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A NOTE ON THE DIFFERENTIABILITY 
IN TWO-STAGE STOCHASTIC 
NONLINEAR PROGRAMMING PROBLEMS 

VLASTA KAŇ KOVÁ 

It is well known that the optimized function in two-stage stochastic programming problems 
is the mathematical expectation of the optimal value of the optimized function in a deterministic 
optimization problem with parameter. So a close connection exists between deterministic para
metric optimization problems and two-stage stochastic programming problems. In general, 
it is possible to say that the behaviour of a stochastic problem is determined by the properties 
of the corresponding deterministic parametric problem. 

In this paper we deal with differentiability of the optimized function in a special case of two-
stage stochastic nonlinear programming problems. More precisely, we present conditions under 
which the form of the classical gradient in the stochastic case follows from the form of the super-
gradient in the corresponding parametric problem. 

1. INTRODUCTION 

The differentiability problem of two-stage stochastic programming problems has 

been already discussed in the literature. For example, P. Kail [1] studied this problem 

in the linear case. Sufficient assumptions for the existence of the gradient vector 

of the optimized function in nonlinear problems were presented in [2] and [4]. 

In this paper we are going deeper in the nonlinear case. Namely, we try to investigate 

the form of the gradient vector in a special (but from the practical point of view 

rather important) case. 

Let X _ E„, Z t _ ESi, Z 2 _ ES2, U c Er, n, s u s2, r ^ ] be non-empty sets, 

(Q, Sf, P) be the probability space, n = q((o) and £ = £(co), respectively, be s,-dimen-

sional and s2-dimensional random vectors defined on (Q, Sf, P) such that 

(1) P{co: n(ca) e Zv} = P{co: £(co) e Z2] = 1 . 

(E„, n ^ 1 denotes an n-dimensional Euclidean space. It is assumed in (l) that 

{co: n(co) eZjeSf and {or. £(co) e Z2) e Sf) 

Moreover, let ht(u, z2), i = 0,1,2, . . . , /and/ , (x , z,), i = 0, 1,2,.. . ,/ , respectively, 
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be real valued, continuous functions defined on E„ x Z2andE„ x Zu If the mapping 
K(u, ZU Z2) and the functions cp(u, zu z2), \j/(u, zu z2) are defined by 

K(u, zu z2) = {xeX-.fix, z,) ^ h;(M, z 2 ) , i =- 1,2 /} 

(2) <p(u,zuz2) =sup{f0(x,z1):xeK(u,Zi,z1)} 

\jj(u, zu z2) = cp(u, zu z2) + h0(u, z2) 

for xeX, Zj eZu z2 e Z2, u e Er, then we can introduce the stochastic nonlinear 
programming problem with a recourse as the problem to find 

(3) sup{E^(u,v(co),^(o)):u€U} 

where E denotes the operator of mathematical expectation. (In this paper we assume 
the validity of such conditions under which all symbols in (2) and (3) are meaningful). 

The problem given by (2), (3) is a special case of the general problem of the two-
stage stochastic nonlinear programming introduced in [2], [4], for example. In this 
paper we shall deal with this special case only. 

In the sequel it will be useful to substitute 

(4) yt = hiu,z2), / = 1 ,2 , . . . , / , y = (y,...,y,)eEl 

and to join to the problem given by (2), (3) the following parametric optimization 
problem: 

Find 

(5) cp(zu y) = sup {/0(x, zT): xeR(zu y)} 
where 

K(zu y) = {xeX:f,(x, zt) rg yt, f = 1, 2, .... 1} , 
z, eZu yeE,. 
It is easy to see that 
(6) K(u, zu z2) = K(zu (}h(u, z2), ..., h,(u, z2)) , 

cp(u,zuz2) = ip(zl,(hl(u,z2), ...,h,(u, z2)). 

Further, we denote by Y <= E, a set for which 

(7) 0h(u, zi), •••, ht(u, z2)) e int Yfor every u eU, z2e Z2 . 

