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ISOMORPHISM OF MEASURE PRESERVING 
TRANSFORMATIONS 

J. S. CHAWLA 

The "-entropy of endomorphism has been defined. This entropy reduces to the Shannon en
tropy of endomorphism for S —- 1. The two isomorphic measure preserving transformations have 
the same i5-entropy of endomorphism. 

0. MEASURE-PRESERVING TRANSFORMATIONS 

In what follows, we assume that (Q, 0t, P) is a probability space, that is, Q is an 
arbitrary non-empty set, called the set of elementary events, 0t a c-field of subsets 
of Q and P a probability measure defined on 0t. 

Let (Q, 0t, P) and (Q', 01,', P') be two probability spaces. The transformation T 
from the set Q into the set Q' is called measurable if the inverse image T_1 A e 0t 
for each measurable set A e 01'. A measurable transformation T is measure-preserv
ing if, for every A e 0t', the sets A and T" lA have the same measure, i.e. P(T~ 1A) = 
= PyA) for each A e 0t'. A measurable (but not necessarily measure-preserving) 
transformation T : Q -> Q' is invertible if there exists a (necessarily unique) measur
able transformation T"1: Q' -» Q such that each of the composites T-1T and 
TT~1 is equal to the identity on its domain. If T is measure-preserving and invertible, 
then T"1 is measure-preserving also. Most of the transformations that we shall 
consider in this work are transformations from a probability space (Q, 0t, P) into 
itself or in other words transformations on (Q, 01, P). A measure-preserving trans
formation on (Q, 0t, P) is also called endomorphism and.invertible measure-preserv
ing transformation on (Q, 0t, P) is called automorphism. The quadruple (Q, 0t, P, T) 
where T is an endomorphism on (Q, 0t, P) is called the dynamical system (a detailed 
discussion on measure-preserving transformations can be found in Halmos [4, 5, 6, 7] 
and Billingsley [l]). 

For advances in entropy theory of measure theoretic dynamical systems, with 
particular emphasis on ideas and results relevant from the point of view of informa
tion theory refer to the work of Stefan Sujan [8, 9, 10, 11, 12]. 
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1. .5-ENTROPY OF ENDOMORPHISM 

Definition 1.1. If 3$0 is a finite sub-cr-field of 8% whose atoms are Au A2,..., A,; 
then the <S-entropy of ^?0 is given by 

H/*o) = I I\'Af) |log P{At)\<, 0<S<1. 
i = 1 

The concept has been used earlier by the author in [2, 3]. 

Definition 1.2. If SM0 is an arbitrary finite sub-tr-field of 0t and T an endomorphism 
on Q, then the <5-entropy of endomorphism is defined as: 

(1.1) h/T) = sup h/St0, T), 0 < <5 < 1 , 

where Z is the set of all finite sub-cr-fields of ;̂ ?, and 

(1.2) h/St0, T) = lim sup {n-5H/m0 V T-l@.0 v ... v T-(n-,}^0)} . 

Theorem 1.1. If 0to and 0t± are finite sub-cr-fields of 01 such that @0 <= 0tu then 

(1.3) h/0to, T) < h/3iu T), 

where Tis an endomorphism on Q. 

Proof. If 3&0 <= ®u then clearly, 
n - l « - l 

V r ' i i 0 c v r ^ . 
i = 0 i = 0 

If ^ <= J1, then it can be shown that H/at) <i / / / . # ) . Hence, 

j y / v r- '*o) = II/v r - ' ^ j ) => 
i = 0 i = 0 

=> -H/y T-'^o) =? A H / V r ~ % ) => 
nd i=o n1* i=o 

, n - 1 j n - 1 

=> lim sup - H/ V r - ' * 0 ) = I™ sup — H/ V T ^ ) => 
r.-»co n 5 i = 0 n->oo rf i = 0 • 

=> fc/-«6. r ) ^ */-*»• T). D 

Theorem 1.2. If ^ 0 a n d ^ i are two finite sub-cr-fields of 3>t such that for some At and T 
N 

M0 c V T~l0ll is an automorphism on Q, then 
; = - J V 

(1.4) V^o , T) ^ Via. , T). 

Proof. Clearly, 
n - 1 i V + n - 1 

V r ' i 0 c v T-'Mj. 
i = 0 i=-JV 
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This gives 

(1.5) l f / v T - ^ o ) = ffa( V T-'®,). 
i = 0 i = - N 

Thus, 

h/0to, T) = lim sup - tf/V T - ' * 0 ) = lim sup tf/V r - ' « 0 ) . 
„-*oo n i = 0 n-*oo ( n + 2A/)" 1 = 0 

Using (1.5), we have 

hs(M0, T) <, lim sup L - - H/ V T-'^i) = 
»-oo (n + 2Nf i=~<V 

i 2 JV+/ . -1 

= lim sup H/ V T-'T^i) = hjt*3tu T) = / . / # , , T) . Q 
n-oo (n + 2JV)*5 ' ;=o 

Theorem 1.3. If M0 is a finite sub-a-field of £% and k is a positive integer, then 

(1.6) h/m0, Tk) S ksh/jM0, T) 

where Tis an endomorphism on Q. 
j t - i 

Proof. Let 0t1 = V T"''^0. Clearly 0to cz Mi and thus 
i = 0 

h/m0, Tk) ^ h/m1, T
k) = lim sup I ff/v r-Ai( v r-j-.#0)). 

