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MINIMAL DEGREE SOLUTIONS 
OF POLYNOMIAL EQUATIONS 

GRAZIANO GENTILI, DANIELE STRUPPA 

We study the general Bezout equation A1Xl + ... + ArXr = C, for At, C in k[x , ..., x„], 
k = R or C, and we provide minimal degree solutions for it. The results are also extended to the 
case of A i, C distinguished polynomials in spaces of entire functions with growth conditions. 

1. INTRODUCTION 

The study of the so called Bezout equation AX + BY = 1, for A, B given poly
nomials and X, Y unknown polynomials, has been under intense scrutiny, in recent 
years, due to the interest it has in concrete problems concerning multidimensional 
systems and control theory. References to these connections can be found, e.g., 
in [6], [7], [10]. In the same direction, the use of difference-differential equations 
in the control of delay-differential systems has led to the study of more sophisticated 
situations in which the classical Bezout equation is replaced by 

(1) AlXl + . . . +ArXr = C, 

where Ah C are now holomorphic function of a given growth at infinity (we will 
always suppose, in the sequel, that any common factor has already been cancelled 
from (l)). The importance of the study of such an equation is well discussed, e.g., 
in [5], to which we refer the interested reader. Solvability conditions, and the ex
plicit construction of solutions to (l), even in the more complex case which arises 
when the Ax are substituted by matrices of entire functions, are now well known, 
and studied in [2], [3], [9]; on the other hand, a recent paper of Sebek in this same 
journal, [11], has attacked the question of finding, in the polynomial case, minimal 
degree solutions, and these results have provided algorithms to solve (1). More 
precisely, Sebek has considered polynomials in two variables and has shown that, 
whenever r = 2 and AtXt + A2X2 = C has a solution, it also admits a unique 
minimal degree solution, i.e. a solution whose degree can be given a priori bounds 
which only depend on deg(A), deg(B) and deg(C). 
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Purpose of this short note is to extend some of Sebek's ideas to a more general 
situation, i.e. to the case in which r > 2, or the At, C are distinguished polynomials 
with respect to one variable (see Section 3, after Remark 9, for the precise definition) 
as well as to the case of polynomials in more than two variables. 

First, in Section 2, we recall some known results due to Hormander, [9], which 
enable us to completely characterize the space of solutions Xu ..., Xr to A^X. + ... 
... + ArXr = 0 in spaces of entire functions with growth conditions; these results 
are used, in Section 3, to describe the general solutions to AtXt + ... + ArXr = C 
(Theorem 5 and Corollary 6). The major applications we are interested in are contai
ned in Theorems 8, 11, and Corollary 12. In Theorem 7 we show the existence of 
minimal degree solutions to (1), for the simple case of polynomials in one variable; 
in Theorem 8, this result is proved for polynomials in two variables, but in the sub
sequent Remark 9, (b), we show how the result can actually be extended to more 
than two variables, while Theorem 11 and Corollary 12 deal with the case in which 
the A;, Xt and C are distinguished polynomials in Jf (C") or in Exp (C"), the space 
of entire functions of exponential type; we would like to notice that this seems 
particularly interesting in view of some quite concrete applications, and is based 
on a (relatively little known) global version of the Weierstrass division theorem with 
bounds, [1]. Several examples are also given, to illustrate the situation. 

2. KOSZUL COMPLEX 

In this section we will briefly recall some results due to Hormander, [9], which 
will be useful to study the space of solutions of the Bezout equation (l). 

Even though we will be mainly interested in the case of polynomial equations, we 
will state the results in a more general situation, in view of their possible applications 
to control theory. 

Let p be a plurisubharmonic function on C" (i.e. p is upper semi-continuous and 
for each complex line Lof C", p\L is subharmonic on L) and suppose it satisfies the 
following technical conditions: 

(i) p(z) = 0 and log(l + \z\) = 0(p(z)); 

(ii) there exist constants KUK2,K3,KA_ > 0 such that if |z, — z2\ — 

^ exp ( -X ip ' 2 , ) - K2), then p(z2) ^ K3p(zt) + KA. 

