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ON SYMMETRY AND REVERSIBLE SYMMETRY
CONCERNING GENERALIZED DIRECTED DIVERGENCE

T. D. RAKHEJA, K. K. GULATI

The authors have proved a theorem on symmetry considering three probability distributions
using reversible symmetry, a concept weaker than symmetry in the strict sense.

1. INTRODUCTION

Let
Ty={(poperp)iPi20,i=1L2on Y p=1}, n=234,..
i=1
and
n
I ={(pyp2r-»p)ipr=0,p;20,i=23,...m Yp=1}, n=234,..
i=1
denote respectively the sets of all n-component complete discrete probability distribu-
tions with non-negative elements and with first component zero. Let G,, n = 2,3, ...
denote the set of all 3n-tuples of the form (py, pa, ..., Pus 15 Gas -eos Qa3 Fis Fan ooes 7
with (py, p2s .. pu) €l (41,92, ...a) €T, and (ry, 75, ..., r,)el, such that
whenever r; is zero, the corresponding g; and p; are also zero, 1 < i < n.
A measure called the generalized directed divergence is defined as (| 1], [4], [5], [7])
"
(1) Tn(Ph P2seoos Pus Q15925 -+ s Gus Fys Fasenny 7',;) = Z p; log, (‘Ii/"i)
i=1

Here the convention 0 log, (0/x) = 0, x 2 0 is used.
An important property of T, is:

Postulate I, (Symmetry). T,: G, — Ris symmetric under the simultaneous permuta-
tions of p, g and r, k = 1,2, ..., n, that is,

(2) Tn(Pp Paseves Pus Q15 Q25 o5 4us s Foy eny ",.) = T,,(p,,(l), DPr(2)s -
Prnys Gr(1ys Dz(2)s -5 Drinys Tr(1)s Tr(2ys -+ o5 rn(n)) -

where = is an arbitrary permutation of 1, 2, ..., n.
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The object of this paper is to prove a theorem on symmetry using reversible
symmetry, a concept weaker than that of symmetry in the strict sense. This theorem
can be used in various characterization of the generalized directed divergence. For
some related work concerning directed divergence, see [6].

2. REVERSIBLY SYMMETRIC FUNCTIONS

EXE x..x

E
Definition. Let E be a non-empty set and E" = . A non-empty

n-times
subset D, of E" x E" x E"is said to be closed under reversible symmetry if

(xl’ X2y ooy Xymts X3 V15 Y2 o000 V=15 Vs 215 Z25 v o0y Zy1s zn) €D, =
= (xm Xpe1s eovs X25 X153 Vs Yu~15 -5 V25 Y15 Zns Zu—15 =05 Z2, 21) eD,

for all (X1, Xz, +ous Xy V1, Vay ooor Va3 215 225 -2 Za) € Dy
A function f,: D, - R is said to be reversibly symmetric over the domain D, if

fn(xl’ Xoyeons Xg—15 Xus Y15 V2o oovs V=15 Vs 215 225 ++v3 Zp—15 Zy) =
= fn(xm Xy 15 05 X250 X153 Vs Yu—15 v+ Y25 V15 Zns Zn—15 ++ 05 22 Zl)
for all (Xy, Xa, ..us X5 Y1s evvs Va3 21 Z25 --es Za) € D,

The above definition is motivated by reversible codes, see [3].

3. SYSTEM OF POSTULATES
Postulate II,,, (Rcversible Symmetry): T,: G, — R, m = 2 is reversibly symmetric,
that is,
() TlPis P2seoos Prm1s P 41> G2 o5 e 15 s 715 T2 -0 Tt T} =
T Pars P15 -5 P25 P15 G D15 -+ G2 415 Tons P15 -5 25 1)
for all (py, P2 «+-s Pme15 Pms Q15 D25 -+ +> Dmm1> Goms P15 P25 ++ o5 Fra) € G

Postulate II,, tells us that value of T,, remains unaltered if the order of probability
estimates is reversed. It uses only two permutations of 1,2, ..., m, namely the
identity permutation 1, 2, ..., m and the permutation m, m — 1,...,3,2, 1.

Postulate I,, implies Postulate II,,. We give an example to show that the converse
is not true.

Example I. Define F,: G, > R, n = 3,4, ... as

FuP1s Pas ooy By Q1> Q20 ovos @i Fio Pay ooy 1) =
n—1

z (piqiri — Pi+149i+ 17'i+1)2 .

i1
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Then for all integers n = 3, F, satisfies Postulate I1, but not I,. Thus II, is weaker
than I, in the strict sense.

