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ON THE CONSISTENCY OF A LEAST SQUARES
IDENTIFICATION PROCEDURE*

PETR MANDL, TYRONE E. DUNCAN, BOZENNA PASIK-DUNCAN

Conditions for the convergence of parameter estimates to the true value applicable in self-
tuning control models are presented. Persistent excitation property is proved by control theory
methods.

1. INTRODUCTION

The paper deals with random processes the trajectory of which fulfills
(1 dX, = f(«) X, dt + U,dt + dW,, 120.
In(1) W= {W, t 2 0} is the n-dimensional Wiener process with incremental variance
matrix h,
dW,dW, = hdt.
Prime denotes the transposition. U = {U,, ¢ 2 0} is a random process nonanticipative
with respect to W. f(oc) denotes an n x n-matrix of the form

fl@) = fo + 2y + ..+ @, a= (.., a") eR".

o f1s .-, [ arc given matrices, o is a parameter the true value a, of which is to be
estimated from the observation of X and U.

The paper continues the research of parameter estimation in linear systems initiated
in [2], [5]. and shows that the applications of control theory methods to the con-
sistency problems presented in [4] can be developed to obtain explicit results. The
methods were extended in [ 1] to embrace the estimates of the drift parameters.

The least squares estimate of a, on the basis of {X,, t £ T}, {U,, t £ T} is denoted
by of. Tt is defined as follows. Let I be a nonnegative definite symmetric matrix.
Heuristically o} is the minimizer of the quadratic functional

©)] Jo (Xi = flo) X, = UY (X, — f(@) X, = Uy dr,

* This research has been partially supported by the U.S. National Science Foundation
Grant ECS-8403286-A01.
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where X, denotes the derivative of X, which in fact does not exist. To improve this
we substract from (2)
5 X1X, dt

which does not depend on o and rewrite the remaining terms as
(3) [ (@)X, + UY I(f(2) X, + U)de — 2 5 (f(2) X, + U) 1 dX,.

Equating the derivatives of (3) with respect to a' to 0 one obtains the linear system
of equations

@) TIEXSUX diay = [DXTIAX — foX d— Udh), = Lom,
J
for of', ..., a3™. We remark that (4) is a recursive estimation procedure (see [1]).

The estimator o} is consistent if «f — «, in probability. It is strongly consistent
if «f — o, almost surely (abbreviated a.s.).

2. STATEMENT AND PROOF OF RESULTS

Lemma 1. Let g be an n x n-matrix. If

1 T
(5) S xppar, T>o0,
T 0
is bounded in probability (respectively a.s.), then
T
(6) lim lj X;9'dW, = 0 in prob. (respectively a.s.).
T 0

Proof. Introduce
V= [0 X'g'hgX dt .
The following equation is satisfied
[oX'g' dW =W,

where {#°;, s = 0} is a Wiener process. Let (5) be bounded in probability. Choose
£ > 0 and find K, such that

P(Vi)T<K,)>1-¢, T>0.
Then

{7) P(FT Wy

> c) Se+2P(sup W, > eT) = ¢ + 40(—eT/\/(K,T)),

SEKT
where ®(y) is the standardized normal distribution function. The last term in (7)
tends to 0 as T — co, which proves (6) in probability.

The alternative with a.s. converegence is proved directly using the strong law
of large numbers for % . ]
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Proposition 1. Let the matrices
(®) JUdh, i=1,,m,

be linearly independent where /I, \/h is the symmetric square root of I and of h,
respectively. If

T

) lf (X + v de, T>o0,

T 0
is bounded in probability (respectively a.s.), and
(10) lim |X,|*/T =0 in prob. (respectively a.s.),

T—o
then
(11) lim e = oy in prob. (respectively a.s.).
T

Proof. Inserting (1) with & = «, into (4) we get
Z jg X'filf; X dt(oz;j - a{;) = jg X'fitaw,
7
and hence
LT, w1 i . (T wi
(1) 3L XX s - ) o - o) = £ 1 J X AWt — o).
if 0 i 0
To investigate the left-hand side of (12) take u € R™, |,u| = 1, and denote
(13) pu) = Y ifi, a(w) = p(n) ply) .
i
Consequently,
(T c 1 (T
Z‘J Xf{fX de iy = —j X' gq(p) X dt.
i7 TJjo T)o
Set f = f(o). It can be assumed that f is a stable matrix because without loss

of generality it can be replaced by f — al where I is the unit matrix. Introduce
the quadratic functional

(14) 0p) = [3 X" q(w) X dt + ¢ {5 |U|* dt

where ¢ > 0. Consider U as a control process and QT(u) as a cost functional. The
minimum of EQ over all U nonanticipative is obtained by solving a Riccati equation
whose limiting form as T'— o0 is

(15) wf + f'w — ¢ w? + g(u) =0
where w is nonnegative definite. It follows then
(16) inf {2x'w(fx + u) + x"q(u) x + c[u|?} =0, xeR".

From (1) and (16) applying the Itd formula to f d(X'wX) it follows that
17) 0,(n) — Ttrace (hw) + XiwX, = 2 [T X'w dW.
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Setting » = ¢~ 'w we get from (15)
of + v =02+ cg(p)=0.

From here it follows that
(18) v~ V2 Jg(p), e 04 .
Because of the linear independence of (8), \/h q(u) \/h is nonzero, and hence
Jha(w)''* is nonzero. Consequently,

inf trace (i1 \/q(1)) = inf trace (h /q(1) Vhy>o.

lut=1 lul=1
From (18) we deduce that

trace (hv) = rf\/c,

or
(19) trace (hw) = r \/c,
where > 0 is independent of gand ¢, [u] = 1,¢ < 1.

