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ISOMORPHISM OF MEASURE PRESERVING
TRANSFORMATIONS

J. 8. CHAWLA

The d-entropy of endomorphism has been defined. This entropy reduces to the Shannon en-~
tropy of endomorphism for § = 1. The two isomerphic measure preserving transformations have
the same d-entropy of endomerphism.

0. MEASURE-PRESERVING TRANSFORMATIONS

In what follows, we assume that (@, Z, P) is a probability space, that is, Q is an
arbitrary non-empty set, called the set of elementary events, # a o-field of subsets
of 2 and P a probability measure defined on Z.

Let (Q, &, P) and (Q', ', P') be two probability spaces. The transformation T
from the set Q into the set Q' is called measurable if the inverse image T~ * Ae #
for each measurable set 4 € #'. A measurable transformation T is measure-preserv-
ing if, for every Ae %', the sets A and T~ !4 have the same measure, i.c. P{(T™'4) =
= P, A) for each Ae #'. A measurable (but not necessarily measure-preserving)
transformation T : Q — Q' is invertible if there exists a (necessarily unique) measur-
able transformation T-!: @ — Q such that each of the composites T !T and
TT!isequal to the identity on its domain. If T is measure-preserving and invertible,
then T~ is measure-preserving also. Most of the transformations that we shall
consider in this work are transformations from a probability space (Q, 2, P) into
itself or in other words transformations on (2, #, P). A measure-preserving trans-
formation on (Q, R, P) is also called endomorphism and invertible measure-preserv-
ing transformation on (Q, R, P) is called automorphism. The quadruple (Q, R, P, T)
where T is an endomorphism on (2, &, P)is called the dynamical system (a detailed
discussion on measure-preserving transformations can be found in Halmos [4, 5,6, 7]
and Billingsley [1]).

For advances in entropy theory of measure theoretic dynamical systems, with
particular emphasis on ideas and results relevant from the point of view of informa-
tion theory refer to the work of Stefan Sujan [8, 9, 10, 11, 12].
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1. -ENTROPY OF ENDOMORPHISM

Definition 1.1. If %, is a finite sub-o-field of # whose atoms are Ay, 4,,..., 4A;;
then the §-entropy of %, is given by

1
Hy®) =Y P{A) log PlA), 0<d<1.
=1
The concept has been used earlier by the author in |2, 3].

Definition 1.2. If %, is an arbitrary finite sub-o-field of Z and T an endomorphism
on Q, then the §-entropy of endomorphism is defined as:

(1.1 hy'T) = sup hs'%,, T), 0<d<1,
RoeZ

where Z is the set of all finite sub-o-fields of %, and

(12)  hf%R, T) =limsup {n °Hy/ By v T~ %o v ... v T D7)} .

Theorem 1.1. If 2, and #, are finite sub-o-fields of # such that #, < #,, then
{1.3) hy'Ro, T) S W', T),
where T'is an endomorphism on Q.

Proof. If #, = #,, then clearly,

n=-1 n—1
VT %y = VT %R, .
i=0 i=0

If o < 4, then it can be shown that H;(.e/) < H,/2%). Hence,

n—1 n—1

HyV T %) £ H{V T~ %) =
i=0 i=0

1 n—1 . 1 n—1 )

= S H(V T %) £ — H(VT 'Ro) =
n’ i=0 n® i=0
1 n—-1 . 1 n—1 .
= limsup — Hy{ V T™'%,) < lim sup = H(V T )=
P A nvo N izo

= hy/Ro, T) < hi{2Ry, T). 0

Theorem 1.2.If Z, and £ are two finite sub-o-fields of £ such thatfor some Nand T
N

Ry, = V T™'4R, is an automorphism on , then

i=—N
(1.4) hRo, T) £ hs(Ry, T) -
Proof. Cleatly,
n—1 . N+n—1 )
VT '%yc V TR .
i=0 i==N
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This gives