According to Hormander, [9], denote by Ap = Ap(C) the algebra of all entire 
functions f e «?f(C"), for which there are positive constants A, B > 0 such that 

\f(z)\ <, A exp (Bp{z)), for all zeC . 

The cases which are more interesting for the applications occur when p'z) = 
= log(l + \z\) (Ap is then the space C\z~\ = C[z j , . . . , z„] of polynomials in C"), 
when p(z) = |lm z\ + log(l + |z|) (Ap is the space of Fourier transforms of com-
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pactly supported distributions in R") and when p{z) = \z\ (here Ap is the space of 
Fourier-Borel transforms of analytic functional in C). 

Let then E1; ..., FN belong to AP(C) and suppose they satisfy the "corona con
dition" 

N 

(2) £ |E;(z)| ^ e exp (-Cp(z)) for all zeC and some e, C >0. 
i = l 

As it is well known, this condition is both necessary and sufficient for the solvability, 
in Ap, of the equation FiX1 + ... + FNXN = 1, [9]; it will turn out that (2) also 
plays a role in the study of the solutions for FJ^XJ. + . . . + FNXN = 0. Consider 
the map PF: (Ap)

N -+ Ap defined by P / a . , ..., gN) = F1g1 + . . . + FNgN. In order 
to study the kernel of such a map, one introduces its Koszul complex as follows: 
let Er denote the set of all differential forms h of type (0, r) with values in the exterior 
algebra ASCN and such that, for some K > 0, 

I \h(z)\2 exp (-2Kp(z)) ŮX< + oo , 

where dX denotes the Lebesgue measure. 
The Cauchy-Riemann operator 8 defines a map from all of Er to Ls

r+ x (dh is defined 
in the sense of distributions on each component of h). Notice that the map PF: AN

p -* 
-» Ap extends naturally to a map from Ll

0 to L?0 and, more generally, to a map (which 
we will denote again by PF) from Ur

+1 to Ur defined by 

(PPg), = Z 9,jFj for geUr
+l, \l\ = s . 

j=> 

It is clear that PP and d make I3r into a double complex (i.e. PF = 82 = 0 and PFd = 
= dPF), and the main result proved by Hormander states, [9]: 

Theorem 1. For every g e Ur with dg = PFg = 0, one can find h e Ls
r
+1 such that 

dh = 0 and PFh = g. 

The case we are interested in is when r = 0, s = 1; in this case g e Ap (since dg = 0) 
and the theorem gives a simple characterization of the kernel of Pp; in order to clarify 
the statement of the theorem, let us consider the simple case in which JV = 3. Then if 
g e J}0, we have g = (gt, g2, g3), with gt in Ap and PPg = 0 means g1F1 + g2F2 + 
+ g3F3 = 0; on the other hand if h in l30 is «5-closed, it is h = (h12, h13, h23) with 
htJ in Ap. Finally PFh = (h12F2 + h13F3, -h12F1 + h23F3, -h13F, - h23F2), 
therefore Theorem 1 says that if g e A3

p and PFg = 0, then 

g = (aF2 + PF3, -«EX + yF3, -pFt - rE2) , 

for some a, /?, y in Ap. But 

(aE2 + PF3, -aFt + yF3, -jSF. - yE2) = 

= a(E2, -Fu 0) + P{F3, 0, - E t ) + 7(0, E3, - E 2 ) , 
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i .e. the kernel of PF is given by all the combinations (with functions in Ap) of its 
"obvious elements". Theorem 1 states that this situation occurs for all At. 

Remark 2. In the case of polynomials, i.e. when p(z) = log (l + |z|), condition (2) 
is known to be equivalent to the fact that the polynomials Ft have no common 
zeroes (this is an immediate consequence of Hilbert's Nullstellensatz), so that Theorem 
1 describes the kernel of the map PF for Fu ...,FN polynomials with complex 
coefficients and no common zeroes in C. 

