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HELLINGER INTEGRALS, CONTIGUITY
AND ENTIRE SEPARATION .

FRIEDRICH LIESE

Hellinger integrals of distribution laws are estimated in terms of Hellinger integrals of the
corresponding conditional distributions belonging to an increasing sequence of sub-g-algebras.
The estimates are employed for a new approach to the problem of contiguity and entire separa-
tion of sequences of distribution laws. New sufficient conditions in predictable terms both for
contiguity and entire separation are derived.

0. INTRODUCTION

In the present paper we investigate Hellinger integrals of distribution laws P, Q
defined on a probability space equipped with a filtration &, € §; < .... A key
role plays Theorem 1 where estimates for Hellinger integrals and Hellinger measures
in terms of conditional distributions are stated. These estimates generalize results
obtained earlier in [4]. There the problem of convergence in variational distance
and error probabilities in the problem of testing statistical hypotheses were treated.
In the present paper Theorem 1 is employed for deriving necessary and sufficient
conditions for contiguity and entire separation of two sequences of probability
measures. On the one side the well-known conditions [6] for contiguity and entire
separation will be deduced from Theorem [. On the other side, new conditions will
be given. These conditions are formulated in terms of the Hellinger integrals of the
conditional distributions. Thereby the parameter of the Hellinger integrals tends
to 1. Applying these results in statistics one sequence (denoted by Q,) corresponds
to null hypothesis whereas the other sequence P, belongs to a sequence of alternatives
which has shown to be contiguous with respect to Q,. Both, the conditions in [6]
and the new conditions in Theorem 2 are formulated in such a way that certain
conditions concerning the conditional distributions are assumed to be fulfilled
P, — a.s. for n large. But in many cases the structure of the alternatives P, is more
complicated than that of the null hypotheses Q,. Consequently, it is desirable to state
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sufficient conditions for contiguity formulated in terms of Q,. Assertions of this
kind are established in Theorem 4 and 5.

We apply the general estatimates to the special case where P, corresponds to
a sequence of Markov processes and Q, are the distribution laws of a sequence
of independent random variables. As an example we study Gaussian first order
autoregressive processes.

1. NOTATIONS AND RESULTS

Let [Q, §] be a measurable space and P, Q probability measures on [Q, F].
Suppose R is a probability measure dominating P and Q. Denote by X, Y the Radon-
Nikodym derivatives with respect to R. As in [9] we introduce the Hellinger measure
Hspo by

‘y[s.P,Q(A)= J‘Axxyl..st! AeF, O<s<1.

The functional

H(P, Q) = fXSYl’st = Hopol@), 0<s<1,

is called Hellinger integral of order s. Suppose &, S &; < ... is non-decreasing
sequence of sub-c-algebras generating § where &, = {0, Q}. Denote by P,, Q,, R,
the restrictions of P, Q, R to §,. Put X, = dP,/dR,, ¥, = dQ,/dR,.

Then

Xy = ER(X | %‘k)’ Y, = ER(YI %k)'

We write A € B R-a.s. if R(4 n B) = 0. For real numbers a, b the symbol ab®
denotes ab™! if b + 0 and 0 if b = 0. For every non-negative supermartingale
&k =0,1,..., the following inclusions hold R-a.s.

Q) {€—y = 0} = {Eg(E:| o) = 0} = {& = 0}.

Since x*y!7 is a concave function X{Y!™*

Put

is a non-negative supermartingale.
Uy = Xka@—l » W= YkYkeivl
Hs,k = ER(U;VIJ o ! 8A -1)
for k = 1 and H, , = 1. Then
2 How = (B(X% 7 | §i-1) (Ko 1 iT9)® Reass.
Jensen’s inequality for conditional expectation implies

0<H,=1 Ras.
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Introduce G,;, 0 £ k < o, by

and note that because of 0 < H,, < 1 the possibly infinite product is well-defined.
G, is closely related to G, , = s, and to J; ; defined by
k

./.\-,k = Z(J - Hsj)'

=0
In the case s = 4 we omit the index 4. Given real numbers a, b we set a A b =
= Min (a, b), a v b = Max (a, b).

Proposition 1. Suppose 0 <5 <1, 0<s; <s, <1 and 0k £ . Then
R-a.s.
1~ Ju S G sexpl — Jiu}

.k
(1=50)/(1=s3) s1/82
GxZAL ! LG, = Gs;,k .