2. SOME AUXILIARY ASSERTIONS 

In this section we summarize some definitions and results of the deterministic 
parametric optimization theory and convex analysis that are necessary for our 
considerations. 

First, we recall one well known result. 

Lemma 1. Let X, Y be convex sets, K(zu y) 4= 0 for every zt e Zu y e Y. If for 
every zieZ1 f0(x, z t) and ffx,z), i = 1,2,. . . , / , respectively are concave and 
convex functions on X then for every z t e Z , q>(zu y) is a concave function on Y. 
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Remark. As it can happen that cp(-, •) = +co for some z, e Zx,y e Y, we consider 
<p(-, •) as a generalized function mapping Z, x Yinto E, u { + 00}. 

Proof. Since it is easy to see that 

XK(zu y) + (1 - X) K(zx, y') <z K(zu Xy + (l - X) y') 

for all z, e Zx, y, y' e Y A 6 [0, 1], the assertion of Lemma 1 follows immediately 
from the definition of supremum (the sum of sets is considered in the Minkowski 
sense). • 

The Hausdorff distance between two subsets in E„ is defined by the following way. 

Definition 1. If X', X" <= E,„ n §j 1 are two non-empty sets then the Hausdorff 
distance of these sets A„(X', X") is defined by 

A„(X', X") = max [8„(X', X"), 5„(X", X')] , 

d„(X',X") = sup inf Q„(x', x") , 
x'sX' x"eX" 

where Q„ denotes the Euclidean metric in E„. (We usually omit the subscripts in the 
symbols A„, Q,„ d„.) 

The following assertion holds. 

Lemma 2. Let X, Y be convex sets. If 

(i) yeY, zxeZx implies R(zu y) + 0 and the fulfillment at least one of the 
following conditions 
a) R(zx, y) is a compact set, 
b) f0(x, z,) is a bounded function on K(zx, y), 

(ii) f0(x, z,) is for every z, e Z, a Lipschitz function on X with the Lipschitz constant 

C, not depending on z, e Zu 

(iii) there exists a constant C2 such that 

A[K(zu y), K(zu / ) ] ^ C 2 e ( y , / ) , 

for all z, e Z , , y, / e Y 
then for every z, e Z, <p(zt, y) is a Lipschitz function on Ywith the Lipschitz constant 
CX[C2 + 1]. 

Proof. The assertion of Lemma 2, for every z, e Z „ follows immediately from 
Lemma 2 of [2]. • 

Lemma 3. Let the assumptions of Lemma 1 be fulfilled. Moreover, let be - 00 < 
< q>(zxy) < + 00 for every z, eZx, ye Y. If int Y + 0, then for every z , eZx 

there exists a set R = R(zx) c= int Y of the Lebesgue measure 0 such that tp(zx,y) 
is a continuously differentiate function on int Y — R. 

Proof. The assertion of Lemma 3 is a consequence of Theorem 25.5 of [7] and 
Lemma 1 of this paper. • 
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The problem given by (5) is a parametric optimization problem with the parameters 
zLeZu yeY. However, we can also consider this problem separately for every zYeZu 

y e Yand define the Lagrangian function L(x, v | zu y) and the Kuhn-Tucker vector 
v(zu y). So let z. e Zu y e Ybe arbitrary given points. Then 

(8) L(x, v | zu y) = f0(x, z,) + £ Vi[yi - /,<x, z,)] , 
i = l 

x 6E„ , t> = (yl5 ..., y,) e E,. 

Definition 2. A vector v = v(zu y), v ^ 0, t e £ , is the Kuhn-Tucker vector 
of the problem (5) if 

<p(zu y) = sup {L(x, v | z„ y): xeX} 

(v = (vu ..., vt) ^ 0 denotes vt ^ 0 for all i = 1,2,..., I.) 
Moreover, if for every z1eZ1 <p(zu y) is a concave function on Ythen the super-

gradient dy<p(zu y) of the function <p(zu y) with respect to y can be defined by the 
following way: 

(9) dy<p{zu y) = {ve Ei- <p(zu y + / ) - <p(zu y) g <t>, / > 

for every / e E(} . 

