
K Y B E R N E T I K A - V O L U M E 23 (1987), N U M B E R 6 

ON CONTROLLED MARKOV PROCESSES 
WITH AVERAGE COST CRITERION 

PETR MANDL, M a ROSARIO ROMERA AYLLON 

An asymptotic lower bound for the probability distribution of the cost functional is presented 
together with an analogous result related to the arcsine law. 

1. INTRODUCTION 

A controlled Markov process is a mathematical model of the evolution Xt, t ^ 0, 
of a system S such that the transition law governing the state changes of S depends 
only on the current state and on a control variable. In the present paper we assume 
that the state space / and the control spaces J(i) are finite, and that the state changes 
according to the transition rates 

(1) q(i,j;z), ijel, zeJ(i). 

For general information we refer to [2], but a reader having certain familiarity 
with the subject need not consult any reference. 

We denote by Zt the value of the control parameter at time t. It has to depend 
only on the trajectory of S up to time t. Given the initial state, the control Z = 
= {Z„ t = 0} together with (1) define the probability distribution of X = {X„ t ;> 0}. 
Xt and Z, are assumed to be piecewise constant right- and left-continuous, respec
tively. The left-continuous version of Xt will be denoted by X~. Z of the form 

(2) Z, = z(Xj), t g r O , 

will be called stationary. 

Introduce the counting processes of jumps 

N. ' J > I ) = Ix{Xs~ = i, Xs=j, Zs=z], t^O, 
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abbreviate (i, j , z) = k, and set 

K = {k m (i J, z): q(i,j; z) > 0} . 

To evaluate the performance of S under a control Z we define 

CT = ft c(Xt, Zt) dt + % d(k) Nk
T, T = 0 . 

teK 

CT, which will be called cost up to time T, consists of a continuous part and of the 
evaluation of the jumps. We shall deal with the controls aiming to minimize the 
average cost 

l i m T _ 1 C r . 
X-oo 

We make the following hypothesis. 

Assumption 1. For any stationary control the matrix 

lk(U;z(i))IU 
is indecomposable. 

Assumption 1 means that under (2) the Markov process X has recurrent states only. 
The optimality equation for our problem can be stated as follows: The minimal 

average cost 9 is the unique constant to which auxiliary constants w(j), j e / , can be 
found so that 

min {c(i, z) + Yl q(U f, z) (d(i, j;z) + w(j) - w(i)) - 6} = 0 , iel. 
26j(i) J*l 

Denoting the expression in the braces by f(i, z), we have 

/ ( i , z ) = 0, iel, zeJ(i). 
Let z(i) fulfil 

(3) f(Uz(i)) = 0, iel. 

Then under (2) holds 

(4) l i m T - 1 C T = 0 . 
X->oo 

We omit the adverb almost surely. On the other hand, under arbitrary control Z 

(5) l i m i n f T _ 1 C r = 6. 
X-oo 

Assumption 2. z(i) fulfilling (3) is unique. 

In the sequel z(i) will always denote the one mentioned in Assumption 2. 
Let us observe that (4) and (5) characterize the optimality of (2) in the sense 

of the law of large numbers. In the present paper we show that there is a meaningful 
optimality with respect to the central limit theorem and with respect to the arcsine 
law. Results obtained previously for linear systems with a quadratic cost (see [3]) 
are extended to finite-state Markov processes. 
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2. STATEMENT OF RESULTS 

Let £, t] be random variables. The validity of 

(6) P(§ = x) = P(f/ = x) , xe(- oo, oo) , 

expresses that £ is stochastically nonsmaller than r\ in a sense, which is easily grasped 

from (6). We shall use an analogous relation to compare the asymptotic distributions. 

Denote by n(i), i el, the stationary distribution of X under (2). Introduce 

A = I <0 <Kw; -(0) MW; -(0) + »0) - HO)2, 
and assume 

J > 0 . 
Further set 

Proposition 1. Under arbitrary control Z 

(i) lim sup P((C r - 8T)ly/T £ x) = <£ [ ̂ , x e ( - oo, oo) . 
r->« \ V J / 

If Z is such that 

1 fr 

(7) lim — %{Zt 4= z(X~)} dt = 0 in probability, 
r-co VTJo 

then 

(ii) lim P((Cr - 0T)/VT Sx) = <P (-^], x e ( - oo, oo) . 
r-oo \JAJ 

A more general version of the second assertion is contained in [4]. 