Notice that both G, and J;, are §,_, measurable. Consequently as {k: 05 k< oo,
G, > 0} =+ 0 in view of G, , =1

T, = sup {k: G, > 0}

5,k
is well-defined and it is a stopping time. The second inequality in Proposition 1
shows that for 0 <s; <s, <1 it holds T, = T,, R-as. Consequently the index
s can be omitted in the sequel. Put & = X;Y! ~*. The inclusions (1) show that both
X,- and Y,_, are strictly positive on {T Z k}. Hence

ER(Uk | %k*l) = ER‘(Vk | %k—x)_ =1
and
L—H = ER(,SU;; +(1 - ‘) Vi — UZV;CPY | Fi-1)

R-a.s. on {T = k}. This yields
Josonr =2V_1TER(sU, (L =)V~ U | Fiey)
and in the special case s = %
e = 15 B/(AU) ~ VODP | 8-

The process f,o has been introduced in [6] and [2], where conditions for conti-
guity and entire separation have been established in terms of J, . r.

If Q is a product space and regular conditional distributions do exist then, Toughly
speaking, H,, is the Hellinger integral of the conditional distributions belonging
to P and Q, respectively. To be more precise, let [Q,, A, ], [Q,, W], ... be a se-
quence of measurable spaces which are assumed to be of type (B) in the sense of [3].

m

Suppose the c-algebras ¥; are countably generated, i = 1,2,.... Put @ = X Q,,

i=1
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F=®U, m= oo and denote by §, the sub-c-algebra of F generated by the

i=1
projections up to k. Set F, = {0, Q}. Assume P, Q are probability measures on
[©, &] and Ris a dominating probability measure. Denote by K, L,, M, the distribu-
tions of the first coordinate and by K/ w,, @, ..., ©;~1, 4;), L{®y, ®5,...,0,_1, 4)),
Moy, ..., 0,1, V), 0, €, A; €W, regular conditional distributions belong-
ing to P, Q, R.

As the c-algebras A, are countably generated we find (see [10]) U, @ ... ®@ U,
measurable functions pf{a,, ..., ©;), g{w,, ..., ®;) which fulfil the conditions

f PO, o @) M0, .., 0y, do) = K{0y, ..., 0,4, 4))
Ai

J {0, ..., 0) Moy, .., 0y, do,) = L{oy, ..., 0,1, 4;)
Ai

for every w,€Qy,...,0,,€Q;_;, A;€A, i=2,3,.... Consider p; q; to be
defined on [Q, &]. An easy calculation shows
3 k
X, =11p, Y%=[la:, k<o, Ras
i=1 i=1
Hence U, = p,, ¥, = q, R-ass. on the set {121} < {X,_, >0, Y,_; > 0}. This
leads to

Hoo = BUIV | §imi) = jniq?“"%(-, dey) =

=H(K,L) Ras.on{Tz1l}.

Note that T = 1if K, and L, are not singular and H, ; = 0if K; and L, are singular.

Hence
kAT

€) Grear = [J (K, L) Reas.
i1
o
where the convention [ H(K,, L) = I is used.
I=1

© -

Relation (3) can be applied to product measures P = X p;, Q = X v;. But in this
i=1 i=1

case, without any additional assumptions concerning the measurable spaces, an

easy consideration shows
kAT

Gokar = H Hyb Vi) R-a.s.
i=1

We now return to the general situation. In the following theorem estimates of
Hellinger measures and Hellinger integrals, respectively, will be established. The
bounds will be formulated in terms of G,,. Denote by I{(4) the indicator function
of the set 4. )
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Given real numbers with

O<sy<s<s,<1l, or O0<s,<s<s, <1

we put
syl —s 55
L C ) S W el 1Y
s(s — s4) -5
L —s5)s S, — S
o, = ( 2) _ Bzzi,,,ﬁ

(1=5)(ss =) s;
We make use of the conventions 0% = oo, oco” = 0 for « < 0 in Theorem 1 and
in the sequel.

Theorem 1. Suppose P, Q are probability measures on [Q, §] which is equipped
with a non-decreasing sequence F, < §; S ... of sub-c-algebras generating &
and &, = {0, Q}.Assume S is a stopping time with respectto §o S &; & ...and 0 <
<5, <s<s; <1 Then ‘ .

4 Hy(P, Q) = [E-G:]™ v [EoGi]" — PY(S < 0) Q' ™*(S < ).
Alternatively, for every Ae @, 0 < sy <s<s, <1

o) Hopold) = [EI(4) GL 1" A [EoI(4) 652,17

w o
Remark. In case of product measures P = X p;, Q = X v; with equivalent compo-
nents p1; ~ v; we see that T = oo and =t i=1

[ Hs(u:, Vi) -
1
Putting S = co and letting 5, | 5, 5, T s we achieve equality in (4) since [8]
H(P, Q) = [T Hika v)

Analogously, if A = Q, s, 15, s, | s equality in (5) is attained.

s

i

Corollary. For every 0 <y < 1
{©) H(P,Q) S ¥ + #yp o Cewo > 1) -
() H(P, Q) 27 = P(Gy 0 < 7) @176 < 7).
Inequality (7) and inequality (5) for A = Q have been already obtained in [4] where

the distributions P, Q are defined on product spaces and constructed by regular
conditional distributions.

