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INDEPENDENT AND IDENTICALLY DISTRIBUTED 
PSEUDO-RANDOM SAMPLES 

IVAN KRAMOSIL 

The most simple algorithm used in order to transform a statistically independent identically 
distributed random sequence with equiprobable distribution into sequence with some given 
non-equiprobable distribution is proved to be applicable also in the case of pseudo-random 
sequences of high algorithmic complexity. The result enables to present a definition of i.i.d. 
pseudo-random sequences based immediately on the notion of algorithmic complexity. 

1. INTRODUCTION 

Consider an infinite, statistically independent and identically distributed (i.i.d.) 
sequence X = XUX2,... of random variables, defined on a probability space 
<f3, Sf, P> and taking their values in a finite set s4 = {au a2,..., ar}. Set, for i = 
= 1,2,...,-, 

(1) Pi = P({co: coeQ, Xx(co) = at}) , 

then p = <[px, p2,..., pry is the probability distribution of X (corresponding to X). 
Realizations of i.i.d. random sequences with a given probability distribution play 
an important role in some stochastic computational decision making or simulation 
methods. 

Let (pu p2,..., pr} be a probability distribution over si and let Y = Yu Y2,... be 
another i.i.d. sequence of random variables taking (Q, Sf, P> into 0$ — {bu b2,... 
..., b,„} such that P({co: coeQ, Yt(co) = b}}) = m _ 1 for each j £ m. If there are 

nu n2,..., nr e Jf = {0, 1, 2,. . .} such that £ nt = m and pt = n^m, i = 1, 2 , . . . , r, 
; = i 

then a realization Yx(co), Y2(co),... of Yean be transformed into a realization of i.i.d. 
X with probability distribution <px, p2, •.., p,}, setting simply Xt (to) = a} iff 

7{со) = Ък апа ^ Л , < к й^Щ, "о = 0. $ & 0 1 ^ 4 ^ 

! 
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The infinite sequences of elements from 3S, the initial segments of which are 
combinatorially complicated enough lest to be generated by programs substantially 
shorter than their lengths, are known to be good simulations of realizations of i.i.d. 
random sequences with equiprobable distribution. The aim of this paper is to in
vestigate whether, in which sense and in which measure, the sequences obtained 
from such pseudo-random sequences over 3S by the factorization transformation 
can simulate i.i.d. sequences over si with probability distribution <pl5 p2,..., pr}. 

2. PSEUDO-RANDOM SEQUENCES AND FACTORIZATION 

The sets 39 = {bu ..., bm} and s4 = {ax, a2,..., ar} will be taken as non-empty 
sets of abstract elements with m > r ^ 2. By 39x (3S*, resp.) the set of all infinite 
(finite, resp.) sequences (strings, words) of elements from 3S will be denoted, similarly 

for six and si* . 39* = (J 39", where 39° = {A} and A is the empty sequence. 
n=0 

Let U(3S) (U(si), resp. )be a fixed universal Turing machine over the alphabet 
3S (si, resp.); the reader is supposed to be familiar with this notion which is defined 
in [1], [7] or elsewhere. For p, S,xe 39*, U(39) (p, S) = x means: having written 
the concatenation p * S on the input tape of U(J') and having initialized it, U(^) 
eventually terminates its work with x written on the output tape. The algorithmic 
complexity KU(S))(x | S) of x given S and w.r.t. to U(3S) is defined by 

(2) Kum(x | S) = min {n: (3p e B") (U(3S) (p, S) = x)} . 

The set over which the minimalization is taken is always non-empty. In fact, there 
exists c = c(U(39)) sJf such that, for all x, S e 39*, KV{m(x \ S) S l(x) + c, where 
l(x) = n iff x e 39". As a more detailed introduction into the notion of algorithmic 
complexity and its properties, in the extend sufficient for our further reasonings, 
can serve [8] or [2], Chapter 5. 

An infinite sequence x = xu x 2 , . . . e3SX is called absolutely random, if there 
exists a total function/: ./V -> Jf,fe o(n)(i.e., lim/(«) n'1 = 0), such that, for all n, 

(3) Kum(xt, ..., x„ \ n) >. n - f(n) . 