Remark 3. For complex polynomials, weaker conditions are sufficient to imply 
the conclusion of Theorem 1; indeed if Fu ..., FN form a regular sequence (i.e. Fj 
is not a zero divisor in C[zu , ..., z„]/(El5 ..., Ey_x) for all j = 2, ..., At, [12]), 
one knows, [8], that the variety V = {z eC: Ft(z) = ... = FN(z) = 0} is a complete 
intersection and that the kernel of PF is trivially generated as in Theorem 1; the same 
holds true for the case of entire functions with no growth conditions: we refer the 
reader interested in these questions to [8], Chapter 5. On the other hand, if one is 
interested in entire functions in Ap and condition (2) looks too strong, one can still 
generalize the notion of regular sequence in such a way that the cohomology of the 
Koszul complex described before is trivial; this has been done (in order to study 
some related problems in harmonic analysis) in [4], and has led to the notion of 
slowly decreasing At-tuple of elements in Ap: for such At-tuples (we refer to [4] 
for the definition, which is quite complicated) the conclusion of Theorem 1 still 
holds. 

For practical applications, it is often useful to consider the Bezout equation for 
polynomials with real coefficients in R". It is therefore of interest the following 

Corollary 4. Let g e [R[xu ..., x„J]N be such that F^^ + ... FNqN = 0 for 
Fu ...,FN a regular sequence in R[xu ..., x„]. Then there is h in [B[x 1 ; . . . , x„ ]p 
such that PFh = g, for At = (f) . 

Proof. It is enough to separate the real and the imaginary part in equation (1), 
and to look at the case r = 0, s = 1 of Theorem 1, in view of Remark 3. • 

3. MINIMAL DEGREE SOLUTIONS 

In [10], Sebek studies Bezout equations of the form AX + BY = C, where A, B, 
C are given polynomials in R[xu x2] and X, Yare to be found in R[xu x 2 ] , and his 
main tool is the knowledge of a simple description of all solutions X, Y of AX + 
+ BY= 0. 

Here we employ the results stated in Section 2, to study the more general Bezout 

equation 

(1) AtXt + ... + ArXr = C 
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with At, Xh C in A/C"). and At satisfying (for example) condition (2). Because 
of the linearity of (l), we can easily prove: 

Theorem 5. Suppose AteAp(C), i = 1, .... r, satisfy (2), and let X' =(X'1)... 
..., X'r) be any particular solution of (l). Then the general solution of (1) is 

X = X' + PAH 

with H in (Ap)', for f = (r j . 

Proof. It follows from the linearity of (1) and from Theorem 1. • 

Notice that, in Theorem 5, condition 2 could be substituted with the request 
that the At form a slowly decreasing r-tuple, as pointed out in Remark 3. 

Corollary 6. Let At, Ce k[xlf..., x„], i = 1, ...,r, k = R or C, and suppose 
that the A; have no common zeroes or that they form a regular sequence. LetX' = 
= (X\, ...,X'r) be a particular solution of (1). Then the general solution of (1) is 

X = X' + P4H 

withHin fc[x., ..., Jc„]f, r = . 

Proof. In case the At have no common zeroes, it is an immediate consequence of 
Theorem 5; if, on the other hand, the At form a regular sequence, the result follows 
from Remark 3 and Corollary 4. • 

We now turn to the discussion of minimal degree solutions for equation (l). In 
the case of n = 1 variable, the situation is quite simple, as we can employ 
the Euclidean division algorithm to prove: 

Theorem 7. Consider equation (l) in k[x], k = R or C, with the At without 
common zeroes. Let dr = deg(Ar) ^ deg(A ;) = dt for all i = 1, ..., r. Then there 
exists a solutionX = (Xu ...,Xr)to (1) with deg (X,) ^ dr - 1 for all i ~ 1 , . . . , r -
— 1. Moreover if deg(C) g max (d() + dr — 1, one has that X can be chosen 
with deg(¥ r) S max (d,) - 1. 