Now we will turn to the problem of contiguity and entire separation of two sequen-
ces of probability measures.

Definition. Suppose [Q,, &,] is a sequence of measurable spaces and P,, Q, prob-
ability measures on [Q,, &,]. P, is said to be contiguous with respect to Q,(P,<1 Q,)
if for every sequence 4; € &, QA4,) - 0 implies P(4,) - 0 as k — co. The
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sequences Py, Q, are said to be entircly separated (P, AQy) if there exists a se-
quence B, € §, with

lim [Py(B) + QuB5)] = 0.

koo

Suppose now each measurable space [Q,, &,] is equipped with a non-decreasing
sequence Fo, S Fu S ... of sub-c-algebras with §,.,, = {0 2}, & = o( U p.)-
k=0

Let for every n the measures P,, Q, be dominated by the probability measure
R,. Denote by P, ., Q. ,, Ry, the restrictions of P,, Q,, R, to &, Introduce X, ,,
Yewr Ui Vi T Gy jeoms Juw @nalogous to X, Y, U, Vi, T, Gs,k! Ji- Put

w Ug,>0, V,=0
Ui
Vi
0 Uw,=0, V,=0

L, = Vk,u >0

L, , is the likelihood-ratio of the conditional distributions with respect to &,
We now formulate criteria for contiguity.

Theorem 2. The following assertions are equivalent

(8) P, Q,

9 lim lim H(P,, Q,) = 1
st n=+0

(10) 11%1 lim E, G, ,,, = 1

(1) fim Tim P,( 15[2}’) L,>¢)=0
=W R>D k<o

and
Tm Em P, > ¢) = 0.

£ mr oo

Remark. The implication (8) «> (9) is a general criterion for contiguity established
in [5]. The implication (8) «> (11) has been proved in [2], [6] by entirely different
methods.

Now we will formulate necessary and sufficient conditions for entire separation
Put

(P, A Q) (4) = J I(4) (X, A ¥,)dR,.

Theorem 3. The following assertions are equivalent:
12 P, AQ,
(13) .there exists 0 < s < 1 with lim H{(P,, Q) = 0

n> o
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(14) there exists 0 < s < 1 with LimJ.Gslwl,, d#sp,.0, =0

n—r o

(15) there exists 0 < s < 1 with m_J.Gs’wv,, d(P, A Q) =0.

The implication (12) «>(13) is a general criterion for entire separation established
in [5].
From Hélder’s inequality one easily concludes

HGEE TV (A) £ HypoA) S HFA(A)

0 < sy <s, <1.This inequality and the second inequality in Proposition 1 show that
(13), (14) and (15) hold for every 0 < s < 1 provided that they hold for some 0 <
<s< 1

Corollary 1. If there exists 0 < s < 1 so that
lim (Ee, G,c0.n) A (Eq,Gscom) = 0
n= oo N
then P, AQ,.

Corollary 2. Suppose there exists 0 < s < 1 such that

(16) lim E;, G, ,, = 0.

Then P, AQ,.

If additionally Iim fim P, sup L,,>¢c)=0
e nom  1Sk<om

then P, AQ, implies (16) for every 0 < s < 1.

Corollary 2 has been stated in a slightly different form in [6] where entirely different
methods have been used. In [6] the condition

lim lim Py(Jo,, < ¢) =0

e no o

is used instead of (16). By Proposition 1 this is stronger than (16). But under the
additional condition above they are equivalent (see the proof of Corollary 2).

In Theorem 2 the conditions for contiguity are formulated with respect to P,.
In statistics P, plays the role of a contiguous alternative whereas Q, is the null hypo-
thesis. In many cases the structure of the measure Q, is essentially more transparent
than that of P,. Consequently, criteria for contiguity formulated in terms of Q,
would be useful for applications in statistics. A result in this direction is Theorem 4
which follows from (4) and (9).

Theorem 4. Suppose there exists a function Y(s) on («, 1), 0 < o < 1, such that
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0 < Yls) < s foreverya <s <1 and

lim lim [EQHG;g'xn(s))]%w:(m -1
st1 n—on B

where

Yi(s) = ,_(l;ﬂ{(g)l; Yals) =

s = ¥(s)
(1 =) (s = W(s)’ ‘

¥(s)

Then P, < Q,.