For n = 2, I, and II, are equivalent.

Postulate I, (Recursivity). For all probability distributions (py, p,, ..., p,) €
erl, with p; + p, >0, (41,92, ..., 4,) €T (1,725 ..., 1) €T, such that
(P1s P2y eoe Pad 13 Qs o 3 T1, T2y, 1) € G,

4 T{P1s P2s P35 o5 Ps Q1> Q25 Q35 oos s 715 T2 T3 ooy T) =
7;,41(171 F Py Paseeos Pud A1 F G2 Q35 coos Gy Py + T2u T3y eeny 1) +
r r
(P1 + Pz) Tz( Pr s L H 4 5 4 5 LI 2 >
Prt P2 Pi+pP2 qut4q: gt qy Tt i+
P+ pa>0.

Postulate IV,. For all probability distributions (0,0, ps, ..., p,) € I,
(‘In G2y G35 ovs qn)erua (7’1; Fas ey rn) el,with0 £ ¢, + ¢, <1L,0=r +7, <1,
such that (O, 0, P35 s Pus 91> Q25 -+ D3 T15 T25+v0s "n) €G,,

©) T(0,0, P3ys +-os Pus Q15 D25 @35 -5 s T1s 725 T30 ooes Ta) =
To1(0, pay ooy Pus Gy + 920Gy oy Qa3 To F T2y Ty ey )
Since g + g, = q2 + g, and r; + r, = r, + r;, Postulate IV, implies
(6) 7;1(07 0, P35 ooos Pus Q1> Q25 Q35 w05 Qs P15 T2 F35 ooy B) =
T(0, 0, Pas ooy P 25 s Q3o <5 € 725 T1s P ees T) -

4. THEOREM ON SYMMETRY

The main result of this paper is the following theorem.

Theorem 1. Let T,: G, —» R, n = 2, 3, ... satisfy the Postulates II,,, for some fixed
m = 4,111, (n 2 3) and IV, (n = 4) then T,: G, —» R is symmetric under the simul-
tancous permutation of p;, ¢; and r; (i = 1,2, ..., n).

To prove the above theorem, we need the following lemma:

Lemma 1. Postulates IT,, for some fixed m 2 4, III, (n 2 3) and IV, (n = 4) imply

(7) Ty(1,0:1,0; 1,0) = 0 = T,(0, 1; 0, 1; 0, 1)
®) T i(Pis P2 oo P 0,0, 00,0541, G2y ooy Gy 0, 0,000,057, 74, s Ty
J—times Jj—times
0,0,....,0) = TPy, P2y oos Pus 1> Q25 -+ > G T1s P25 o0 Ta)
j—v‘imes

Pyt p2>0, j=1,2,..;n=23,...
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) To(P1, D25 41> 923 715 72) = TaP2, P13 925 Q15 72, 71)

(10)  T5(py, p2s P3; 41» 925 935 T1s 720 73) = Ts(P2s Pis P35 420 41, 433 720 71, )

(11)  Ta(pys P2s P23 G1s Q20 435 715 725 73) = T3, P, Pi5 G35 G20 €45 735 20 71)
Proof. Fix m = 4 arbitrarily. Then, by IL,, with pe [0, 1)

(12)  T,0,0,..,0,1 — p, p;0,0,...,0,1 = p, p; 0,0,...,0,1 — p, p) =

T(p.1 - p,0,...,0,0; p,1 — p,0,...,0,0; p,1 — p,0,...,0,0)
Using 1V, (4 < n < m) repeatedly, the LS. of (12) reduces to T3(0,1 — p, p;
0,1 — p,p; 0,1 — p, p). The R.H.S. of (12), after the repeated use of III, (n = 3),

reduces to (m —2) T,(1,0;1,0;1,0) + To(p, 1 — p; p, 1 — p; p,1 — p). Thus,
(12) reduces to

(13) T5(0,1 — p,p;0,1 — p, p; 0,1 — p, p)={m-— 2) T5(1,0; 1, 0; 1, 0) +
+ To(p 1 = p;p, 1 = p; p, 1~ p)
Applying I1I; to the L.H.S. of (13), we obtain
(149 Tl-ppl-ppl-pp)+(—pT0,1;01;01) =
=(m—2)Ty(1,0;1,0; 1, 0) + Tp,1 — p;p, 1 —psps 1 — )

Choosing p = 0and p = 4 respectively in (14), we get (m — 3) T5(1, 0; 1, 0; 1, 0)=0
and '

T,(1,0; 1,05 1,0) = 37T5(0, 150, 1; 0,1)
from which (7) follows.

