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ISOMORPHISM OF MEASURE PRESERVING 
TRANSFORMATIONS 

J. S. CHAWLA 

The "-entropy of endomorphism has been defined. This entropy reduces to the Shannon en­
tropy of endomorphism for S —- 1. The two isomorphic measure preserving transformations have 
the same i5-entropy of endomorphism. 

0. MEASURE-PRESERVING TRANSFORMATIONS 

In what follows, we assume that (Q, 0t, P) is a probability space, that is, Q is an 
arbitrary non-empty set, called the set of elementary events, 0t a c-field of subsets 
of Q and P a probability measure defined on 0t. 

Let (Q, 0t, P) and (Q', 01,', P') be two probability spaces. The transformation T 
from the set Q into the set Q' is called measurable if the inverse image T_1 A e 0t 
for each measurable set A e 01'. A measurable transformation T is measure-preserv­
ing if, for every A e 0t', the sets A and T" lA have the same measure, i.e. P(T~ 1A) = 
= PyA) for each A e 0t'. A measurable (but not necessarily measure-preserving) 
transformation T : Q -> Q' is invertible if there exists a (necessarily unique) measur­
able transformation T"1: Q' -» Q such that each of the composites T-1T and 
TT~1 is equal to the identity on its domain. If T is measure-preserving and invertible, 
then T"1 is measure-preserving also. Most of the transformations that we shall 
consider in this work are transformations from a probability space (Q, 0t, P) into 
itself or in other words transformations on (Q, 01, P). A measure-preserving trans­
formation on (Q, 0t, P) is also called endomorphism and.invertible measure-preserv­
ing transformation on (Q, 0t, P) is called automorphism. The quadruple (Q, 0t, P, T) 
where T is an endomorphism on (Q, 0t, P) is called the dynamical system (a detailed 
discussion on measure-preserving transformations can be found in Halmos [4, 5, 6, 7] 
and Billingsley [l]). 

For advances in entropy theory of measure theoretic dynamical systems, with 
particular emphasis on ideas and results relevant from the point of view of informa­
tion theory refer to the work of Stefan Sujan [8, 9, 10, 11, 12]. 
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1. .5-ENTROPY OF ENDOMORPHISM 

Definition 1.1. If 3$0 is a finite sub-cr-field of 8% whose atoms are Au A2,..., A,; 
then the <S-entropy of ^?0 is given by 

H/*o) = I I\'Af) |log P{At)\<, 0<S<1. 
i = 1 

The concept has been used earlier by the author in [2, 3]. 

Definition 1.2. If SM0 is an arbitrary finite sub-tr-field of 0t and T an endomorphism 
on Q, then the <5-entropy of endomorphism is defined as: 

(1.1) h/T) = sup h/St0, T), 0 < <5 < 1 , 

where Z is the set of all finite sub-cr-fields of ;̂ ?, and 

(1.2) h/St0, T) = lim sup {n-5H/m0 V T-l@.0 v ... v T-(n-,}^0)} . 

Theorem 1.1. If 0to and 0t± are finite sub-cr-fields of 01 such that @0 <= 0tu then 

(1.3) h/0to, T) < h/3iu T), 

where Tis an endomorphism on Q. 

Proof. If 3&0 <= ®u then clearly, 
n - l « - l 

V r ' i i 0 c v r ^ . 
i = 0 i = 0 

If ^ <= J1, then it can be shown that H/at) <i / / / . # ) . Hence, 

j y / v r- '*o) = II/v r - ' ^ j ) => 
i = 0 i = 0 

=> -H/y T-'^o) =? A H / V r ~ % ) => 
nd i=o n1* i=o 

, n - 1 j n - 1 

=> lim sup - H/ V r - ' * 0 ) = I™ sup — H/ V T ^ ) => 
r.-»co n 5 i = 0 n->oo rf i = 0 • 

=> fc/-«6. r ) ^ */-*»• T). D 

Theorem 1.2. If ^ 0 a n d ^ i are two finite sub-cr-fields of 3>t such that for some At and T 
N 

M0 c V T~l0ll is an automorphism on Q, then 
; = - J V 

(1.4) V^o , T) ^ Via. , T). 

Proof. Clearly, 
n - 1 i V + n - 1 

V r ' i 0 c v T-'Mj. 
i = 0 i=-JV 
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This gives 

(1.5) l f / v T - ^ o ) = ffa( V T-'®,). 
i = 0 i = - N 

Thus, 

h/0to, T) = lim sup - tf/V T - ' * 0 ) = lim sup tf/V r - ' « 0 ) . 
„-*oo n i = 0 n-*oo ( n + 2A/)" 1 = 0 

Using (1.5), we have 

hs(M0, T) <, lim sup L - - H/ V T-'^i) = 
»-oo (n + 2Nf i=~<V 

i 2 JV+/ . -1 

= lim sup H/ V T-'T^i) = hjt*3tu T) = / . / # , , T) . Q 
n-oo (n + 2JV)*5 ' ;=o 

Theorem 1.3. If M0 is a finite sub-a-field of £% and k is a positive integer, then 

(1.6) h/m0, Tk) S ksh/jM0, T) 

where Tis an endomorphism on Q. 
j t - i 

Proof. Let 0t1 = V T"''^0. Clearly 0to cz Mi and thus 
i = 0 

h/m0, Tk) ^ h/m1, T
k) = lim sup I ff/v r-Ai( v r-j-.#0)). 