In order to derive further conditions which are sufficient for contiguity we need
some notations.

Put
ulnufo —u+v uz=0, v>0
o, v) = { @ u>0, v=0
0 u=0, v=0

then @(u, v) Z 0. Hence Eg (9(Uy .. Vi) | G- 1) is well-defined. Set
3
lew = Z ER,‘((D(UI.H’ Vm) | 8’1—1) , k£ ow.
=1

Theorem 5. Suppose the restrictions of P, and Q, to &, .. k=1,2,...,n=1,2, ...
are equivalent. If there exists an € > 0 with
EmEg exp {(1 +8)/,,.} <o

n— o

then
P, Q,.

2. APPLICATIONS AND EXAMPLES

The results concerning contiguity and entire separation established in Theorem 2
and 4, respectively, lead to transparent conditions if P, is the distribution of Markov
process and Q, is the distribution of independent random variables. Suppose the
measurable spaces [Q,,, W,,], I =1,2,...,m,, n=1,2,... are of type (B) ([3]).
Assume the c-algebras %, are countably generated. Let us be given distribution
laws K , on [Q, ,, %, ] and stochastic kernels

Ko gm Ay 01 €Q g Ain€ Ny 1=2,.5m,.

Put [Q,, §.] = ®" [Q %), o = {0,Q,} and denote by &, , the sub-c-algebra
i=1

of &, generated by the projections up to k, kK £ m, and &, = &, for k = m,.
Denote by P, the probability measure defined by the initial distribution'K, , and the
stochastic kernels K, ,. Furthermore, assume that v;, are probability measures on
[Q Ay, Put Q, = Vi X ooo X Vi e
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Relation (3) yields

maATn

G.\T,,,n = H HS(KI,M "l,n) .
f i=1

Because of G, ,,, = Oon {T} < co} we get
i

Gy = TTHK o Vi)«
1=1

H{K, ,, v, ) is a real number and H(Kru Vi), [ = 2, ..., m,, are random variables
which are independent under Q,. Hence

my

Eq,Groow £ 11 A1)
where
AM(S) - J’HS(KL"(O"_I'”’ ')’ Vl»") Vl—x,n(dml_Ln) s
l=2,..,m,and Alm(g) = H(K, .0V ﬂl)'
The above inequality and Corollary 1 to Theorem 3 provide

Proposition 2. If

n

(17) : : lim [1A..(3) =0

= l=1
then

P, AQ,.

"

Now we deal with contiguity. Suppose Ky, ~ v, and K, (@;_y,, *) ~ V=1,
for every @;_; ,€Qy_y, I =2,...,m, Put

where it is assumed that p;,, | = 2, is chosen such that it is a measurable function
of ((DI~ 1,0 wlm)'
Set

et Yip = .[Pl.u((ﬂl...) In Pm(ﬂ)x,n) Vl,n(d('\)lm)

y’»"(ml—lm) = J.PI,,,(LDI_ 10 ©7,) In pl,n(mt— L @) Vl,n(dmm)

forl=2,...,m,.

As the random variables exp {y, }, are independent under Q, we get for a > 0

n,

EQ.‘ exp {alm,u} = H Zl,n(”)
i=1
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where

Xl,n(”) = |exp {a Yo ,n)} V- 1,:.(d(171—m) B

I=2,...,m,andx, (a) = exp {a ¥ .}

In this way we obtain from Theorem 5

Proposition 3. If there exists an € > 0 so that

mp

Im [] 2l +¢) <

n—ow =1
then
P,< Q,.

As an application of the Propositions we deal with Gaussian first order auto-
regressive processes. Denote by N(a,cz) the normal distribution with expectation
a and variance o2, Suppose Z,, Z,, ..., are i.i.d. random variables with common
distribution N(0, 1). Put

Xiw=2Zi, Xisin= QuXin+ \/(1 - Qf.u) Zivys k=1,2,..,m, —1
where 0 < |g,,| < 1.
Denote by P, the distribution of the vector X4 ,, ..., X, , and by Q, the distribution

of the vector Z, ..., Z,, . That means in the framework formulated above
Ki,=v,= N(O, 1) s Kl+l,n(xls ) = N(Ql.nxz, 1 - le,n)'
Since A,(s) and x,(a) can be calculated explicitly we are able to show

Proposition 4. It holds P, <« Q, iff

-
Im sup |oi,] <1 and Tim } 07, < .

