow \infty, b^{*}$ is consistent if and only if there exist no numbers c, d such that $0<c<d<\infty, F(d)-F(c)=1$.

Proof. See [2].
If the condition introduced in Theorem 1.1 is satisfied, then b^{*} is even strongly consistent.

It is clear that the effect of X_{1} on b^{*} is diminished as time increases.
The most important case is when Y_{t} has an exponential distribution $\operatorname{Ex}(a)$ with the density

$$
f(y)=a^{-1} \mathrm{e}^{-y / a}, \quad y>0
$$

Anděl [1] proposed to consider the model, in which $X_{1} \sim \operatorname{Ex}[a /(1-b)]$, because
in this case $\mathrm{E} X_{1}$ is the same as the expectation of the stationary distribution. He derived some explicit results.

Theorem 1.2. Let $X_{1} \sim \operatorname{Ex}[a /(1-b)], Y_{t} \sim \operatorname{Ex}(a)$. Then the distribution of b^{*} is given by $\mathrm{P}\left(b^{*}<v\right)=1-G(v)$, where

$$
\begin{aligned}
G(v)= & (1-b)\left\{[v+(1-b)]\left[v^{2}+(1-b)(1+v)\right] \ldots\right. \\
& \ldots\left[v^{n-2}+(1-b)\left(1+v+\ldots+v^{n-3}\right)\right] \\
\cdot & {\left.\left[v^{n-1}+(1-b)\left(1+v+\ldots+v^{n-2}\right)-b\right]\right\}^{-1} }
\end{aligned}
$$

for $v \geqq b$, and $G(v)=1$ for $v<b$.
Proof. See [1].
Critical values of this distribution are introduced in [1]. It was proved in the same paper that

$$
b+n^{-1}(1-b)^{2} \leqq \mathrm{E} b^{*} \leqq b+(n-2)^{-1}
$$

$\operatorname{var} b^{*} \leqq 2 b\left[(n-2)^{-1}-n^{-1}(1-b)^{2}\right]+2(n-2)^{-1}(n-3)^{-1}-n^{-2}(1-b)^{4}$.
Unfortunately, for $b \neq 0$ these inequalities give only very rough bounds for $E b^{*}$ and $\operatorname{var} b^{*}$. On the other hand, simulations show that the estimator b^{*} has considerably smaller standard deviation in comparison with the classical least squares estimator. If the bias of b^{*} were known exactly, b^{*} could serve even much better. However, no explicit formulas are known for the integral $\mathrm{E} b^{*}=-\int v G^{\prime}(v) \mathrm{d} v$.

Table 1 contains $\mathrm{E} b^{*}$, Table $2\left(\operatorname{var} b^{*}\right)^{1 / 2}$ for $b=0(0.1) 0.9,0.95(0.01) 0.99$ and $n=10(5) 50(50) 150 . \mathrm{E} b^{*}$ and var b^{*} were computed using formulas

$$
\begin{gathered}
\mathrm{E} b^{*}=b+\int_{b}^{\infty} G(v) \mathrm{d} v \\
\operatorname{var} b^{*}=2 \int_{b}^{\infty} v G(v) \mathrm{d} v-2 b \int_{b}^{\infty} G(v) \mathrm{d} v-\left[\int_{b}^{\infty} G(v) \mathrm{d} v\right]^{2}
\end{gathered}
$$

and the integrals

$$
\int_{b}^{\infty} G(v) \mathrm{d} v \quad \text { and } \quad \int_{b}^{\infty} v G(v) \mathrm{d} v
$$

were calculated numerically. In each case, the interval (b, ∞) was written in the form $(b, \infty)=(b, B] \cup(B, \infty)$. The constant $B(B \geqq b)$ was chosen so that the integral over (B, ∞) was smaller than 10^{-6}, and the integral over $(b, B]$ was then calculated using the Gauss method.

2. AN APPROXIMATION

Since

$$
b^{*}=b+\min _{2 \leqq t \leqq n} \frac{Y_{t}}{X_{t-1}}
$$

it suffices to consider the distribution of

$$
\begin{equation*}
\xi=\min _{2 \leqq t \leqq n} \frac{Y_{t}}{X_{t-1}} \tag{2.1}
\end{equation*}
$$

Table 1.

b	n										
	10	15	20	25	30	35	40	45	50	100	150
$0 \cdot 00$	$0 \cdot 1023$	0.0673	0.0503	0.0401	0.0334	0.0286	0.0250	0.0222	0.0200	0.0100	0.0067
$0 \cdot 10$	$0 \cdot 1923$	0.1606	0.1453	$0 \cdot 1361$	$0 \cdot 1301$	0.1258	$0 \cdot 1225$	$0 \cdot 1200$	$0 \cdot 1180$	0. 1090	0.1060
$0 \cdot 20$	$0 \cdot 2824$	0.2540	0.2403	$0 \cdot 2321$	0.2268	$0 \cdot 2229$	$0 \cdot 2200$	0.2178	0.2160	0.2080	0.2053
0.30	$0 \cdot 3726$	0.3474	0.3353	$0 \cdot 3281$	0.3234	0.3201	$0 \cdot 3175$	$0 \cdot 3156$	$0 \cdot 3140$	0.3070	0.3047
0.40	0.4628	0.4407	0.4303	0.4242	0.4201	$0 \cdot 4172$	0.4150	0.4134	0.4120	0.4060	0.4040
0.50	0.5531	0.5342	0.5253	0.5202	0.5168	0.5144	$0 \cdot 5125$	0.5111	$0 \cdot 5100$	0.5050	0.5033
0.60	0.6435	0.6276	0.6204	0.6162	0.6135	0.6115	0.6100	0.6089	0.6080	0.6040	0.6027
0.70	0.7340	0.7212	0.7155	0.7122	0.7101	0.7087	0.7076	0.7067	$0 \cdot 7060$	0.7030	0.7020
0.80	0.8246	0.8148	0.8106	0.8083	0.8069	$0 \cdot 8058$	0.8051	0.8045	$0 \cdot 8040$	0.8020	0.8013
$0 \cdot 90$	0.9149	$0 \cdot 9085$	0.9059	0.9045	0.9036	0.9030	0.9026	0.9023	0.9021	0.9010	$0 \cdot 9007$
0.95	0.9593	0.9552	0.9535	0.9526	0.9521	0.9517	0.9514	0.9513	0.9511	0.9505	0.9503
0.96	0.9680	$0 \cdot 9645$	0.9630	0.9622	0.9618	0.9614	0.9612	0.9611	0.9609	0.9604	0.9603
0.97	0.9766	0.9737	0.9725	0.9718	0.9714	0.9712	0.9710	0.9708	$0 \cdot 9707$	0.9703	$0 \cdot 9702$
0.98	0.9850	0.9828	0.9819	0.9814	0.9811	0.9809	0.9807	0.9806	0.9805	0.9802	$0 \cdot 9801$
$0 \cdot 99$	0.9931	0.9917	0.9912	0.9909	0.9907	0.9905	0.9905	0.9904	0.9903	0.9901	0.9901