Proof. By Corollary 6, every solution of (1) can be written as X = X' + PAH, 
for X' a particular solution, and H any element of fc[xp (the existence of X' is a con
sequence of the fact that the At do not have any common zero, as we remarked in 
Remark 2). Let then 

H = (H12,H13, ...,Hlr, H23, H24,..., H2r,HZA, ...,Hr_1 r) , 
so that 

PAH = (H12A2 + ... + HlrAr, -H12A1 + ... + H2rAr,..., -HlrAt - ... 
...-Hr.UrAr^). 

Now 
X, =X[ + H12A2 + ... + H l r A r ; 

by applying the Euclidean division algorithm to X\ we get (if deg(Z'j) ^ dr, since 



otherwise X\ is already as required by the thesis) 

X't = ArAr
u + Ar

12 , deg (Ar
12) = dr - 1 , 

i.e. 
X, = A\2 + H12A2 + ... +(Hlr + A\x)Ar. 

Since the Hu are arbitrary polynomials, we get X1 = A12 by taking H1} = 0 for 
j = 2 , . . . , r - 1 and Htr = - A 1 1 . With this choice we have (as H 1 2 = 0) 

X2 = X'2 + H23A3 + . . . + i f 2 r A r ; 

repeat the argument dividing X'2 by Ar: 

X'2 = ArA
2

r
x + A22 , deg (A22) £ dr - 1 

i.e. 
X2 = A22 + H 2 3 A 3 + . . . + (H2r + A21) Ar; 

now take H2J = 0 for j = 3 , . . . , r - 1 and jfiT2r = - A 2 1 . 
By repeating this argument r times we get the solution 

Xi = Al2 

X2 = A22 

xr-i = A;-1-2 

Xr =X'r + A\lA1 + ... + A r -
1 ' 1 A P _ 1 

which satisfies the first part of the thesis. The second part is now trivial. • 

We now give an example in which this method is worked out explicitly: 

Example. Let r = 3, and Ax = x2 + x + 1, A2 = (x + l)3 , A3 = (x - l)2 , 
C = - x 4 - 4x3 + x2 - 2x + 1. It is immediate to verify that X' = (x3, - x 2 , 
x2 + 1) is a particular solution of the equation AtXt + A2X2 + A3X3 = C. There
fore a general solution of this same equation is given by 

X1 = xi + H12(x
3 + 3x2 + 3x + 1) + H13(x2 - 2x + 1) 

X2 = - x 2 - 7i12(x2 + x + 1) + # 2 3 (x 2 - 2x + 1) 

X3 = x2 + 1 - H13(x
2 + x + 1) - if23(x3 + 3x2 + 3x + 1), 

for H12, H13, H23 any polynomials in R[pc], 
Divide X\ by A3: 

x3 = (x2 - 2x + 1) (x + 2) + (3x - 2) 

with Au = x + 2 and A3
2 = 3x - 2. Taking H23 = - ( x + 2) and H 1 2 = 0, 

we have the solution 

X1 = 3x - 2 

X2= - x 2 + H23(x2 - 2x + 1) 

X3 = x2 + 1 + (x + 2) (x2 + x + 1) - tf23(x
3 + 3x2 + 3x + 1) . 
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Repeat the argument for — xz, i.e. divide —xz by A3 and get 

-xz = (x2 -2x+ 1 ) ( - 1 ) + (~2x + 1) 

with A31 = - 1 , A32 = -2x + 1. Taking now ff23 = 1, we finally obtain 

Xt = 3x - 2 

X2 = -2x + 1 

X3= x2 + 2 

which is the solution which satisfies the thesis of Theorem 7. 

We now turn to the case of n = 2 variables. 