no 1<1<m, nom l=14

P, AQ, iff at least one of the following conditions is fulfilled:
Tm sup o, =1
n=om 118 my

im 3 of, = .
L

noon l=

Remark. A consequence of Proposition 4 is that either P, < Q, or P, AQ,. This
fact is true in general for all sequences P,, Q, of Gaussian distributions [1].
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3. PROOFS

Proofs of Proposition 1. Let 0 < a; < 1, 1 £ i £ k, be real numbers. The follow-
ing inequalities are well-known:
k

1~Tla; =

(1 —a)
i=1 i

k k
a=exp{YIna}Sexp{~Y(l—a)}.
i=1 i=1

These inequalities imply the first relation in Proposition 1. In order to prove the
second statement we make use of a general result [7] often applied in what follows.
Let Wbe a non-negative &, measurable random variable. Then

(18) E(W]| &-n) = EqUW| &) P-as.
(19) ) EQ'W| &i-1) = Eo(ViW | Fey) Qeas.

Hence, both (18) and (19) hold R-as. on A, :={X,_, >0, ¥,_, > 0}. Put
W = U,V;® and assume 0 < s5; < s, < 1. Then by Hélder’s inequality

Ho = E(UPV! ™ | §1oy) = Eo(W | &ioy) S
< [EQW™ | &= ) = HV3> Reas. on 4.

Note that H, ; = 0 R-a.s. on 45_, for every 0 < s < 1 by (2). Hence

M=

1

i

i=1

s1/s2
Hsn,l = Hsz‘.l R-as.

Taking the product up to k on both sides we get the right hand inequality in the
second statement of Proposition 1. The inequality on the left hand side may be
obtained similarly.

Proof of Theorem 1. Put
_ X ¥

Zso = 1, Z.s,k
Gspnr

k=1,
Then
{20 XY 7 = 7,6,

on the set {T 2 k}. Put & = X}Y;! . The inclusions (1) show that (20) is also ful-
filled on the set {T < k} as both X; ¥ " and G, vanish on {T < k}. It follows that

ER(Zs.k = Zy -t I 3k~1) =

syt-s

=7, B (I(Tg ) [—i}i"— - 1]
Ea(Xi X ™| B )

where we used the fact that by (1) and (2) and the definition of G,

ESXY ™| &-1) >0 on {T2k}.

gk71> =0 R-as.
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Consequently, Z, , is a martingale. As Z, , = | we see that
(21) EeZ,=1, k=0,1,...
Relation (20) gives R-a.s.

(22) X~ =z Gy
for0 < s <s, < land

23 Zoi = [XLae Vi1 Cohan VST

forany 0 < s, <s < 1.
Let S be a stopping time and N a natural number. Since Z_, is a martingale we

obtain from (21)
BaZowasar = 1.

Suppose now 0 < s, < s < 1 and substitute k by N A S in (23). Then by Hélder’s
inequality

(29 1= [E Xy nsar¥ansar E [Er YN«SATGSZSA(issA)j msls =
/ -5
= [E N/\SATYNAS/\T]SL‘[E Gs;l/v(issf)r (52
X, and Y, are uniformly integrable martingales. This fact implies that
Xiasar¥unsar = 8Xuwasar + (1= 8) Yyasars N=12,..,

is uniformly integrable, too. Moreover,

Xinsar¥unsar = Xs,r¥si) Ras as No o
where X, = X, Y, = Y. Because of 0 £ H,, = 1

Cos 1 607 as N— oo

Therefore expectation and limit can be exchanged in (24). Hence, by the second
statement in Proposition 1

ERX:;/\T}/:;/:;. > [E G M:—\z)] (s—s2)/52 > [EQ S,S/\T]ﬂl
If Q(S > T) > 0 then by our conventions [E, G5} = 0 so that
(25) B XSV 2 [EoGr]™ .

If QS > T) =0 then G 5= Gys.r Qas.. As{S> T}eFs.r and Ys,.r is the
density of Qg,; with respect to Rs,; we get from Q(S > T) = 0 that R-a.s.
X5Ye7* = X35, 7Ye 5 =0 on the set {S > T}. Hence E X3,,Y{ 5= EXsy!—s
and (25) is proved. Furthermore by Holder's inequality and (25)

Hy(P, Q) = B X5¥4 ™ + EfX°Y! ™ — X3V} ™) 2
2 E X5y ™ — EI(S < o0) X3% 7° 2 [EqG23]™ — PI(S < 00) Q175(S < o0).
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Analogously one proves for 0 < s < s; < 1
Hy(P, Q) = [E,G¥TP — PY(S < o0) Q'™%(S < o0).