Without loss of generality we can assume that $a=1$, because the distribution of ξ does not depend on a (see Theorem 1.2). Denote $m=E X_{t}$. Since X_{1}, \ldots, X_{n} can be considered from practical point of view as stationary, we have from (1.1)

$$
m=b m+1,
$$

i.e.

$$
m=1 /(1-b)
$$

If we substitute m for X_{t-1} in (2.1), we have for ξ an approximation

$$
\xi_{\mathrm{appr}}=\frac{1}{m} \min _{2 \leqq t \leqq n} Y_{t} .
$$

Since $Y_{t} \sim \operatorname{Ex}(1)$ we have $\min Y_{t} \sim \operatorname{Ex}(1 /(n-1))$. Thus

$$
2 \leqq t \leqq n
$$

$$
\begin{aligned}
\mathrm{E} \xi_{\mathrm{appr}} & =\frac{1-b}{n-1} \\
\operatorname{var} \xi_{\mathrm{appr}} & =\frac{(1-b)^{2}}{(n-1)^{2}}
\end{aligned}
$$

The quality of this approximation can be judged using Table 3. The exact values are taken from Table 1 and Table 2.

Table 3.

b	n	Exact values		Approximate values	
		$E b^{*}$	$\left(\text { var } b^{*}\right)^{1 / 2}$	$E b^{*}$	$\left(\operatorname{var} b^{*}\right)^{1 / 2}$
0.2	10	$0 \cdot 2824$	0.0767	0.2889	0.0889
$0 \cdot 2$	100	0.2080	0.0079	$0 \cdot 2081$	0.0081
0.9	10	$0 \cdot 9149$	0.0181	0.9111	0.0111
0.9	100	$0 \cdot 9010$	0.0010	0.9010	0.0010

For the practical purposes our approximation can be used in the form

$$
\begin{aligned}
& \mathrm{E} b^{*} \doteq b+\frac{1-b}{n-1} \\
& \left(\operatorname{var} b^{*}\right)^{1 / 2} \doteq \frac{1-b}{n-1}
\end{aligned}
$$

3. AN APPLICATION

It was mentioned that $\mathrm{E} b^{*}>b$. Using Table 1, we can reduce the bias of the estimator b^{*}. We can proceed in the following way:

1. Calculate b^{*}.
2. Find b such that $\mathrm{E} b=b^{*}$; denote this b by b_{0}.
3. Use b_{0} as a new estimator.

To illustrate this approach, we produced a small simulation study. For each value of b introduced in Table 4, 100 simulations of the stationary $\operatorname{AR}(1)$ process X_{1}, \ldots \ldots, X_{50} with $Y_{t} \sim E x(1)$ were produced, In the column b^{*} the averages of the corresponding estimates are given. The next column s.d. b^{*} contains empirical standard deviations. In the column b_{0} the new estimator is presented, which is calculated from values placed the column b^{*}. It was obtained by interpolation in Table 1. To compare these results with classical estimators, we introduce also the average of the least squares estimates b^{0} and the empirical standard deviation s.d. b^{0}.

Table 4.

b	b^{*}	s. d. b^{*}	b_{0}	b^{0}	s. d. b^{0}
	0.021	0.019	0.001	-0.008	0.142
0	0.511	0.011	0.501	0.492	0.121
0.9	0.902	0.002	0.900	0.828	0.103

Table 4 shows that b_{0} is more concentrated around b than b^{*}. Further, s.d. b^{*} is much smaller than s.d. b^{0}. Thus in the $\operatorname{AR}(1)$ processes with exponential white noise the new method gives considerably better estimators than the classical least squares method.
(Received January 26, 1988.)

REFERENCES

[1] J. Andĕl: On AR(1) processes with exponential white noise. Comm. Statist. A - Theory Methods 17 (1988), 5, 1481-1495.
[2] C. B. Bell and E. P. Smith: Inference for non-negative autoregressive schemes. Comm. Statist. A - Theory Methods 15 (1986), 8, 2267-2293.

Prof. RNDr. Jiři Anděl, DrSc., RNDr. Karel Zvára, CSc., Universita Karlova, matematickofyzikálni fakulta (Charles University - Faculty of Mathematics and Physics), Sokolovská 83, 18600 Praha 8. Czechoslovakia.

