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A NONPARAMETRIC METHOD OF REGRESSION 
ANALYSIS FROM CENSORED DATA 

PETR VOLF 

The linear regression model is analysed nonparametrically from censored sample. The simple 
kernel-estimator of regression function is presented. Its asymptotic normality is proved, 
using the results about mean lifetime estimation. The trimmed version of estimator is consi
dered, too. The asymptotic distribution enables us to derive some methods for testing the form of 
regression curve. 

1. INTRODUCTION AND MODEL 

Recent development of statistical inference from noncomplete data leads to new 
modifications of traditional statistical methods. Censorning, as a special case of incom
pleteness, is often met in lifetime studies, both in biological and industrial research. 
Estimation of mean lifetime represents necessary step to more complicated tasks. 
It has been solved by several authors: Breslow and Crowley [ l ] , Gill [2], Reid [5], 
Susarla and Van Ryzin [6] and others. Although the Cox's model is commonly 
used in order to describe the lifetime regression with censoring, some methods for 
analysis of parametrized linear model have been derived, cf. [3], [4]. Our interest 
is concentrated to nonparametric methods of regression function estimation, namely 
K-estimation. It is known that these methods at least give important information 
about the form of dependence. Moreover, the method is not too complicated. 

Simple form of K-estimator with a constant kernel on finite support was studied 
in [7] and its P-consistency was proved. In the present paper the asymptotic normality 
is derived, using the mentioned results about mean lifetime estimation. The trimmed 
version of the estimator is examined, too. A method for testing the form of regression 
function is suggested. When dealing with lifetime data, linear model may be used 
for log of lifetime. That is why the negative values are also considered. 

Let Yi, ..., YN be random variables satisfying the model 

Y = r(Xl) + £; , 



where x;'s are known values of regressor, ef's are independent random variables 

identically distributed according to continuous distribution function F, with zero 

mean, r(x) is a real function. By P = 1 — F we denote the survival function. 

Under random right-censoring we observe T = min (Yf, V) and dt = I\Yt 5= V], 

where /[•] denotes the indicator, V are random variables, they may also depend 

on x. We suppose that they fulfil the linear model 

V, = v(xt) + e,, 

with e;'s independent mutually and of e/s. Let e:s be distributed according to 

a continuous distribution function G, Q = 1 — G (but identity of the distributions 

of e;'s is not substantial). Denote by &~F = sup [t: F(t) < 1], by &~Q the same 

quantity for the distribution of e ;. 

2. ESTIMATOR AND ITS ASYMPTOTIC NORMALITY 

The kernel estimator of r(z) at fixed point z will be computed from the observations 

at the points x; near to z. Denote <9dJz) = {x: \z - x\ - dN} the neighbourhood 

of z, MN(z) the number of x,'s in it. Some supposition about the design of variable x 

is inevitable. Throughout the paper we shall assume that N -* oo, dN -> 0, NdN -» co 

and MN(z)J2NdN -> h(z) > 0, h(z) finite. For instance, let us imagine that x,'s are 

the realizations of a random variable 9C in (Rt, 39^) possessing a continuous density 

function h, h(z) > 0. Then dN -* 0 and NdN -> co imply MN(z)f2NdN -» /i(z) a.s., 

it follows from the theory of nonparametric density estimation. 

Let us denote 

(1) Tki^Tk2^...S TkM , with M = MN(z), 

the ordered results observed at points x, e(SdN(z). From them we construct the product 

limit estimator of the distribution function of variable {Y\ xiE0dN(z)}: 

П.Át) = 

0 for í < Tkì 

' " П (м •_.) f 0 Г ř є t Г « ' Г ^ 
J = 1 \ M - j + \l 

1 for í _ Tш 

This function has jumps AFliX(Tkj) > 0 if the corresponding 5kn = 1 and at TkM. 