Taking the maximum of the right hand sides we get (4).
Now we prove the second statement in Theorem 1. Z ; is a non-negative martingale.
Consequently Z, , 1= lim Z_ exists R-a.s. Observe X = lim X;, Y = lim ¥, R-a.s.

k—~w ko k> o

Hence (22) remains true for k = co. Note that by Fatou’s lemma
E.Z,

Suppose 0 < s < s, < 1 and apply Hélder’s inequality to (22). Then by the second
statement in Proposition 1

HepolA) £ [ 2,17 [E Y GO0 [(A)] 2777 < [EGRI(A)]™.

<t.

oo =

Using similar arguments one concludes for 0 < s; < s < 1

Hspold) £ [E,G I(A)]P.
These inequalities yield (5). O

Proof of the Corollary. Because of G,, = 1 the set {k: G,, = vy} is non-empty
for 0 <y < 1. Put S = sup {k: G, = y}. Then § is a stopping time. As G5 = v
inequality (7) is an immediate consequence of (4) and {S < w} = {G, , <7}
For proving (6) we set A = {G, ., < v}. Then by (5)

HP, Q) = #,p.o(A) + Hspod) S¥P AV + H 5 (G > ) -
Since
(1 —s
o By = ‘1(“)

-1 as s;Ts
s(1 = sy) o

uzﬁvzg—ﬁ“—»l as s, |s.

we get (6).
In order to prove Theorem 3 we need auxiliary results which will be established
in the following lemmas. Put

© U,>0, V,=0
L, =S UV Vi >0
0 U,=0, V=0.
Introduce the stopping times S., T, by )
S, =inf{k:J, > ¢}, T.=inf{k:L,>c}.
Given A4 € & and a random variable ¢ taking values in [0, co] the expression (I(4) . &
is understood to be £ on 4 and 0 on A°.

Lemma 1. Suppose 1 > s >} and ¢ > 1. Then there exists a constant d(c) depend-
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ing only on ¢ such that P-a.s.

Jow SHT. A S, = 00)d(c) (1 = s) + (S A T, < 00) 2], + W(e)
where

W(e) = ¥ ELI(T. = 1) | §i-1) -
k=1
Proof. The proof is divided into several steps.
1. Set
fle,x)=sx+ (1l —5) —x*'
An easy consideration shows that there exists a constant e(c) so that
fls,x) Sele)(1 - 5)f(1,x), 0Sx=<¢, P<s<1.
Hence
(26) s+ (1 —s)v—un' ™ £ (1 —s)e(e)(Ju + $v — u'?0'/?)
forevery 0 < u < cv.

Let 0 < x < oo be fixed. Then f(s, x) is a non-negative concave function on s.
Hence, if 0 < s < 1 then

%) = s + 41 = 5), x) 2 1 (s, %)

or
(27) f(s,x) £ 2f(%, x).
Before estimating J; ,, we remark that
U.seV, on {T.>k} and V¢ 'U,SU, on {T.=k}.
Consequently, by (26) and (27)
Ef(sUp + (1 = ) Vi = UV ™| §yon) £

SEUT > k(U + (1 =) Vi — Ui [ §imy) +
+ ER(I(TC = k) (sUy + (1 - 3) Vi — U;I/}cl_s) 8’1.-—1) +

T, < k= D EGU, + (L= 9) ¥, = UK §uy) <
< ele) (1 — s) Eq(3U, + 4V, — U2 | §my) + BT = k) U, | §i-y)
+ (T, < @) 2 Eg(3Uy + 3V, — U2V | §-y) -
It holds R-a.s.
1 - Hs,k = ER(sUk + (l — s) Vi — U,“I/;‘,Ph [ 8',(,1)
on {T 2 k}. Furthermore, by (18)

W(e) = Y EI(T, = k) U | F—~y) P-as.
k=1
Inserting these relations into the above inequality we get P-a.s.
(28) Jor S ele)(1 = s) ], + W(e) + 2I(T, < ) J,, .

Obviously, w©
P(koo{Uk >0})=1.
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This means P(T, = o, T < o) = 0, and in view of (28)

Jood(S. A T, = o) £ de) (1 — 5)I(S, A T, = ) + W(c)
where d(c) = ce(c). In order to complete the proof we note that J, ,, < 2/, by (27)
and apply this inequality on the set {S, A T, < o0}. m]

< s < 1, such that lim ¢(s) = oo and
st

(29) Geoo < exp { —(3W(c(s)) + (1 — 5) Jo} P-as. for t<s<1.
Proof. There exists a function ¢[s), + < s < 1, which tends to infinity as s tends

Lemma 2. There exists a function ¢{s), 1

to 1 such that
+(1-s)x—x'""22% on 0<x<l/cls).