(<•, •> denotes the usual scalar product in E„ <t>, y} = £ u£»j, t; = (vu ..., vt), y = 

- O ' I . - . J ' I ) ) . 

Lemma 4. Let X, Ybe convex sets. Furthermore, let for every z, e Z, /0(x, z,) and 
/ - (x ,z , ) , i = 1, 2 , . . . , Z, respectively, be concave and convex functions on E„. If 
<p(zu y) e (— oo, + oo) then the vector v = v(zu y) e E, is the Kuhn-Tucker vector 
of the problem (5) (at the parameter points zu y) if and only if v e dy<p(zu y). 

Proof. First, it follows from Lemma 1 that <p(zu y) is a concave function on Y 
for every z1eZu 

Further if z , e Zu y e Y are arbitrary points we get successively 

{veE,:vedy<p(zuy),<p(zuy)e(-co, +co)} •=-

o{veE,:<p(zuy + y') - <p(zuy) ^ 

^ <y, y'y for every y' e Eh <p(zu y) e ( - co, + oo)} <=> 

o { t ; e E ! : s u p s u p [ / 0 ( x , z,) - <t>,/>: xeX, / e E j , L ( x , z , ) - y ; ^ / , i = l , .. . ,/] = 

= <p(zuy),<p(zuy)e(-oo, + c o ) } o 

<* (y e E„ o ^ 0, sup [/0(x, z,) + X p,|>( - L(x, z ,)] : x e X] = 
; = i 

= <?(-/, y), <p(z, y) e ( - oo, + co)}. 

This completes the proof of Lemma 4. • 

Remark. The corresponding assertion for convex functions and subgradients 
is proved in [6]. 
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Lemma 5. If the vectors v* 2: 0, v* e Eh x* e Xn fulfil the inequalities 

(10) L(x, v*\zu y) g L(x*, v* j zu y) £ L(x*, v | zu y) 

for some z, e Zu y e Y y 2: 0, y e E;, then u* is the Kuhn-Tucker vector of the 
problem given by (5) (at the parameter point z«, j>). 

Proof. Since yt — ft(x*, zt) §: 0, i = 1,2. . . . , / , follows from the right-hand 
i 

side of inequalities (10) and simultaneously £ ^f[>i ~ fi(x*> z i ) ] = 0 , w e Se t 

according to the left-hand side of (10) , = ' 

/0(x, z.) + £ »?[>, - / ;(x, z.Y] g j0(x*, z.) for every xeX. 
i= 1 

If we set x* instead of x into the last relation we get immediately the assertion of 
Lemma 5. • 

3. MAIN RESULTS 

The aim of this paper is to present the form of the gradient of the optimized 
function in the stochastic problem given by (2), (3). However, before doing this 
we denote by P ^ and E | , respectively, the conditional probability measure and 
conditional mathematical expectation (we tacitly take P„i4 independent of the pa
rameter u). Further, we define the vector function h(u, z) by the relation 

h(u, z2) = (hi(u, z2), ..., h,(u, z2)) for ueU, z2eZ2 

Let X(s) for e > 0 be defined by _js) = X + B(E) = {x = x, + x2: x, eX, 
x2eB(s)}, where B(e) denotes £-surroundings of 0 e E„. Now we can present the 
theorem. 