Consider next the proportion of time spent by C, above 9t, t e [0, T], namely 

BT = ~ I %{Ct > Bt) dt. -Ц? 
BT should be small for a good control. The asymptotic lower bound for the distribu
tion of BT is given in the next proposition. 

Proposition 2. Under arbitrary control Z 

(iii) lim sup ?(BT ^ x) ^ 2/jt arcsin ,/x , x e [0, 1] . 
r-»co 

If Z is such that (7) holds, then 

(iv) lim ?(BT g x) = 2/JC arcsin ./x, x e [0, 1] . 
T->co 
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3. EXAMPLE 

Proposition 1 provides the asymptotic solution to the following problem: Let 
0 < p < 1, find the minimal value xp(T) such that 

P(Cr = xp(T)) = p . 
We have 

xp(T)*8T+upS/(AT), 

where $(up) = p, and xp(T) is valid for the control (2). 
Consider next the queueing network depicted in Figure 1. Two types of jobs 

arrive to the network as Poisson streams with rates Xt, i = 1, 2. At most two jobs 

Fíg. 1. 

can be in the system, one in the waiting line W, and one in the server consisting 
of an input-output unit, where service rates p; apply, and of a processor where 
the service rates are v,-. The jobs leaving the processor leave the system with prob
ability pt. With probability 1 — p{ they go back to the I/O unit. The jobs leaving the 
I/O unit either proceed to the processor (control z = 0) or change place with the 
job in W (control z = 1). 

The jobs arriving when FT is occupied are lost. Denote by N the number of jobs 
lost during a shift of length T. What bound for N can be guaranteed with 90% re
liability? 

Set X = Xt + X2 and let n be the total occupation time of W. To answer the ques
tion we have to find the minimal n such that 

0-9 < P(N = n) = E £ M c~x". 
k=o fe! 

The right-hand side is decreasing with respect to the ordering defined by (6). Thus, 
Proposition 1 yields the asymptotic solution for CT = t\. 

First it is to be decided whether to deroute the type with a larger average service 
time to W if a job of the other type is present there. (2) means just the better one 
of the alternatives. Investigating the characteristic function 

Eei"N= Eexp{^(e i u- 1)} 

it is seen that under (2) N is asymptotically normal with mean X6T and variance 
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(XO + X2A) Tas T-> oo. Consequently, 

nxX8T+ 1-282 ^(XO + X2A) JT. 

For numerical illustration let the average time spent in the I/O unit be 2 sec. and 
the time spent in the processor be in average for type 1 4 sec. with 1-25 cycle repeti-

Һ X2 A n 

0-9 0-1 0038 0040 260 
0-8 0-2 0-063 0-074 40-8 
0-7 0-3 0088 0104 54-3 

tions, for type 2 20 sec. with 2 repetitions. Table 1 presents the quantities 9, A and 
n for T = 480 min. in dependence on the proportion of incoming types. The service 
rule gives preference to type 1. 

4. PROOFS 

Introduce the random process 

(8) MT = CT-9T+ w(XT) - w(X0) - II f(Xt, Zt)dt, T = 0, 

and note that 
MT = Yja(k)(Nk

T-QT), 
ksK 

where for k = (i, j , z) 

a(k) = d(i,j,z) + w(j)-w(i), 

Qk

T = q(i,j; z) JJ X{Xt = i, Z, = z} dt, 

QT is the compensator of NT, and therefore we can construct the representation 
Nk

T = ^(Qk

T), 

where 
0*(t), t = 0, keK, 

are mutually independent Poisson processes with unit rate. The processes 

Jtk(t) = &k(t) - t, t = 0, 
are martingales, and 
(9) MT = YJa(k)Jik(Qk

T), T = 0 . 
ksK 

Let us treat the process QT in the same way as CT. Take constants Ak, vk(l), lei, 
and set 
(10) Rk

T = Q\ - AkT + vk(XT) - v*(X0) - II g\Xt, Zr) dt, 
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where for k = (i,j,z) 

g% u) = q(i,j; z) X{1 =i,u = z} +£ l(h m; u) (vk(m) - »*(/)) - Ak. 