Hence
s+ (1—s)o—uv'""2du for O<els)v<u.

Because of Eq(Uy | &-1) < 1 and Eg(V; | Feoy) < 1 we get
L= Hyp 2 BU+ (L =)V~ U7 [ &) 2
2 BTy = K) U | i) -
This leads to J;,,, = $W(c(s)) P-a.s. and by Proposition 1
Gy oo < exp { —3W(c(s))} P-as.
Furthermore by the same Proposition for § < s < 1
G Gl/” 9 < exp {—2(1 — s)jw}

seo—

and

IIA

6, 5 (exp [ 3W(N)) A (exp (=201 — 5) L})
< exp {~QW() + (1 =)L)} Pas o
Proof of Theorem 2. The equivalence of (8) and (9) has been established in [5].

Put s, = 5% Then by (5)
H(P. Q) = [, Cooon] -

This proves (9) — (10). The implication (10) — (9) is an immediate consequence
of (7).
Let us now prove (10) — (11). To do this we use Lemma 2 and obtain
Ee, G0 = Ep, exp {—(3Wi(c{s)) + (1 — 8) Joo)} -

Taking n — oo and then s T 1 we get
lim Im P,(3W,(c(s)) + (1 — 8) Jo, > d) =0

11 n=o
for every d > 0. Consequently,
im ImP(Jp, > d/(1 —5)=0

511 n-oo
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and because of 0 < W, < 1 P-as.

im Tim Ep W,(c(s)) = lim fim P,( sup L, > c(s)) = 0.

st n=w st noow  1Sk<o .
Now (11) is assumed to be fulfilled. Inserting the inequality of Lemma 1 into the
first inequality of Proposition 1 we get
(30) (1 =G, )SKT., AS,, s o) +dc)(l —s)[(T,, A Se, = )+ Wc).
As Ep, Wi(e) = P(T,

c.n

E.(1— G, ,.) S2P(T., A S,, <w)+dc)(t —s).

< ) £ P(S., A T., < ) we obtain

Taking at first n — co then s { 1 and finally ¢ - o0 we see that (10) holds. O

Proof of Theorem 3. The equivalence of (12} and (13) was shown in [5].
AsO0 = Gy, £ 1 R-as and #,, o <R, weget

j G dyp o € Hop 0l @) = Py Q)

which proves (13) — (14). Alternatively, by (6)
n

1
HS(P"’ Q") é Y+ ‘yfs,PmQa( Gx,"‘,'l > Y) é Y+ —J‘Gs,w,n d'yfs,Pn,Qn
Y

for every 0 <y < 1. Taking n — oo and then v — 0 we see that (14) — (13).
By definition of #, 5 o andP, A Q,

JGunttpin @)= fcw.n 4 s
which proves (14) — (15). For proving (15) - (14) we remark that

J Gormoy Ao vy 1 = J G, XI¥I AR, =

= fcs,w,,,l(xn <Y) XY, 7*dR, + j Gyond(X, 2 V) X5¥! " dR, <

< [ f Gy (P, A Q")]s " [ J Goron (P, A Qn)]m.

Corollary 1 results from condition (15) and the following inequality which holds
for every non-negative measurable &:

J& AP, A Q) £ (En2) A (Eg).- o

Proof of Corollary 2. The first part follows directly from Corollary 1. In order
to prove the second statement it is enough to show (see the first inequality in Propo-
sition 1)

lim lim P,/ < ¢) = 0.

e+ N
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For this sake we apply Lemma 1 and obtain from the first inequality in Proposition 1
(31) PG <7) £ PAGron <7 Sew A Top = ) + P(Scy A T, < 0)
SRz 1 —y—de)(l —9) + PfS,, A T, < 0).
An easy consideration shows
Iim Im P (W,(c) = 1L —v — d{c) (1 — s)) < Tim P,(W,(e) > 1 —y'/?).
st1 n—o n- o
Furthermore, in view of the additional assumption
im [im P(W,(c) > &) < ¢”'Iim Tim E,, W,(¢) < ¢ ' Tim Tim P(T,, < o) =
O N2 w €= o0 n—oc CH N
for every & > 0. Inserting the last two relations into inequality (31) we get in accord-
ance with the additional assumption
Iim Iim [m PG, <v) £ Tim Tm P,(S., A T., < ) <
y11 sl n—oo Do oo
< Tim Tim P,(S,, < o).
W NG
Applying this inequality to (7) we arrive to
lim lim H,(P,, Q) 2 1 — Iim [ P,(S,., < o) = lim lim P,(J..,, < o).

st1 n-o e n-on cmw oo
In order to complete the proof it is sufficient to note that (13) implies (see the remark
after Theorem 3)
lim lim H(P,, Q) = 0. , 0
stl n—owo
Proof of Theorem 4. Put s, = {(s), S = oo in inequality (4). Then by the
assumption
lim lim Hs(Pns Qu) =1
ST nom

which is known to be necessary and sufficient for P, <= Q, according to Theorem 3.