Equation (8) follows by the successive application of Ml,+p b =j j —1,...,1;
n=2,3,...and (7).

To prove (9), we divide our discussion into four cases.
Casel. py=0,p,=1;9, =0,9g, =1;r; =0, r, = 1.

Casell. p; =1, p=0;9,=1,q,=0;7r; =1, 7, =0. In both these cases,
(9) follows from (7).

Casell. 0=p, <1,0<p, 2 1;0<q; <L,0<qg,<1;0<T <1 0<r,<]1.
Then

To(po> P23 0102571 72) =® T(pr> P20 0, - 0544, €2, 0, .- 0 71,5 0, ..., 0)
= T(0,...,0, P2 0130, .., 0, 45, 41; 0, ..., 0, 72, 7})
= T3(0= P2, 2150, 425 415 0,73, 7‘1)
=E‘% Tl(sz Piid2 494 T2, "1) .
CaselV.py=1,p,=0;0<4d:1<1,0<q,<1;0<r, <LO0<, <1 Now
{15) T0,1,0,...,0; 0, 41, 42, 0, ..., 0;0, ry, 75, ..» 0)
= T,0,..,0.1,0;0,...,0, g3, 415 0, ..., 72> "1: 0)



The LHS of (15) by using ITL, (1 2 3) and (7) reduce to T,,_,(1,0, ..., 0; g4, q,, ...
RN ¢ 14 P SR, O) which by the use of (8), reduces to
Ty(1, 0; 41, 45; 71, 75). The RHS of (15), by using IV, (n Z 4), reduces to
T3(0, 1,0; 43, qy, 0; 75, 74, 0) which by using III, and (7), gives T,(0, 1; q,, q5;
75, 71). Thus (9) is proved.
To prove (10), we have the following cases:
Casel. py + p, =0, p3=1; 059+ < L;0=r; +r, <1 Then
Ts(Pl, P25 P35 41, 925935 T1, T2, 7‘3)Z Tz(O, 0,15 41, 42, q35 7y, T2, r3)
= T,(0,...,0,0,1;0,..., 41, 42, 43; 0, ..., 7y, ¥3, 73)
=® Tm(l, 0,0,...,0; g3, G2, q15 .-, 0573, 72, 7y o, 0)
=& T.{0,1,0,...,0; 42, 43, 415 .., 0; 73, 73, 74, ..., 0)
= T00,...,0, 1,050, .0, g1, 43, 425 0, .oy 7y, 73, 75)
= T3(0, 1,05 91, 43, 425 71, 735 7’2)
=E3§ Ta(l, 0,0; g3, 1> 423 F3, 71, 12)
=®T,1,0,0,0,...,0; ¢35, 91, 42,0, ..., 0; 73, 7,, 75,0, ..., 0)
=®71/0,....0,0,0,1;0,...,0, 45,41, 435 0, ..., 0, 75, 7y, r3)
=® T3(0, 0,1; g2, 41, 935 2, 15 r3)
= Ts(l’z, P P35 92,91 935 T25 Ty rj)
Casell. 0 <p; +p, =21;0<q, +¢,=1;,0<r; +7r, 1.
In this case, (10) follows from (4) and (9).
To prove (11) we have the following cases:
Casel. py + po=0,p3=0L0=2q + g, < ;0= r, +ry < 1.
Then
T3(p1» P2, P35 415 425 435 Ty T2 r3) = T5(0,0,1; gy, 42, 935 74, T2, 73)
=OT,0,....0,0, 150, ..., 415 42, 433 0, ..o, 7y, 1o, 73)
= T,(1,0,0,...,0; 93,42, 41, 0, ..., 0; 75, 72, 74, ..., 0)
=® T3(1, 0,0; 93, 42, 915 73, T2, 7'1)
= Ta(P3: P2 P15 43, 92> 915 7‘3:"2,"1)
Casell. 0 <p + 12 =210<g;, +:2L,0<r +r, 1.
Then
Ts(I’u P2, P3> 915 925 935 7y, T2s 7’3)
=® T(p1, P25 3,0, ., 0541, 42, 45,0, ..., 03 7y, 75, 73,0, ..., 0)
= Tm(O, 0,23, 02,215 0,...,0, 43, 45,4430, ...,0, F3, 72, 7g)
=) Ty(ps, P2s P13 Q3 G20 413 ¥3, T2, 7 ) if py = ©
=€‘7t; Ts(Ps: P2 P15 43, 92> 415 T3, ¥2, 7)) if py > 0.
Thus Lemma is proved.
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Proof of the Main Theorem.