-1 N+n—1

(1.5) 6(VT‘%’)<H',( V T7i®,).
P=—N
Thus,
1 1 n-1 )
hs Ry, T) = lim sup — H{ V T 'Ry) = lim sup ————— H,(\ T~'%,) .
n- o nom o (R ’N) i=0

Using (1.5), we have

{ Nen—1
ho(Ro, T) < 1111"1:::[) o ’)N)" 1,0 _V T %) =
1 2N+n—1 .
= lim sup (kniw . —) Hf{ YV T T"®) =/ T"#,, T) = h/#,,T). 0O
no i=o

Theorem 1.3. If #, is a finite sub-¢-field of # and k is a positive integer, then

(1.6 hy Ro, T £ Khy{ Ry, T)
where T is an endomorphism on Q.
k-1
Proof. Let #, = V T '%,. Clearly #, = #, and thus
i=0

hy( Ry, T*) < hy/ Ry, TF) = hm sup % Hy V T "’(V T R,)) .

Smce, V T "‘( V T iR,) = V T™'R,, we have

i=0

nk—1 nk-1
ho(Ro, T) < lim supla Hy( V T 'Ry) = k lim sup( - Hi{ V T ‘%)
I i=0

n—o )

< Khif R, T). O
Theorem 1.4, If T'is an automorphism on Q and #, is a finite sub-o-ficld, then
($%)] hyfRo, T') < |k|° 1y Ro, T)
for all integers k.

Proof. We have already proved the result for positive k. If k = 0, then T° = I,
the identity transformation. Thus, in this case

n—1
(1.8) HY/ NV T 'R,) = Hy'Ry)
i=0
and hence
(1.9) hy Ry, 1) = lim sup[i HyRo) = 0.
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If k = —1, note that
ne1 n—1 . n—1
Hyf NV T'9,) = H/T"" 'V T %o} = Hf V T 'Ro) -
i=0 i=0 i=0
Thus,
(1.10) hsRo, T™Y) = hy'Ro, T) .
If k is a negative integer, then from (1.6) it follows that
hy(Ro, T¥) = hs'Ro, (T™1)7¥) £ (kY hy/Ro. T7') .
Thus,
hs! Ry, TF) £ M‘s hs R, T™1) = iki" hy' Ro. T) -

Theorem 1.5. If Tis an endomorphism on Q, then

(1.11) by T = I;" hs'T),
for k a positive integer and if Tis an automorphism on Q, then
(1.12) he!{TH) = |k]“ heT),

for k to be an integer.
We first prove the following lemma:
k=1
Lemma 1.1. If %, is a finite sub-o-field of # and %, = V T~ '&,, then
i=0
1 "
hs'Ro, T) = = hs' R, T},
) S
where Tis an endomorphism on € and k, a positive integer.

Proof.
n—1
iR, T") = lim supl‘s HS/ V(T &) =
n-w N i=0

-1 k—1
= lim sup % H/ NV T ¥V T 2,).

nwx N i=0 i=0

nk—1

) net k-1
Since, V T™*\V T7%,) = V T~ 'R, we have
i=o j=o0 i=0

nk—1

hy'2,, T*) = lim sup i; Hy V T7%,) =
n—ow i=0
. 1 Jhet i o i
= k* lim sup(n*kys Hy N T7i®Ro) £ k* hy' %o, T) -
n— o i=0
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nk—1
Next, since Hy{ V T '%,) is a monotone increasing sequence, we have

i=0

§ | W=l
hs' R, TF) = Kk lim sup —— Hy \V T™'%R,) =
/. T) ,Hy,»p(nk)6 " ile o
jy 1 w-1
=K llmsup* ——— H/ VT %R); 05j=k—1
- (nky  (nk —j) '5 i=0
k=1
=k‘ilimsup77Ha(V7_’lo) 0<sj<sk-—1
noom (nk — j i=0
1 nk - j '
> ko li —— H{V T Ry); 0<j<k—1.
no (nk — j) i=0
Thus,
h'Ry, T 2 K hy' A, T) .
This completes the proof of the lemma. i}