The estimator of the value of the regression function at point z is then defined by 

Ф) = 
XTAEUŤMlT. ^AN] 

i=l 

. £AF;_(Ť)l[|Ť| = /t*] 

where AN is a conveniently chosen real sequence tending to infinity. It helps us to 
solve the most problematic case, namely 5^F = co, cf. [6]. 

The asymptotic distribution of rN(z) is derived directly from the asymptotic 
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distribution of location parameter estimator. Define 

R(z) = I ? , ft? ^C^min (s, f)) E(.v) P(f) ds df 

with 

dE(M) 

•«=L P 2 ( U ) Є( м + r(z) - <z)) 

representing the covariance function of the asymptotic normal distribution for the 

PL-estimator of E, as it was derived by Breslow and Crowley [1]. 

Theorem 1. Let the following assumptions hold: 

Al. dN(NdN)y = 0(1) for some y > 2. 

A2. MN(z)jNdN -> 2 h(z) > 0. 

A3. The functions r and v are continuous at z. 

A4. The distribution functions E, G are uniformly continuous. 

A5. .rF + r(z) <.TG + -(-). 

A6. R(z) < oo. 

A7. V(M„(z)) { f - „ t dF(t) - f _ # : # > < d ^ ( 0 } - 0, as JV -> co. 

Then ,/(M;v(z)) (rN(z) - r(z)) is asymptotically distributed as N(0, R(Z)). 

Proof. Denote Tf = min (et, e ; + v(z) — r(z)), it represents the model of randomly 

censored variables e;. Denote the indicator of censoring by <5f = /[(;,• <. T J . When 

estimating the value of r(z) at point z, only the part (l) from all sample is used. 

Then TkJ — TkJ — r(z) = 0(dN) uniformly for the indices kj, j — 1,2,..., MN(z). 

It follows from A3. Let us imagine that the PL-estimator FNiZ of F is constructed 

from the (unknown) sample TkJ, SkJ,j = 1,..., MN(z). Let us denote by NkJ the number 

of members from this sample, which are greater than or equal to xkJ. Then, with 

M = MN(z) 

ГsM) = 

0 for í < min тkJ 

1 " П i(Nч - l)lN

kJГ
kjПrkjá'] min тkJ < t < max тkJ 

j=í 

1 ř > max t ц . 

Then ^ T t y ^FNiX(vkj)f^ AFNz(xkj) could serve as an estimator of Eg, = 0. Under 

A2, A5-A7 this estimator has asymptotically JV(0, R(z)) distribution (cf. also [2]). 

The sums are over/ = 1, ..., MN(z) such that \TkJ\ < AN. 

In Volf [7], in order to prove the P-consistency of rN(z), Al - A4 imply that for 

every real L 

pjmin^L^yl > 4 - * l . 
{ i*J <*N J 

Therefore the ranks of TkJ and TkJ tend to be the same in probability, moreover 

P{SkJ = Stj, . / = ! , . . . , MN(z)} -> 1. Then also 

P{AFNtt(TkJ) = AEN.z(Tt,) for every j = 1, ..., MN(z)} -> 1 . 
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Now, the first right-sided term in the expression 

V(M„(2)) (rN(z) - r(Z)) = ^iMM)l^j2h) + V ( M N ( Z ) ) 0(dN) 

tends in distribution to N(0, R(Z)), too. The last term tends to zero as the con
sequence of Al and A2. Q 

Assumption Al seems to be rather strong restriction. When the form dN = CN~^ 
is chosen, then Al implies /?e(f, I). Experience with simulated data indicates 
this restriction as unnecessary. But it is well known that, concerning to K-estimates, 
the influence of asymptotic properties is rather slow. In practice, sometimes we prefer 
to choose dN such that prescribed number MN(z) is ensured — the method of M-
nearest neighbour. 