An immediate generalization of Martin-Lof result ([6], cf. also [2]), shows that 

absolutely random sequences exist iff, roughly speaking, ]T r~f(i) < oo and if"it is 
i = 0 

the case, then "almost all" infinite sequences (in the sense of product measure 
generated by equiprobable distribution on 39) satisfy (3). 

Given x e 39"° u 39* and nu rh2, ...,nreJ/~ such that £ n, =a m w e shall denote 
i = i 

by w(x, nu ..., nr), or simply by w(x), the sequence j s ^ u ^ * defined by the 
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factorization algorithm described above (i.e., l(y) = l(x), yt = a} iff x{ = bk and 
y - i J 

£ ns < fe < J] "s. "o = 0). 
s=0 s=0 

For x e J'00, which is absolutely random, the relative frequencies of occurrences 
of particular letters or blocks of letters tend to equiprobable distribution. In symbols, 
if B(k,x) = (xu...,xky, (xk+u...,x2ky,...e(3Sk)~, if B(k,x)~n\ denotes the 
initial segment of length n (w.r. to g$k) of B(k, x) and if fr(z, b) denotes the relative 
frequency of occurrences of b in z e J1*, then for each keJf+ and each ae&k, 

(4) Mm fr(B{k, x) [n], a) = m~k . 

Hence, if x is absolutely random, then for each j g r, 

(5) lim fr(w(x) [n], a}) = njm = Pj, 

as follows immediately from the factorization algorithm ((4) is proved in [3] or [5]). 
Of course, w(x) need not be absolutely random sequence w.r. to s4 and, in fact, 
it is not, supposing that (j>u ...,p r> 4= (j~v, r~x, ..., r~1y, as the following con
struction proves. 

Let y e ss?*, denote by n}(y) the total number of occurrences of a} in y, so that 

]T nj(y) = l(y). Let Q(y) <= s/'M be the set of all /(y)-tuples with the same numbers 
J = I 

of occurrences of particular letters as in y, let k(y) be the order number of y according 
to the lexicographical ordering generated in Q(y) by the simple ordering a t < a2< ... 
... < ar of $0. Finally, by p G S/* denote the shortest program with this property: 
for each y e sd*, and for a fixed encoding of (r + l)-tuples in the form of concaten
ation, 

(6) U(s4)(p * n^y) * n2(y) * ... * nr(y) * k(y), l(y)) = y 

(the concatenation in (6) will be denoted by P0(y)). As proved in [5], if (pt(y), ... 
...,pr(y)> = ( n i M G O O r V - - . nr(y)(l(y))-ly 4= (r~\ r~\ ..., r " 1 ) , then there 
exists c < 1 and g: Jf -» J7", a e o(n), such that l(P0(yj) < c . l(y) + g(l(y)). In 

fact, we may take c = H^p^y),..., pr(y)) = - £ p,(>>) logr p/>>). 
J = I 

Hence, if x is an absolutely random sequence from J'cc, but <%, n2, • ••, nr> 4= 
4= <m/r, m/V,..., m/r>, then w(x, n 1 ; . . . , nr) G J / 0 0 is not absolutely random as 
each vv(x) [n] can be generated by "substantially shorter" program P0(w(x) [n]) 
for n large enough. We may ask, whether w(x) [n] can be generated by a still shorter 
program. The answer is negative, as the following theorem shows. 

Theorem 1. Let stf = {au ..., ar), M = {bu ..., bm}, m > r = 2, let U(s/), U(3S) 
be fixed universal Turing machines over s4 and (%, let x G 38~ be absolutely random, 



let nun2,...,nreJf,Yani ~ m- T h e n t h e r e e x i s t s a t o t a l function g\Jf -+Jf, 

g(n) e o(n), such that for all n e Jf, 

(7) l(P0(w(x, nu n2,..., nr) \n\)) - Km^(w(x, nu n2,..., nr) [n] | n) < g(n) . 