«->OD n i = o j = o 

n - l fc-l n(V-1 

Since, V r " ' ( V r « o ) = V r"'-«o, we have 

i=0 7=0 i=0 

h/^0, I*) g lim sup - H / ' V r - ' * 0 ) = ks lim sup - i - ff,( V T~'X0) g 
„-»OD n" i=o 11-.00 (n/c)" r=o 

^ kdh/M0, T). D 

Theorem 1.4. If Tis an automorphism on Q and £%0 is a finite sub-cr-field, then 

(1.7) h/m0, Tk) £ \k\d h/m0, T) 

for all integers k. 

Proof. We have already proved the result for positive k. If k = 0, then T° = I, 
the identity transformation. Thus, in this case 

(1.8) H/MT-'0to) = H/Mo), 

and hence 

(1.9) h/;M0,1) = lim sup 1 H/9t0) = 0 . 
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If fc = - 1 , note that 

ff/V T'Mo) = H/T"'1 V T-''^0) = f f / v r - ' « 0 ) • 
i = O i = 0 i = 0 

Thus, 

(I.IO) h/m0,T~1) = h/m0,T). 

If fc is a negative integer, then from (1.6) it follows that 

h/0to, Tk) = h/0to, (T-l)~k) ^ (-k)d h/0to, T-1) . 

Thus, 

h/0to, r) % \k\° h/sn0, T-1) = \k\» h/m0, T). 

Theorem 1.5. If Tis an endomorphism on Q, then 

(l.n) h/r) = if h/T), 
for fe a positive integer and if Tis an automorphism on Q, then 

(1.12) h/Jk)=\k\sh/T), 

for k to be an integer. 

We first prove the following lemma: 
k- 1 

Lemma 1.1. If 0lo is a finite sub-a-field of 01 and 0t^=\J T~'PJ0, then 
; = o 

IV»„J) = i | , / « h f ) , 

where Tis an endomorphism on Q and fc, a positive integer. 

Proof. 

h/0tu Tk) = lim sup i H / V ( T V ' « i ) = 
n^oo n 1=0 

= lim sup I Ha(V T-fc\ V T - ^ 0 ) ) . 
n-.«, n ; = o ; = o 

n - 1 fc - 1 nk - 1 

Since, V r ' \ V T " J ' * c ) = V T~%, we have 
i=0 j = 0 i=0 

h/0tu Tk) = l imsupi / f / V r~'-*o) = 
n^co n i = 0 

i nk-1 

= kd lim sup — - H/ V T " % ) == ^ «/^o> T ) . 
»-oo (nfcf ; = o 

242 



nk-I 

Next, since H/ V T"'0lo) >s a monotone increasing sequence, we have 
; = o 

h/0tu Tk) = kd lim sup - L H/y T~l0to) = 
B-.03 (nky i=o 

= fc^ lim sup f"f 7 J ^ • 1 ffa("v T- ;^o) ; 0 £ j g fc - 1 
n-»«. (nfcf (nfc - j)4 i=o 

i nfc- t 

= k3 lim sup ffa( v r - , i * 0 ) ; O ^ / g k - ] 
»-« (nfc - ; J i=o 

j nk-j 
>, kd lim sup ff.( V r~'-*o) ; O g j t S l f c - 1 . 

n-oo (nfc - ,/)a i = 0 

Thus, 

This completes the proof of the lemma. • 

Proof of the Theorem. From Theorem 1.4, it follows that the result holds for 
k = 0 and h/T) = h/T'1) if T is an automorphism. Hence we need prove the 

k- 1 

theorem only for fc > 0. Let 0to be any finite sub-cr-field of 01 and 0tx = V T~l0to. 
From Theorem 1.3, it follows that 1 = 0 

h/0to, Tk)^k'h^M0, T), 

and thus 

(1.13) h/Tk) g fc^ h/T). 

Now, from Lemma 1.1, we have 

h/m0, T) = 1 fc/v*i. r»). 

where 3?, = V T"''^o- Therefore, 
i = 0 

h/T) = sup h/0to, T) = 1 sup h.( V r - ' * 0 , Tk) g I /i4 I* ) . 
JioeZ fc «0sZ i = 0 k 

Thus, 

(1-14) h/T*) It k* h/T). 

Now, from (1.13) and (1.14) the required result follows. • 

2. THE PROBLEM OF ISOMORPHISM 

It is known that if two measure-preserving transformations are isomorphic, then 
they have the same Shannon entropy of endomorphism. In the following theorem 
it has been shown that this result also holds for the <5-entropy of endomorphism. 
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Theorem 2.1. The 5-entropy of endomorphism is invariant under isomorphism. 

Proof. Consider the two dynamical systems {Qt, lMt> Ph T) where T is an endo

morphism on Qh i = 1, 2, Let <P be the isomorphism between Tx and T2. Thus 

to every finite sub-cr-field Stu of 9l1 there corresponds a finite sub-rr-field 

gft2 = <f> ,̂ = {<PBX\ Bx e $r\ of 3k2 and conversely . 

-, H/ V Tr^2) = i H/V f"177'-»-) = A !I/v Tr'^"1^) = 
n* ; = o / / i=o n" ;=o 

= i///v1Tr'^1). 
«d ;=o 

Taking lim sup on both sides with respect to n, we obtain 

h/®2,T2)= fc/*i.Ti). 

Thus for each i#, there is a ^ 2 with h/SS^T^ = /i.(Jf2> T2) and vice-versa. 

Hence, 

h,%) = h/T2). 

This completes the proof of the theorem. • 

(Received September 4, 1985.) 
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