Proof of the Theorem. From Theorem 1.4, it follows that the result holds for

k=0 and /iy T) = h/{T™") if T is an automorphism. Hence we need prove the
k-1

theorem only for k > 0. Let &, be any finite sub-o-field of # and #, = V T 'Z,.
From Theorem 1.3, it follows that =0

(R, TH) £ K2 hy' Ao, T,
and thus
(1.13) he T £ 12 h/T).
Now, from Lemma 1.1, we have

o, T) = = 120, T

k-1

where # V T~ '%,. Therefore,

hs'T) = sup hy' R, T) = ; sup hy’ V T Ry, T £ — h,i T.

HRoeZ Roel i=0
Thus,
(1.14) ' h(TY 2 k2 1)/ T) .
Now, from (1.13) and (1.14) the required result follows. m|

2. THE PROBLEM OF ISOMOQRPHISM
It is known that if two measure-preserving transformations are isomorphic, then
they have the same Shannon entropy of endomorphism. In the following theorem

it has been shown that this result also holds for the d-entropy of endomorphism.

243



Theorem 2.1, The S-entropy of endomorphism is invariant under isomorphism .

Proof. Consider the two dynamical systems (2;, 2, P, T;) where T; is an endo-
morphism on Q;, i = 1,2, Let ® be the isomorphism between T; and T,. Thus
to every finite sub-o-field 4, of %, there corresponds a finite sub-g-field

B, =B, = {®B,:B, e B,} of %, and conversely.

1 n—1 ) 1 n=1 . 1 n—1{ ) .
—H/NV T 'B) = — H{N 6" T, '8,) = — Hy V 1707 '%,) =
' Cizo n® Tizo n i=o

1 n—1 X

= H{V T '#,).
n i=0
Taking lim sup on both sides with respect to n, we obtain
hEIs%Za Tz) = h‘;{ﬂ,, Tl) .

Thus for each B, there is a 8, with hy(B,, T;) = hy(B,, T,) and vice-versa.
Hence,

h'Ty) = hy'T,).
This completes the proof of the theorem. O

(Received September 4, 1985.)
REFERENCES -

{11 P. Billingsley: Ergodic Theory and Information. John Wiley and Sons, Inc., New York—
London-—-Sydney 1965.
[2] 3. S. Chawla: A note on characterizations of entropies. Kybernetika 73 (1977), 3, 194—199.
[3] J. S. Chawla: An invariant for continuous mappings. Kybernetika 16 (1980}, 4, 314—317.
[4] P. R. Halmos: Measurable transformations. Bull. Amer. Math. Soc. 55 (1949), 1015—1034.
{5] P. R. Halmos: Measure Theory. D. Van Nostrand, New York 1950.
[6] P. R. Halmos: Lectures on Ergodic Theory. The Mathematical Society of Japan, Tokyo 1956.
[7] P. R. Halmos: Recent progress in ergodic theory. Bull. Amer. Math. Soc. 67 (1961), 70— 80.
18) S. §ujan: Epsilon-rates, epsilon-quantiles and group coding theorems for finitely additive
information sources. Kybernetika /6 (1980), 2, 105—119.
19] S §ujan: Channels with additive asymptotically mean stationary noise. Kybernetika 17
(1981), 1, 1—15.
[1o} S. Sujan: On the capacity of asymptotically mean stationary channels. Kybernetika /7
(1981), 3, 222—233.
[11] §. Sujan: Continuity and quantization of channels with infinite alphabets. Kybernetika /7
(1981), 6, 465—-478.
[12] §. Sujan: Frgodic theory, entropy, and coding problems of information theory. Kybernetika
19 (1982), supplement pp. 1 —67.

Prof. J. S. Chawla, Department of Mutiematics, York University, 4700 Keele Street, North
York, Ontario M3J IP3. Canada.

244