Proof. Let x = xu x2,... e <MX be absolutely random, so that KU(m)(x\n\ | n) 3: 
2: n — j(n) for a function/(n) e o(n). Let y = y t , y2,... = w(x) e J / 0 0 and suppose, 
in order to arrive at a contradiction, that there exists y < 1 such that, for infinitely 
many n's, 

(8) Ku(Jyy\n\ \ n) < y . l(P0(w(x, nu ..., nr) [«])) . 

A computation yields that the assertion of Theorem 1 will be proved if we arrive 
at a contradiction supposing that there exists /5 < 1 such that, for infinitely many n's, 

(9) KU(Jy\n\ | n) < pHr(pu ..., pr) n , 

where/J,- = ntjm, i <, r. 

Given x and nu ..., nr, w(x, nu ..., nr) is defined uniquely, but not vice versa. 
Or, having at our disposal y = yu y2,... with, say, yj = ah we need still a number 
Vj <, nt to know, which bk was transformed into at to be able to reconstruct Xj. 
Hence, we need a sequence v = vu v2,... of numbers, where 0 < v{ < n* for i = 
= 1, 2 , . . . and n* = ny iff y-v = ap namely, we need y\n\ and v\n\ in order to 
generate x\n\. 

Given y\n\ the n-tuple v\n\ of numbers can be enumerated by a number oc{n), 

<x(n) <, FJ n*, so that log,. (a(n)) ^ £ logr nf. The relative frequences of occurrences 
1 = 1 i = i 

of each fc; in x tend to m"1 , so that the relative frequency of cases when n* = n5 

will tend to ns\m, or, written precisely, will be (njm) + g(n), where g(n). n < const. 
Hence 

(10) £ logr nf _: £ n -*• logr «j + const = n £ -^ logr n,- + const = 
;=i j=i m j=i m 

= n X ~ l°8r "/ ~ l°gr m + logr m + const = 
|_; = i m J 

= n £ -i logr -J + logr m + consf = n logr m — nHr(pu ..., pr) + const, 
L' = i m m J 

where p. = n» I nt. Combining with the assumptions above we obtain 

(11) KU(Jx\n\ | n) S KVw(y\n\ \ n) + KV(^(v\n\ | n) + const, <_ 

^ pHr(pu ..., pr)n + n logr m - nHr(pu ..., pr) + const2 = 

= n logr m . y + const2 , 



where 

(12) y = 1 - (1 - p) Hr(Pl, ...,Pr) (logr m)-x < 1 , 

so that-KrjW (x[n\ | n) < n . y' for y' < 1 and infinitely many n's, but this contradicts 

the supposed absolute randomness of x. D 

3. PSEUDO-RANDOM INDEPENDENT IDENTICALLY 
DISTRIBUTED SEQUENCES 

Theorem 1 immediately invokes the two following definitions. 

Definition 1. A sequence y e J / ° ° is strictly pseudo-random independent and 
identically distributed sequence (strictly PIID-sequence) with probability distribu
tion ipu p2,..., pry, if there are nu ..., nr eJf such that n;lm = ph i = 1, 2, ..., r, 

m = £ n;, if there is 3$ = [bu b2,..., bm) and if there is x e J100 such that x is ab-

solutely random and y = w(x, nu ..., nr). 

Definition 2. A sequence y e s^m is PIID-sequence, if there exists a total function 
g: Jf -* Jf, g e o(n), such that for all n eJr, 

(13) Kpo(y[n\)) - Km,Jy[n\ | n) < g(n). 

As immediately follows from Theorem 1, each strictly PIID-sequence is a PIID-
sequence, but the inverse implication does not hold, as will be proved below. 

Theorem 2. Let x = xu x2, ..., e J / 0 0 be a PIID-sequence, then for each aj e s4, 

\\mfr(aj, x[n\) = pr(aj) exists and Y, Priaj) = *• 
„-»00 J = l 

Proof. Suppose, in order to arrive at a contradiction, that fr(aj, x[n\) oscillates 
for some;' < r. Then there exist e > 0 and an infinite sequence n\ < n2 < ... such 
that \fr(aj, x[n ;]) - fr(a}, x[n ; + 1]) | > e. Set n = nt, m = n; + / for some i, I, and 
consider a program Px which, joined with (r + l)-tuples <n1; n2, ..., nr, /<1>, 
<m1; m 2 , . . . , mr, k2> of integers, calls the program P 0 and generates the /qth 

sequence of length £ ns with n ; occurrences of ah i.e., the krth sequence from 

Q(nu ..., nr) = Q(a\
l ... a"r), then generates the k2th sequence from Q(mu m2,... 