Sometimes the pattern of censoring is not purely random. Especially A5 can be 
violated by truncation. In case of mixed censoringthe trimmed version of the estimator 
is available. For « e (0, 1) let us denote 

fejv,z(«) = min {/: FNiZ(t) ^ a} , kNJa) = min {?: FN,.(t) ^ a} , 

fc(oc) = min {f: F(t) ^ a} . 
For a e (0, ^) define 

R°(z) = (1 - lay2 /*«-«> ^ - a ) Cz(min (s, t)) P(s) P(t) ds dt 

and finally the estimator 

I Ti ->..«,(«) 

Z ->..».-(«) 
where £>,..N,z(a) stands for AF-^jT,.) /[fe?YjZ(«) S f ^ fc^z(l - a)] . 

Theorem 2. Let assumptions Al — A4 hold, moreover let us suppose 

A8. F is symmetrical, i.e. F(t) + F(-t) = 1. 

A9. a e (0, J-) is such that G(fc(l - a) + r(z) - w(z)) < 1. 

Then rN(z) is a probability consistent estimator of r(z) and the distribution of 
V'(M,v(z)) (>£(z) - r(z)) tends to JV(0, R'(z)). 

Proof. As it was outlined in the proof of previous Theorem 1, assumptions 
Al — A4 lead to the conclusion that 

P{Fy
N,XTkj) = FNtZ(hj) for whole sample (l), i.e. j = 1, 2, ..., MN(z)} - 1 . 

Therefore 
?{rN(z) = r(z) + 0(d„) + |TdFw.2(T)/|dFN.z(T)} - 1 . 

The integration is in bounds kNiZ(a), kN<z(\ — a). The problem is then reduced to 
consistency and asymptotic normality of the estimation of Eet = 0. It is represented 
by the last term in the brackets. 
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Remind that SN = sup \FNJt) ~ F(t)\ = 0{(log M/My12} as . , with M = MN(z), 

when B < STF, F, G are continuous. We have t ^ max {7c(l - a), kNyZ(l - a)}, 
which asymptotically is less then ,TP a.s. Then the maximal jump of FNz(t) tends 
to be less than 25^ almost surely. That is why \a - FN^z(kNz(a))\ < 2SN in the limit 
and (1 — 2a)l\dFNJj) ~* 1 a.s. The consistency will be proved, if we check that 
the following term tends to zero: 

i M i r ^ d f U O - ^ r ' ^ w N 
< {\k(i - a)| + |fe(«)|} SN + I f^ lw tdE^)! + IC"^-. , tdFN<z(t)\ . 

For some bN which is in the limit a.s. less than ,TF, the second term is equal to 

\bN{FN<s(k(a)) - FN,z(kNJa))}\ < \bN\ {\FN,z(k(«)) - a| + 

+ |a - FNtZ(kNiZ(a))\} < \bN\ (SN + 2SN) a.s. 

The third term can be bounded in the same way. 
The asymptotic distribution of the trimmed version of the mean estimator was 

derived by Reid [5]. Her results are the same as that of us. • 

3. TESTS OF THE FORM OF REGRESSION FUNCTION 

Let us estimate the values of regression function at K different points zu ..., zK. The 
estimators rN(z}) are asymptotically independent because the neighbourhoods 
6iN(zj) are disjoint for N sufficiently large. This arises the possibility to test a corre
spondence between a hypothetical regression function r0(x) and the real one. When 
assumptions of Theorem 1 hold and hypothesis (r0) is valid then the statistic 

2ZMN(zJ)(rN(zJ)-r0(zJ)YJR(zJ) 

has asymptotically %K distribution. Estimator of R is naturally constructed from 
the sample (1) as 

M - ) = I I C j U m i n (Tkl, TkJ)) (1 - FN-z(Tki)) (l - FNtZ(TkJ)) ATki ATkJ, 

where the summation is over i,j = 1, ..., MN(z) - 1 and ATki = Tfc(i + 1) - Tki. 
Put 

CN,£t) = ^ MN(z) 8kJ I[TkJ < f]l(MN(z) - ; + l ) 2 

where the summation is over j = 1 , . . . , MN(z). 
As it was mentioned before, the ranks of TkJ and zkJ tend to be the same in prob

ability if Al — A5 hold. From this the convergence of Cy
Nz(t) to Cz(t - r(z)) in 

probability follows. But the consistency of RN(z) would require some additional 
assumptions. 