Proof of Theorem 5. As the restrictions of P, and Q, to &, , are equivalent the
functions U, ,, V.., k = 1,2, ..., are positive with respect to P, as well as to Q,.
Hence by (18) we have P,-a.s. and Q,-a.s.

Hs.k,u = ER,. U; "ka s ' i?k 1 n
e ()
Uk

&—1,;.) =E, (CXP {(1 ~5)In Ul:':}‘ -1 u)

and because of Jensen’s inequality we may continue

2 exp{(1 = 9 B, (1752 Bl = 80 ({1 =) EnoUin V2 51}

ko

Hence
(32) Giron Z X {—(1 = 8) o} -
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Choose @ > 1 such that (1 +a)la<1+e and put Y(s)=s — a(l —s) for

af(1 + a) <'s < 1. Then 0 < (s} < s and by (32) we have

[Eq, G (L7 WNsI1 =0 —¥() | =G=¥I¥E) >

—a(l-s)/(s—a(1—5s))
;[EQ" exp {Llji)slm‘,,}] = [Eq, exp {(1 + &)1, }] 7o ~/matti=sh
a

The statement of Theorem 5 is a consequence of this inequality and Theorem 4. [

Proof of Proposition 4. Denote by N(a, o?) the normal distribution with expecta-

tion a and variance 62. An easy calculation shows

s pl-s 1/2 o Y

H(N(a,, 02), N(ay, 02)) = [ﬂ_)b_] exp |- L‘lﬁf_‘i#z)
2 As—+(1~-5s

(=93

21 - (1= 5)ed)

sby + (11—

where b, = 672 If 0 < |o| < 1 then

H{N(ex, 1 — 0?). N(0, 1)) = [,&]”2 oxp { s(1 = 5) 0%

1= (1—ys)@?
Puts = 1. Then
8,12(x) 1= Hyo(N{ex, 1 — %), N(0, 1)

)
_ A2\1/271/2 2.2
_[a 9),2, exp{— L €X
1-3e 81 —10
(1 _ Q2)1/2

1/2
< exp { —10%x?}.
_[1—%92] p {—1o’x?}

lIA

Consequently,
1 — Q?)a]ur2 )
A = [sutvo @9 = [T I 11w gey e

1o
and

_ 1 m (L= o )72 2 9-1/2
oo s ([ 0w
= = - i,n

Suppose Tim ( sup |g;,) = 1. Then
n—-»w 1=515m,

lim T Ay, S lim (4 inf (1 — 2,))"* = 0.

noo i=1 e 11Sm,

Suppose now

y

fim Y of, = o.

nroo [=1

Then because of —3In(1 + 3x) £ — %x, 0 £ x < 1, we get

lim ZHA,,,,(%) < limexp {—2% anf,n} =0.
n—ro =1

now =1
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In order to complete the proof of Proposition 4 we show that the first and second
condition imply P, < Q,.

Denote by p the Radon-Nikodym derivative of N(a, %) with respect to N(0, 1).
Then

fp In pdN(0,1) = (~Ino? + ¢* — 1) + 1a*.

Hence

Yoera(X) = 3= In(1 — o},) — of,) + doi.x}
and
(33) Kiv1a(a@) = [exp {3(— In (1 — o) — L)}

.chp {a $07,x7} N(0), 1) (dx;) =

- = (1 = aci,)" " exp {a(= In (1 - ei) = o)}
fora g, < L.
Given a real number 0 < § < 1 there exists a constant C(8) depending only
on § such that

(34) N (1 -

1
1-3

! : x2) < ) 22

Hin (1 = x?) + x?) < C(8) ¥

for0 £ |x[§lﬁ6.
We suppose that both the first and second condition hold. Then there exists
numbers ny, 0 < 8 < 1,0 < d < oo, so that

(3%) 2, =(1-9)?%, Yo}, =d

for every n 2 ny. Put e=(1-8)"'—1, a=1+¢ Then a> 1, ¢ >0 and
by (33), (34), (35)

my

TI %l + &) S exp{C(8).d} for n 2 n,.
=1
Hence

m ﬁx,,n(l +8) <o

n—eo 121
and we obtain P, <« Q, in view of Proposition 3.

(Received April 25, 1985.)
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