..., mr) and joins them in this order. If n ; (mh resp.) is the frequency of a ; in x[n] 
(in <x„+ 1 5 . . . , x,„>, resp.) and if kx (k2, resp.) is the order number of x[n\ (<xn+1, . . . 
...,xmy, resp.) in Q(nu n2,..., nr) (in S(m1; m 2 , . . . , mr), resp.), then Px(x[m\) = 
= Pt * <n l 5 . . . , nr, fej_> * <m l 5 . . . , m„ k2> generates x[m]. Clearly, 

(14) KPfrlni})) < Hog, I J Q K ..., „,)|1 + r l o g r | | p ^ f m j ! + 

+ j Z
Г l o g r n^ + ; E

г l o g r m Л + l(Px). 



es can be easily seen, 

(15) £ riogr B:i + £ riog, m:" + /(Pi) e <m) 
i = l i = l 

and the assumption that x is a PIID-sequence yields that 

(16) W-'iM.*])) - '"--'-O'l. • • •• Pr)| 6 o(m), 

where p,- = (n; + njj)/m. The only we have to prove is that there exists c0(e) < 
< Hr(Pl, ..., pr) such that 

(17) logr \\Q(nu ..., nr)\\ + logr \\Q(mu ..., mr)|| < c0(e) m , 

where || • | denotes the cardinality. But, as proved in [5], 

(18) log, || <2K. . . ,« , ) ! ! = nHr(q1,...,qr)+f1(n), 

(19) logr | |Q(mu ..., mr)|| = (m - n) Hr(su ...,sr)+ f2(m - n) , 

where qt = n{Jn, s ; = mtJ(m — n), i 5£ r, and ji(n), f2(n) e o(n). So we must prove 
that 

(20) nHr(qu ..., qr) + (m - n) Hr(su ..., sr) g c0(e) mHr(Pl, ...,pr). 

As (qu ..., qr} 4= <s 1 ; . . . , sr> (recall that \qs - Sj\ > e > 0), and because of the fact 
that, for a = njm, fi = (m — n)Jm, 

(21) aqt + fisi = (n \ m) (ntJn) + ((m - n) \ n) (mtJ(m - n)) = 

= (n, + 7M;)/n = Pi , 

(20) follows from the well-known assertion of classical information theory according 
to which 

(22) aHr(qu...,qr) + PHr(su...,sr) < 

Hr(Pl,...,Pr) 

so that the left hand side in (22) can be taken as c0(e). Xj7"(aj> x [ n ] ) = 1 f° r e a c h 
j = i 

n e Jf', hence, £ p''(a/) = 1 a s well. • 
J = I 

Given a = <xl5 ..., x„> e ja/* and nu n2,..., nr e ./T, we may define the product 

probability Pr(nx,..., nr, a) of a, setting pr(nu ..., nr, a) = TJ JT(X4), where 7t(x;) = 
~ i = i 

= p,- = n j-1 £ nfc iff x ; = a,-. Hence, pr(nu ..., nr, a) is the probability of a supposing 

that each Xj, j = n, is sampled independently from the probability distribution 
(Pl,..., Pry. The assertion of Theorem 2 can be, in the case of strictly PIID-sequences, 
generalized from particular letters to finite blocks of letters, as the next assertion 
proves. 



Theorem 3. If y e stf™ is a strictly PIID-sequence such that y = w(x, nun2,..., nr) 

for an absolutely random x, x e St™', | |^| | = ]T ttj, then for each keJf+ and each 
a e < J '= 1 

(23) limjr(a, B(k, y) [n]) = pr(nu ..., nr, ot) . 