Theorem. Let X, U, Ybe convex sets, and /i,(w, z2), i = 1,2, . . . , / be differentiable 
functions on U for every z2 e Z2. If relations (1) are fulfilled and if 

1) h(u, £,(ofj) is for every u e U a random vector such that the conditional probability 
measure Phi„ is absolutely continuous with respect to the Lebesgue measure in Eh 

2) there exists a constant g e E, such that the condition 

g[h(u, z2), h(u, z2)] g g Q(U, U') 

is fulfilled for every u , u eU, z2e Z2 , 

3) y e Y, z. e Z, implies K(zu y) + 0 and the fulfillment of at least one of the two 
conditions 
a) K{zu y) is a compact set, 
b) f0(x, Zi) is a bounded function on K(zu y), 

4) /0(x, z,) is for every z, e Z1 a Lipschitz function on E„ with the Lipschitz con
stant c, not depending on z, e Zu 
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5) there exists a constant c2 such that 

A[K(zuy),K(zuy')'\ ^c2g(y,y') 

for every z, e Zu y, y' e Y 

6) f0(x, z,) and ft(x, z:), ( = 1,2, . . . , / , respectively, are, concave and convex 
functions on E„ for every z, e Z,, 

7) there exists finite E qi(t](co), h(u, £(co)) for every u e int U, 

8) there exists finite, differentiable Eh0(M, ri(coj) for every u e int U, 
then there exists the vector of the partial derivatives 

fH) 8E\j/(u, t](co), £(<a)) = dEh0(u, ri(co)) + 

du, du, 

£ vfy(co), h(u, ,))dh^aV\, 

where v = ^(z,, }>) = (vl(zl, y),..., v,(zu y)) is a Kuhn-Tucker vector of the pa
rametric optimization problem to find 

(12) sup {f0(x, - , ) : x e X,ft(x, z,) S y„ . =» 1, 2 , . . . . 1} . 

Proof. Let «0 e int U, z, e Z, be arbitrary points. It follows from Lemma 1 and 
Lemma 3 that there exists a set R(z,) <= int Y of the Lebesgue measure 0 such that 
cp(zu y) is a continuously differentiable function on int Y — R(z,). It means, accord
ing to the theory of supergradients, that there exists only one element of the set 
dycp(zu y) for every y e int Y— R(z,). This element is equal to the gradient vector 
of the function (p(zu y) with respect to the components of the vector y. 

Further, since we get from the assumptions 3 that cp(zu y) e (—oo, +00) for 
all v e Y it follows from Lemma 4 that the gradient vector of the function cp(zu y) 
for every y e int Y — R(z,) is determined by the equations 

(13) ^ . , £ . , , ) , / = 1,2,. . . , / 

where v = (vu ..., v,), vi = vi(zl,y), i = 1,2, . . . , / is the Kuhn-Tucker vector 
of the problem (12). 

If we denote Z2(u0) = {z2eZ2: h(w0, z2) e R(z1)}, it is easy to see, according 
to relations (6), that cp(u0, zu z2) is a continuously differentiable function at the 
point u0 for every z2 e Z2(«0). Moreover, (13) implies 

" k f ^ ^ = ivfzuh(u0,z2))
5}^^, , = 1 ,2 , . . . , / . 

ouj i = 1 du-

Since we get from assumption 1 that P^{co: £(co) 6 Z2(w0)} = 0, and since by Lemma 
2 and assumption 2 cp(u, zuz2) is a Lipschitz function on U with the Lipschitz 
constant not depending on z2eZ2, we can employ the Lebesgue limit theorem. 
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Using this theorem we get 

8^<p(u0,r,(co),i(co)) = ^ ^ ( c o ) , h{u> - ( a i ) ) tt-fro.ft")), y . 1,2,.... /. 
3M; i = 1 St.; 

Further, it is easy to see that we can use the Lebesgue limit theorem once more 
to get 

(14) !-»(»• «.("UH) = E £ „,(,(«), *(«., «(«,)) ^ o ^ M ) 5 ; = !, 2,..., /. 
3M j- «=i 3M J 

As M0 e int U is an arbitrary point we can obtain immediately the assertion of Theorem 
from the last relation and from assumption 8). • 

In Theorem the form of the gradient vector of the optimized function in the 
special case of two-stage stochastic nonlinear programming problems is presented. 
However some of its assumptions are rather complicated. We try to find conditions 
under which the hard verifiable assumptions are fulfilled. 