Theorem 8. Let Ah C e k[u, w], i = 1, ...,r, k = R or C, and suppose that 
the A;'s have no common zeroes or that they form a regular sequence. Let the equa
tion (1) be solvable. Consider Ah C (i = 1 , . . . , r) as polynomials in fc[w] [w] of 
w-degrees dh d respectively: 

A, = 4 ° + a[°w + ... + a^wdi (i = 1, . . . , r) 

C = c0 + ctw + ... + cdwd. 

If 

(3j g c d « , ^ > ) = l 

for all i, j such that i + ;, and if 

3 = max {dt + dj, d} 
i*J 

then there exists a solution X = (._ ls..., Xr) of equation (1), such that 

degw (X;) <I 3 - J ; ( i = 1 , . . . , r ) . 

Proof. By hypothesis, there exists a solution X' = (Zj , ...,X'r) of equation (1). 
Set degw (X't) = fc, and 

X'i = x0
l) + x[l)w + . . . + 4 ' V ' (i = 1, ..., r) . 

If there exists H i | r such that fc; + d; > 3, then it is not possible that fc; + 3 ; Si 
J; fcj- + 37- for all i 4= ; , 1 S j _ ?*; in fact, if this is the case, we obtain from (1) ' 

xiy/y^"' = o 
Y(o„(o _ n 
Xkt

 adt - u 

which contradicts the assumption on the degrees of X\ or A{. Therefore we can 
assume that (up to a permutation) there exists 2 <I s <; r such that 

fct + 3j = .. . = ks + ds - max {fcp + 3p} = M > 3 
Igpgr 

and that 
'• kq + dq<M- : £ •: 

50 



for s < q g r. Let us consider, in equation (1), the coefficient of wM. We obtain 
the equation 

„(!)„(') 4- 4- fl(s)v(J) - 0 
ad, Xki + ••• + ad„Xks ~ U 

i.e. 
0 ( 1 ) Y ( 1 ) _ _ C n ( 2 ) v ( 2 ) 4- _ „( s ) v ( s ) N . 
" . , xki — yad2

xk2
 + ••• + ads

xks)> 

and, by (3), we obtain that 

(4) x̂ > = a ( X ) + "- + a(sM:) 

for some a(i) in fc[_], i ~ 1, ..., s. Nevertheless we know, by Corollary 6, that the 
general solution of (l) is X = X' + PAH, with in [fc[_, wTJ' = [fc[«] [w]]?. Hence 
we can write 

Xx = J_i + # 1 2 A 2 + H13A3 + ... + tflrAr 

X2 = X'2 - Hl2Ax + H23A3 + ... + H2rAr 

(5) ; 
Xs = X's - HlsAt - ... - H s _ l i l A s _ 1 + HS>S+1AS+1 + ... + #S i rA r 

Xr = X'r - HlrA1 - ... - # r _ 1 ; r A r • 

It turns out that fc; — dj > 0 for all f =i= j , 1 __ - __ s, 1 _s j _= s. In fact we have, 
for such i and j , 

fc; + _; > _ ^ max {i s + _ J ^ d, + dj, 
s + k 

which implies fc; > dj. Let us now choose, in (5), H12 = —ot2)wki~dl, ...,Hls = 
= — a(s)wkl~ds, and Hu = 0 for i + 1 or j =)= 2 , . . . , s. By (4), we obtain a new 
solution (XI, ...,Xr) of (1) with deg^.Z; g fct — 1. Moreover for i = 2 , . . . , s we 
obtain that 

deg w (7_ 1 ;A j ) £ rC, - dt + d, = fc; + „ , - _ , = fc; . 

and therefore that 
deglv (xi) <: fc; 

for i = 2 , . . . , r. The assertion of the theorem now follows by iterating the argument 
above. • 

Remark 9. (a) Notice that, as Sebek did in the case r = 2, [11], hypothesis (3) 
in the theorem above can be weakened by requiring only conditions similar to (5b), 
Theorem 2 of [11]. 