We want to have 
(11) \g% u)\ = const. /(/, u), lei, ue J(i) , keK. 
Since 

/(/, u) > 0 for M * z(l), 
we can set 

Ak = 0, vk(l) = 0, lei, for k = (i,j,z), z * z(i), 

and determine the constants for fc = (i, j , z(i)) so that 

g% z(/)) = 0, / e / . 

Assumption 1 guarantees that such determination is feasible with 

Ak = n(i)q(i,j;z(i)). 

A representation of RT similar to (9), namely 

RT = YJa
k(l)J<\Q\), 

leK 

yields 
(12) Var Rk

T = VyO)2 EQr = const. T, T = 0 , fc e X . 

Finally, introduce 
JlT = YJ a(k) Ji\AkT) , T = 0 . 

keK 

It holds 
Var .# r = Y>(k)2d fcT=^T. 

Lemma 1. The probability distribution of 

mM" sst0,1]' 
converges weakly as T -*• oo to the Wiener measure. 

The lemma is proved using well known properties of the weak convergence of 
probability measures. 

Lemma 2. For y > 0 , S > 0 , y\S ^ 2 , 

(13) P( sup \Jt\t)\ ^y) = 2exp\-^-\. 
*e[0,S] (. 4b) 

Proof. Introduce the first-passage time 

x = mi{t:Jlk(i)^y}, 
and note that 

E exp {h Jtk(t)} = exp {fy -l-h)t}. 
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For h > 0 Wald's fundamental identity holds 

E[exp {h J/k(i)} exp {-(eh - 1 - h » ] = 1 • 
Hence, 

E[e*»rap{-(e*- l - f c ) t} ] = 1, 
and consequently, 
(14) P(T = S) = e - * exp {(eh - 1 - h) S) . 

Similarly for 
<7 = inf {<:.#"(.) = - y } , 

it holds 
E[exp {-fc •**(<-)} exp {-(-"* - 1 + fc) <r}] - 1, 

and hence, 

(15) P(tr = S) = e"*' exp {(e~* - 1 + A) S] . 

From (14), (15) follows 

P(T = S) + ?(a = S) = 2 exp {-fcy + fc2S} , 0 = fc = 1 -

Setting fc = y/(2S) we obtain 

P(T = S) + P(«T = S) = 2 exp {-y2/(4S)} , 

which implies (13). C 

Proof of (i). Denote 
AT = fif(Xt,Zt)dt. 

In virtue of (11) 
|JJ gk(Xt, Z,) dt\ = const. AT , T = 0 , fc e K . 

Let s > 0 be arbitrarily small. Because of (10) and (12) we can achieve by taking L 
large enough that 

(16) P(QT - AkT = L(AT + VT), fc € K) = 1 - e . 

From (8) for T sufficiently large 

(17) P(CT - 0T = x VT) = P(MT + AT = (x + e) VT) = 

= P(^ T = (x + 2e) VT) + P(|MT - MT\ > AT + e Jf) . 

With regard to (16) we have 

P(|MT - MT\ > AT + s VT) = 

= I p[# K|a(fc)| K(Q r) - Jtk(AkT)\ = .4, + s VT] = 
keK 

= e + X P[# K|a(k)| sup \Jtk(i) - Jik(AkT)\ ^AT + ejT], 
keK \t-AkT\£L(AT + JT) 

# X denoting the number of elements in K. 
Setting 

y = #K|fl(k)|, 
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and distinguishing the cases j J(f) <; AT < (j + 1) J(T) it is concluded that the 
last probability is majorized by 

| P[7 sup \jtk(t) - Jt\AkT)\ > (j + s) JT] < 
j = 0 \1-A"T\$,L(j+2WT 

t?b sup \Jfk(s)\^l(j + e)JT-]. 
j = 0 0 i s S 2 L a + 2 )Vr 

Applying Lemma 2 one obtains from here the upper bound 

ik P l 32fL(j + 2)]' 

which tends to 0 as T-> oo. With regard to Lemma 1 it follows then from (17) that 

lim sup P(Cr - 9T = x JT) = e + #(?L±2*\. 
r-xo \ V^ / 

Letting s -* 0 we get (i). • 

Proof of (ii). Let (7) hold. Then 

(18) lim ATjJ(T) = 0 in probability . 