Let (9) be bounded in probability and let (10) hold in probability. Applying Lemma
[ to the integral in (17) we obtain using (10) and (19) that for § > 0

(20) lim P(;: 0r(1) 2 r e — 6) =1.

T

Using (20) we shall estimate the left-hand side of (12).
Lete > 0. Find K, such that

(21) P(;—ﬂf:ﬂx]z-%]vlz)dré[([); l—¢, T>0.

Then
0 ([ X0 — a0 x ] 2 o) — o | Ko vem) 21—

IA

Further fix ¢ > 0 such that
(23) rJe—cK,-36>0.

Next choose a finite set g, k = I, ..., N, ]#J = 1, such that

(24) i’l(lf[q(ll) ~ q(w)| K, £ 5 whenever [uf = 1.
By virtue of (20) for T > T,
P(% Or() 2 rife =6, i=1, A) 21 —¢,
and hence from (14), (21) (23)
r

) )
P(?J‘ Xq(/,,.)xdr;mi: ,.,.,N)gJ_zg,
0
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(22) and (24) imply the persistent exciftation condition (see [3])

T
(25) P(;J X' q(p) X dt = 8|ul?, ;J,ER"') >1- 2.
o

Consequently,
T
(26) p(z 1} f XX Qe — ob) (o) — ad) = dladt — aov) > 1 2.
ij [«

Regarding the right-hand side of (12) we have by Lemma 1 for T > T,
{ T 2\ 1/2
p{(>(=| xfitaw 267z 1 —¢,
T\T ),
and hence

T
(27) P<Z ;J X'fildW(e’ — of) £ 8*of — oc0|> z1-—5s.
0

From (12),(26), (27) it follows that
Plad — ool <) 21 =3, T>T,.

Note that § in (23) can be chosen arbitrarily small. The validity of (11) in probability
is thus established.

The boundedness of (9) and the validity of (10) almost surely implies
P{lim inf L 0z rc)=1.
o0 T
Moreover T > T, can be added to the events whose probabilities are computed
starting with (21) and ending with
Plog — ool <6, T>Ty)z1 -3,
which proves the validity of (11) almost surely. O

Assume next that h is singular, 0 < rank h = s < n. Renumbering the coordinates
if necessary 7 can be expressed as

],‘C'O’ th
h = (hm pit] = (Ko, 1),
where rank h°° = 5. The same partitioning will be used also for the blocks of other
matrices. Recall the definition (13) of p(u), q(u).
Proposition 2. The implication of Proposition 1 remains valid if
(28) rank p'(y) < rank p(n), peR™.

Proof. Write X{ =(X;,...,X}), similarly for U}, W?, and set V, =
= (X571, ..., X}). From (1) it follows

dX? = fO0x%dr 4 fOV,dt + U? dt + dW?0, ¢

v
=}
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Consider U° and V as control processes and proceed as in the proof of Proposition 1.
It holds

X qp) X =X q°°(u) X + 2V q(u)*° X° + V' q''(n) V.
Note that

{]00 - (pO)/ pO R ql() — (pl)f PO’ qll — (p'n)' pl .

Without loss of generality it can be assumed that ¢'' is nonsingular, i.e., p* has
linearly independent columns. Otherwise the dimension of V could be reduced.
Moreover, let h°° = I, and let f°° be a stable matrix.

Introduce the functional
Or = [§(X%q°°X° + 2V'q"°X° + V'g" V) di + ¢ [§ (JU]* + [V]?)dt.
We shall demonstrate the analogues of (17) and (19). The rest of the proof follows
that of Proposition 1. Writing x, u instead if x° u® we replace (16) by

(29) inf{2x’w(f°°x + /%% + u) + x'q%% +
(u,0)

+ 20'g"x + v'g""o + c([u]? + |o]?)} = 0.
The minimum of the expression in braces is attained for
u=—ctwx, v=—(cI+q")y (/Y w+q%x.
Inserting these values into (29) we obtain
(30) x'(2wf%% — ¢ w? + g% — wf®l (el + g"") T (O w —
= 2wfON el + g'")71 g™ — g (el + q'") 7 g"" -
—eq®(cI + g"")"2(q"° + 2(f/*)Y w))x = 0.

From here we conclude that the asymptotic behaviour of ¢™'w as ¢ —» 0+ depends
on the matrix

(31) qOO* qol(qll)—lq|0>
From
inf]p"x + valz _ ,\"({100 _ qm(qn)fx qlo)x
it is seen that (28) implies that (31} is a nonzero matrix. Consequently,

inf trace (°°(u) — q°" (1) ¢"' ()" ¢"%(1)) > 0.

=1
From this inequality and from (30) it follows that
trace (w) 2 r /¢
with r > 0. This inequality with the inequality
Or(n) — Ttrace (W) + X9wX% = 2 {3 Xw dW

enables us to continue as in the proof of Proposition 1. O
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Example. A self-tuning control model is described by the equation
dX, = flop) X, dt + k{e]) X, dt + dW,, 1 =0,
where k(«) are given feedback gain matrices. Assume that
H = {k(a), « € R™}
is a bounded set and that the following Liapunov type assumption (see [5]) is fulfilled.
There exists a symmetric matrix z > 0 such that
(32) Z(f+gk)+(f+gk)z+I50, kexX.

The inequalities denote positive definiteness and negative semidefiniteness, respect-
ively. (32) implies (9), (10) and Propositions 1, 2 give sufficient condition for the
self-tuning property.

(Received February 12, 1988.)
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