Let us suppose that F is strictly increasing at k(a) and k(l — a). Then the quantiles 
can be estimated consistently and the trimmed version RN(z) would be a P-consistent 

193 



estimator of R*(z) as soon as the assumptions of Theorem 2 hold. Sometimes the 
hypothesis {H0: r(x) = const.} is tested, i.e., the regression seems not to be significant. 
Put - K 

Cj,N = MN(zj)lR(Zj) , rN = £ cJN rN(zj)l £ cJ}N 

Theorem 3. Let Al —A7 hold for every Zj, j = 1, ...,K. Moreover, assume that 
there exist iim MN(zj)JMN(z^ < oo, i,j = 1, ...,K. Then the statistic 

N^oo 

(2) Uiv = I Cj,N(rN(zj) - rNf 
J = I 

is asymptotically distributed as xi-i when H0 holds. 

Proof. Let us construct a symmetric matrix BN(K x K) with the elements 

( = i 

It is an idempotent matrix, BN = BN. Therefore its rank may be computed as the sum 
of its diagonal elements, which gives K — 1. The statistic (2) can be written as U^ = 
= WNBNWN, where WN is an K x 1 vector with elements y/(cj,N) (rN(zj) - r), r = r(zj) 
is our hypothetical constant. 

Theorem 1 ensures that WN-^W, where W — (wu ..., wK)' are independent 
random variables with standard normal distribution. Let fe,7 = lim (BN)ij be the 

JV-H30 

elements of matrix B. Such a matrix is also idempotent with the same rank K — 1. 
That is why the statistic W'BWhas XK-I distribution. As BN -> B, we may conclude 
that the asymptotic distribution of UN is the same as the distribution o^W'BW. Q 

4. CONCLUDING REMARKS 

First devote to the choice of the width of window. One-dimensional window 
around the point z is defined as the interval \_z - dN, z + dN~\, K-dimensional 
window as the product of such intervals. Denote by Ext (x) "effective extent of 
variable x". It could mean xmax — xmin or width of the interval, in which x is distribut
ed uniformly (approximately). For the one-dimensional problem some examples 
indicate that dN = Ext (x)JN0'7 is quite sufficient. Maybe, it is rather narrow, 
the order ofN~0'5 would suit better, but it would be in contradiction with Theorem 1, 
assumption Al. 

Then the number of points in such window is 

MN ~ 2dNNJExt (x) = 2N0-3 . 
Denote 

Pj = MN/N = 2N~°-7 . 

For K-dimensional x we demand the same number MN and we choose 

d^. = DK Ext (xj)lN0'7 , for every dimension j = 1, 2, ..., K . 
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Then 

2N"°-7 = (DK2N-°-7)K 

* - ( T 
When testing the method by simulated examples, we approximately followed 

these formulas and compared our results with the results obtained for other values 
of window-width. The results did not contradict our way of choice of dN. 

As it was noted, sometimes the method of M-nearest failure neighbour is more 
practical. The attempts were made to establish some optimal width of widnow 2dN 

by the cross-validation method. This procedure is clear intuitively, but theoretically 
and even practically disputable. Cross-validated estimator has the tendency to follow 
all departures of data, such estimator gives not smooth curve. Some authors add 
a penalty term based on the second derivative of obtained curve to the cross-valida
tion criterion. It leads to more complicated computations. That is why we did not 
use this procedure. 

The kernel estimator with a Gaussian kernel (instead of bounded "window") was 
checked, too. In such case we need not repeated computing of PL-estimates, instead 
we compute the values of Gaussian density function. The results are quite similar. 
It is known that such continuous kernels give the better estimates at the ends of the 
regressor domain. But only some extensive Monte-Carlo study could lead to definitive 
conclusions as to the advantages of various kernels. 

(Received February 9, 1987.) 
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