First, we present two groups of assumptions under which there exists the finite 
Ecp(u, y)(a>), i(co)). It can be seen that these assumptions are satified in many practical 
problems. 

Lemma 6. Let X be a convex, compact set and let U, Y Zu Z, be compact sets. 
If assumption 6 of Theorem is fulfilled and if 

a) {xeX:ft(x, zv) < yh i = 1, 2, . . . , / } * 0 
for every zt eZu y = (yu ..., yt) e Eh 

b) X => {x e En:fi(x, z,) < yh i = 1, 2 , . . . , J for an y eY,zle Z.} , 
then there exists the finite E(/>(M, t](co), £(co)) for every ueU. 

Proof. Continuity of the function q>(zuy) on Zr x Yfollows immediately from 
[4] (Theorem 2). However as Zu Yare compact sets, the function cp(z, y) is bounded 
on Z, x Y Further, it is easy to see according to relation (6) that cp(u, zu z2) is 
a continuous bounded function on the compact set U x Z1 x Z2. This completes 
practically the proof. • 

Lemma 7. Let X, Ybe convex sets. If assumptions 3), 5) of Theorem are satisfied 
and if 
1') there exists function ft(x), i = 1,2, . . . , / defined on En such that j;(-\-, zx) = 

= fi(x) for every x e X, zl e Zu 

2') f0(x, Zj) is a Lipschitz function on X x Zu 

3') hi(u,£(co)), i = 1,2, . . . , / are square integrable random variables for every 
weU, 

4') the components of the random vector rf(co) are square integrable. 
then the finite B<p(u, r\(co), £(«>)) exists for every u e U. 

Proof. We get according to [2], Lemma 2, that 

\y(z'u y') - <p(zu y)\ < LQ[(Z'U y'), (zu yj] 
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for every zu z\ eZu y, y' e Yand a constant Le Eu Using the triangular inequality 
and relation (6) we obtain 

(15) \cp(u, zu z2) - cp(u, z\, 4 ) | g L[Q(ZU z\) + Q(h(u, z2), h(u, z2))] 

for all ueU, zuz\ eZu z2,z'2 eZ2 and a constant L. The measurability of the 
function cp(u, ri(co), £(«)) for every u e U follows immediately from the above facts. 
Now, it is already easy to see that using the Schwartz inequality we get the assertion 
of Lemma 7. • 

Lemma 6 and Lemma 7 deal with the existence of the finite £(p(u, ri(co), £(co)) 
for u eU. However, assumption (5) of Theorem is hardly verifiable too. At the end 
of the paper we shall present some conditions under which this assumption is ful
filled. 

Lemma 8. Let X be a compact, convex set, Y be a convex set. If ft(x, z t) , i~ 1. 2 , . . . 
...,l are convex function on X for every z t e Z , and e0 > 0, and if K(zu y) =}= 0 
for every y e Y(e0) zieZu then there exists a constant C eE1 such that 

A[K(zu y), K(zu / ) ] g Ce(y, y') for every y, y' e Y, Z l e Z , . 

Proof. Let zt e ZY be arbitrary. It was proved in [3] (Lemma 1) that there exists 
a constant C(z1) e Ex such that 

(16) A[K(zu y), K(zu / ) ] S C(z,) Q(y, y') for all y, y' e Y. 

However, as the constant C(zi) does not depend on zi e Zx by [3] (cf. proof of 
Lemma 1), relation (16) proves Lemma 7 too. • 

4. CONCLUSION 

In this paper we have dealt with the differentiability of the optimized function 
in a special case of two-stage stochastic nonlinear programming problems. More 
precisely, we have obtained the form of the gradient vector in this special case. 
By this we have generalized the corresponding results obtained in [1] for the linear 
case and the existence theorem presented for a more general case in [2], and [4]. 
The introduced results can be employed for some approximative methods of solution 
or for finding the necessary and sufficient optimality conditions. However these 
possibilities are not discussed in the present paper. 

(Received September 30, 1987.) 
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