For n = 2, the theorem follows from (9). For n = 3, it follows from (10) and (11).
We prove the theorem for all n = 4 by induction on n. We assume that 7}, is symmetric
under the simultaneous permutation of p;, g; and r; (i =1,2,.../),j=n23
and then prove that T, , is symmetric. For this, it is enough to prove the following:
(16) T, 1(P1s P2y eeos Pusts 910925 ooy Gu15 Vi Fas ovey 7"n+x)

= Tu+1(P2» DPisevos Puti1s 925915 s uv 15 Fas Fis enes rn+1)
(17)  Toes(Pu> P2s Pasvos Put 13 91> Q20 @35 s w13 Tio 25 35 - Tt 1)
= Tu+1(P1a P2s Pr3ys -5 Prtn+1)s 915 925 r(3ys -+ -5 Drin+ 1)5
F1s P25 Fr(3ys oo os rk(n+1))
where k is an arbitrary permutation of 3, 4, ..., (n + 1) and
(18) 77:+1(sz P25 P3s Pas o5 Puv1s 415 925435 Qs oo 15 P15 P25 F35 Figy ooy ’"n+1)
= T;:H(Pp P3sP25P4s -5 Pt 15 91593925 Qs - ua 15 T T35 T2s Pas ey rn+1)
To prove (16), we have the following cases:
Casel. p, + p, = 0. In this case, (16) follows from (6).
Casell. 0 < p; + p, = 1. In this case, (16) follows from IIL, and (9).

To prove (17), we have the following cases:

Casel. p, + p, = 0.Inthis case, (17) follows from (5) and the induction hypothesis.
Casell. 0 < p, + p, < 1.1In this case, (17) follows from III, (n = 3) and the induc-
tion hypothesis.

To prove (18), we have the following cases:

Casel. py+p, =0, 0Z5¢g, +¢g,<1; 0Zr, +1r,< 1.

Then

T+ 1(P1» P2 D35 P4 -5 Pyt 15915 925 435 Gas -5 ur 15715 F25 F35 T -oey ”n+1)

= T01(0, 0, P3, Pas oo Pus 15 @15 @25 @35 Gt -5 Qs 13 715 T2s T35 T 05 Pyr1)

=® 7;:+2(0> 0,0, p3, Pas s Pus13 0, Qs 425 43 Gas -+ Duv1s

0.7y, 72, T3 Fap oevs Tuy)
=T 15(0,0, 03,0, pay - Pas 1 0, G5 3 425 G - Do 13
0,71, 73, 725 Fay ooy Tygq)
=T, 1(01 P30, P4 ooy Pur 13 415 G35 Q2> Qo o> Dub 15 71 T3, F25 P oy "‘n+1)

= Tn+1(pla P3s P25 Pas -5 Pur 15915 93: 425 4o > usr 15 P T35 T2 Pay ey ’"n+1)
Casell. 0<py +p, £1;,0<q; +¢, S 1;0<r; +ry, L.

In this case, (18) (n = 4) follows from 1II, (n = 3) and the symmetry of T3 by

proceeding in the same way as on page 60 in [2].
This completes the proof of the theorem.
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COMMENTS

A code is defined to be reversible if its code-word set is invariant under a reversal
of the digits in each code word. An important subclass of the BCH codes consists
entirely of reversible codes.

Suppose that information has been encoded into a block code and the code word
placed in a storage medium. It may be advantageous to read out the stored data
beginning from either end of the stored block.

Suppose, however, that the code can be decoded digit-by-digit by feeding the block
into a sequential circuit. If the code is reversible, then the same decoding circuit
can be used regardless of which end of the block is processed first. But it is possible
that much greater potential utility lies in exploiting the additional symmetry provided
by reversibility to simplify the decoding procedure for a reversible code.

Just as a reversible code remains invariant under a reversal of the digits in each
code word; in an analogous way, the average amount of information H, (p,, D23 +-+s Pu)
associated with the probability distribution also remains unchanged if the elements
of (py, P2, .--» Ps) are reversed so that H,(p,, ..., p2, py) is the average amount of in-
formation associated with (p,, Py, .-.» P2, P1) i€

Hy(pss P25 oes Pa) = Ho(Pus -, P2, P1)
This property of H, is known as the reversible symmetry of the Shannon entropy H,.
This sort of analogy can be extended to other measures of information like directed
divergence and generalized directed divergence also. In this paper, we have exhibited
such an analogy between the reversible codes and the reversible symmetry pertaining
to generalized directed divergence.
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