(b) It is, of course, interesting to ask whether Theorem 8 can be extended to 
n — 2 variables. If one follows through the proof, it is clear that the restriction 
n = 2 is only used to obtain (4), so that our theorem actually holds for all n, if one 
only assumes that all subsets of ad

l), ..., a'd
s) form a regular sequence in the sense 

of [12]. 
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(c) We finally observe that the hypothesis on the A; forming a regular sequence, 
is not necessary since it is used to prove that all solutions of (l) are of the form (5), 
while all we need is to use the fact that all r-tuples as in (5) are solutions of (1). 

Let us now apply our procedure in a concrete situation: 

Example. Let r = 3, and let At = 1 + uw, A2 = u2 + w2, A3 = 1 + (1 + u) w, 
C = 1 + (1 + u + 2u2) w + (1 + u3 - u2) w2 + (u - u3) w3. The hypotheses of 
Theorem 8 are obviously verified, and a particular solution of the associated Bezout 
equation is given by X[ = u + u2w + w2 + w4, X'2 = ( — w2 — uw3) and X'3 = 1. 
According to Theorem 8 we obtain a new solution by taking 

Xx - u + u2w + w2 + w4 + ( - w 2 ) (u2 + W2) = u + u2w + (1 - w2)w2 

X2 = - w3 - uw3 + (w2) (1 + uw) = 0 

x3 = i . • 
It is now immediate to verify that [Xt, X2, X3) is a solution of equation (1) and that 
degw(Z ;) g deg(C) - deg(C) - deg(A ;), i = 1, 2, 3. 

We now proceed to give a final application of the previous results by considering 

the equation 

(6) AtXt + ... + ArXr = C 

with A;, C distinguished polynomials in Jf (C), the space of entire functions, or 
in Exp (C) = Ap(C), p(z) = [z|, the space of entire functions of exponential type 
(but other spaces Ap of entire functions might as well be considered); by this we 
mean that if £ = (z, w) e C", z e C 1 , w e C, there are entire functions (in C"1) 
a\j)(z), ck(z), 1 £ j S r, 0 %, i £ ds = deg (A,), 0 g k S t = deg (C), such that 

Aj(0 = ia\'\z)wi, C{C) = ick(z)wk. 
i=0 k=0 

We are interested in finding solutions X ; to (6) which, too, are distinguished poly
nomials in :tf(C), and for which the degree in w is minimal. 

Remark 10. For our next results, we need to use a global version of the Weier-
strass division theorem which can be found, e.g., in [1], Lemma 1, page 96. What 
is most interesting in the treatment of [1] is the fact that very precise bounds are 
given on the growth of the quotient and the remainder of the division of an entire 
function by a distingushed polynomial. More precisely, the bounds given in [1], 
Lemma 3, together with Remark 5 and the proof of Lemma 5, show that if F and P 
belong to Exp (C), and P is a monic distinguished polynomial, then F = GP + R, 
with G, Re Exp (C) , R a distinguished polynomial of degree smaller than P. 

Theorem 11. Suppose that (6) has a solution in Jf(C), and suppose that a$ = 1. 
If dr •£ dj for all j , there exists a distinguished polynomial solution to (6) (i.e. in which 
all Xt are distinguished with respect to w), with deg(X ;) g d, — 1 for all i = 1, . . . 
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. . . , ? • _ 1. Moreover if deg(C) <£ max (d,) + d, - 1, -X,. can be chosen with 

deg(Z r) S max(d;) - 1. £ 

Proof. It runs exactly as in Theorem 7, with the Euclidean algorithm replaced 

by the Weierstrass division theorem. • 

Corollary 12. The same result holds true if A; and C belong to Exp (C"). In this 

case the distinguished polynomials Xt can be found in Exp (C") as well. 

Proof. As for Theorem 11. We now use the Weierstrass division theorem with 

bounds as discussed in Remark 10. • 
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