«->OD n i = o j = o 

n - l fc-l n(V-1 

Since, V r " ' ( V r « o ) = V r"'-«o, we have 

i=0 7=0 i=0 

h/^0, I*) g lim sup - H / ' V r - ' * 0 ) = ks lim sup - i - ff,( V T~'X0) g 
„-»OD n" i=o 11-.00 (n/c)" r=o 

^ kdh/M0, T). D 

Theorem 1.4. If Tis an automorphism on Q and £%0 is a finite sub-cr-field, then 

(1.7) h/m0, Tk) £ \k\d h/m0, T) 

for all integers k. 

Proof. We have already proved the result for positive k. If k = 0, then T° = I, 
the identity transformation. Thus, in this case 

(1.8) H/MT-'0to) = H/Mo), 

and hence 

(1.9) h/;M0,1) = lim sup 1 H/9t0) = 0 . 
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If fc = - 1 , note that 

ff/V T'Mo) = H/T"'1 V T-''^0) = f f / v r - ' « 0 ) • 
i = O i = 0 i = 0 

Thus, 

(I.IO) h/m0,T~1) = h/m0,T). 

If fc is a negative integer, then from (1.6) it follows that 

h/0to, Tk) = h/0to, (T-l)~k) ^ (-k)d h/0to, T-1) . 

Thus, 

h/0to, r) % \k\° h/sn0, T-1) = \k\» h/m0, T). 

Theorem 1.5. If Tis an endomorphism on Q, then 

(l.n) h/r) = if h/T), 
for fe a positive integer and if Tis an automorphism on Q, then 

(1.12) h/Jk)=\k\sh/T), 

for k to be an integer. 

We first prove the following lemma: 
k- 1 

Lemma 1.1. If 0lo is a finite sub-a-field of 01 and 0t^=\J T~'PJ0, then 
; = o 

IV»„J) = i | , / « h f ) , 

where Tis an endomorphism on Q and fc, a positive integer. 

Proof. 

h/0tu Tk) = lim sup i H / V ( T V ' « i ) = 
n^oo n 1=0 

= lim sup I Ha(V T-fc\ V T - ^ 0 ) ) . 
n-.«, n ; = o ; = o 

n - 1 fc - 1 nk - 1 

Since, V r ' \ V T " J ' * c ) = V T~%, we have 
i=0 j = 0 i=0 

h/0tu Tk) = l imsupi / f / V r~'-*o) = 
n^co n i = 0 

i nk-1 

= kd lim sup — - H/ V T " % ) == ^ «/^o> T ) . 
»-oo (nfcf ; = o 
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nk-I 

Next, since H/ V T"'0lo) >s a monotone increasing sequence, we have 
; = o 

h/0tu Tk) = kd lim sup - L H/y T~l0to) = 
B-.03 (nky i=o 

= fc^ lim sup f"f 7 J ^ • 1 ffa("v T- ;^o) ; 0 £ j g fc - 1 
n-»«. (nfcf (nfc - j)4 i=o 

i nfc- t 

= k3 lim sup ffa( v r - , i * 0 ) ; O ^ / g k - ] 
»-« (nfc - ; J i=o 

j nk-j 
>, kd lim sup ff.( V r~'-*o) ; O g j t S l f c - 1 . 

n-oo (nfc - ,/)a i = 0 

Thus, 

This completes the proof of the lemma. • 

Proof of the Theorem. From Theorem 1.4, it follows that the result holds for 
k = 0 and h/T) = h/T'1) if T is an automorphism. Hence we need prove the 

k- 1 

theorem only for fc > 0. Let 0to be any finite sub-cr-field of 01 and 0tx = V T~l0to. 
From Theorem 1.3, it follows that 1 = 0 

h/0to, Tk)^k'h^M0, T), 

and thus 

(1.13) h/Tk) g fc^ h/T). 

Now, from Lemma 1.1, we have 

h/m0, T) = 1 fc/v*i. r»). 

where 3?, = V T"''^o- Therefore, 
i = 0 

h/T) = sup h/0to, T) = 1 sup h.( V r - ' * 0 , Tk) g I /i4 I* ) . 
JioeZ fc «0sZ i = 0 k 

Thus, 

(1-14) h/T*) It k* h/T). 

Now, from (1.13) and (1.14) the required result follows. • 

2. THE PROBLEM OF ISOMORPHISM 

It is known that if two measure-preserving transformations are isomorphic, then 
they have the same Shannon entropy of endomorphism. In the following theorem 
it has been shown that this result also holds for the <5-entropy of endomorphism. 
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Theorem 2.1. The 5-entropy of endomorphism is invariant under isomorphism. 

Proof. Consider the two dynamical systems {Qt, lMt> Ph T) where T is an endo­

morphism on Qh i = 1, 2, Let <P be the isomorphism between Tx and T2. Thus 

to every finite sub-cr-field Stu of 9l1 there corresponds a finite sub-rr-field 

gft2 = <f> ,̂ = {<PBX\ Bx e $r\ of 3k2 and conversely . 

-, H/ V Tr^2) = i H/V f"177'-»-) = A !I/v Tr'^"1^) = 
n* ; = o / / i=o n" ;=o 

= i///v1Tr'^1). 
«d ;=o 

Taking lim sup on both sides with respect to n, we obtain 

h/®2,T2)= fc/*i.Ti). 

Thus for each i#, there is a ^ 2 with h/SS^T^ = /i.(Jf2> T2) and vice-versa. 

Hence, 

h,%) = h/T2). 

This completes the proof of the theorem. • 

(Received September 4, 1985.) 
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