Hence, for T large holds 

(19) ?(AT = e JT) = 1 - e . 

Further, 

(20) P(cr - 0T > x JT) = ?(MT + AT > (x - e) JT) = 

= ?(JiT >(x- 3e) JT) + P(\MT - JtT\ > 2e J(T) - AT). 

As in the proof of (i), taking (16), (19) into account we obtain 

P(\MT - MT\ > 2e J(T) - AT) <2e + 

+ £ [P # K\a(k)\ sup \Jtk(i) - J(\AkT)\ ^eJT]. 
keK \t-A*T\gL<.e+lWT 

For the last probability we have the estimate 

Letting T -» oo, e -> 0 we thus get from (20) 

lim sup P(Cr - 9T > x JT) = 1 - $ (~ J, 
T-*» VV^1/ 

which together with (i) yields (ii). • 

Proof of (iii). Define the function 

hb(y) = 0 for y = b, h4(>.) = 1 for y>b. 
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Then 

*-?j><c'- 9')d" j>-(i^)d" -£('-(7r^) " 
- h0 ( 4 f . ( M T - w(*«r) + w(Xo) + A«rfj\ d« • 

Abbreviating the denotation of the last integrands we have for e > 0 arbitrary, 
X 6 [0, 1], 

P(Br = x) = P(Jo Kdu = x + e) + P(J0 (he - h0) d« > e) . 

In virtue of Lemma 1 and of the arscine law for the Wiener process, 

lim P (Jo he du = x + s) = 2/jt arcsin yjx . 
r-»oo 
E-»0 

Consequently, to prove (iii) it remains to establish 

(21) lim P(J0 (K - K) du > e) = 0 . 
r-»oo 

For T sufficiently large 

(22) K-h0 = X{\MuT - MuT\ > AuT + i_ VT} . 

Let RT denote the right-hand side of (22). It holds 

ER„r = P(|M„r - MuT\ > AuT + ie VT). 

Applying the second part of the proof of (i) it is inferred that 

lim ERI = 0, 
r->oo 

and hence, 
lim E J0 RT

u du = 0 . 
r-*oo 

This implies 
Um P(Jo Rl d" > e) = 0. 

r-»oo 

From here and from (22) follows (21). • 

Proof of (iv). Let (7) hold. Consider the inequality 

(23) P(Br = x) g P(JJ h_£ d« % x - e) - P(J0 (h0 - h_e) d« > s) . 

For T sufficiently large 
h0 - h_e = x{\Mu - JtuT\ > §s N/T - Ar} . 

Denote the last term by ST
U. From the proof of (ii) follows that (18) implies 

lim E JJ Si d« = 0. 
r~.oo 

Hence, 
lim ?(\\ (h0 - h_e) d« > e) = 0 . 
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Letting T -» oo, e -> 0 in (23) one obtains 

lim inf P(Br g x) ^ 2/rc arcsin ./x . 
r-*oo 

This together with (iii) proves (iv). D 
(Received April 28, 1987.) 

REFERENCES  

[1] P. Billingsley: Convergence of Probability Measures. J. Wiley, New York 1968. 
[2] P. Mandl: Martingale methods in discrete state random processes. Kybernetika 18 (1982), 

supplement. 
[3] P. Mandl: Limit theorems of probability theory and optimality in linear controlled systems 

with quadratic cost. In: Proceedings of 5th IFIP Working Conference on Stochastic Differential 
Systems. (Lecture Notes in Control and Information Sciences 96.) Springer-Verlag, Berlin 
1987,316-329. 

[4] M. R. Romera Ayllon: Control adaptivo de procesos de Markov con espacio de estados 
numerable. Thesis. Universidad Complutense, Madrid 1984. 

[5] A. Wald: Sequential Analysis. J. Wiley, New York 1947. 

Dr. Petr Mandl, DrSc, matematicko-fyzikdlni fakulta Univerzity Karlovy (Faculty of Mathe
matics and Physics, Charles University), Sokolovskd 83, 186 00 Praha 8. Czechoslovakia. 
Prof. Dr. M" Rosario Romera Aylldn, Facultad de Informdtica, Universidad Politecnica de 
Madrid (Faculty of Informatics, Polytechnical University of Madrid), Km. 7 Carretera de Valen
cia, 280 31 Madrid. Spain. 

442 