Proof, Let x = xux2,... B0S'° be an absolutely random sequence over an 

alphabet 3d = {bu ..., bm), let nun2,...,nreJf, let £ ns = m, let w(x, nun2,... 
i = i 

..., nr) = y = yu y2,... esdco. For k,neJ/~+ take the nth element of B(k, y), 
i.e. the /c-tuple y = (y(n-t)k+i> y<.n-w+2, •••> ynk) ~s$k- Its inverse image under 
the mapping w, i.e. the set 

(24) C = {<«<, v2,.... yfc>: w« V l , . . . ,» f c» = y} , 

is a product subset of !Mk such that the projection of C to its y'th coordinate has nt 

elements iff y^„-i)k+] = av Hence, ||C| = TJ nc/, where Cj is the absolute frequency 
J = I 

of aj in y, the total cardinality of J1'' is mk, so that the relative frequency of elements 
r k 

from C in 38k is J ] (n/mf3, but this is nothing else than f | 7i(iy{„_1)fc+1) = jJrfVt,., ... 
j = i ; = i 

..., nr, y). As x is absolutely random, the same holds for B(k, x), so that the relative 
frequency of each fe-tuple from @!k in B(k, x) tends to m~k. Consequently, the relative 
frequency of y in B(k, y) tends to pr(nu ..., nr, y). • 

4. PROPERTIES OF PIID-SEQUENCES 

A PIID-sequence y e sif" is called rational, if for each j <; r the value 
lim/r(a , y\n~\) is a rational number. Theorem 3 can be extended to rational 

PIID-sequences, as the next assertion proves. 

Theorem 4. Each rational PIID-sequence y = yu y2,... e J / ° ° is a strictly PIID-
sequence, i.e., there exist a set & = {&x,..., frm} and positive integers nu n2,..., nr 

such that j ] n, = m and y = w (x,n^nj , . . . , ^ ) for an absolutely random x e l * . 
i = i 

Proof. As proved in Theorem 2, the values pj = lim fr(aJt y[n~\),j Hk r, exist 

and are rational, due to the assumptions. Hence, there exist nu ...,nreJ/~ such 

that njjm = pj, j ^ r, where m = Y, n,-. 

Let ^ = {blt b2, ..., bm} be a set, let Au A2,... <= @ be non-empty subsets of ^ 
such that IUJI = n* (hence, n* 5S m for all i e / , the connection with nf's intro-



duced above will be seen later), let S' 6 A0, A0 c B, be an infinite sequence. First, 

we prove: if/(n) e o(n) is a total function such that £ m~f(-k) < co, then there exists 
00 (t = l 

an infinite sequence S e X At such that, for each n e Jf, 
,= i 

(25) Kuw(S[n] | S'[n]) > logffl ( J J n*) - / (h) . 

When proving (25) we use some ideas from the proof of Theorem 6, Chapter 5 in [2], 
Take/(n) e o(n) satisfying the conditions (e.g. f(n) = c logm n,c> 1), and set 

(26) D„ = {S: S 6 X Ai, J . w ( S [ n ] | S'[n]) > log„, ( f[ «?) - /(»)} • 
i = i ; = i 

We have to prove that there exists KeN such that H A H= 0 (replacing /(n) by 
n = K 

K - l K - l 

/ (n) + const we may always suppose that f) A = X A„)- Let J5^ c ^(^°°) be 
n = I ,1 = 1 

the minimal er-field of subsets of ^°° generated by elementary cylinders, let P~ be 

the probability measure defined on 3F0 n X A,- as the unique extension of the 

function P~ ascribing to each cylinder V(xu ..., x„) <= X A,- the value n ( M * ) _ 1 -
1=1 00 1 = 1 

D„ is a union of cylinders of the length n and its complement w.r. to X At contains 
at most i = 1 

(27) £ m' = (mL + 1 - 1) (m - l ) " 1 < m L + 1 = ( T ] n*) m1"-™ 
i = 0 i = l 

cylinders of the length n, where L = log,„ ( TJ n*) — f(n). Or, programs which 
i = l 

generate S[n] using U(SS) and S'[n] are sequences from @l and different S[n]'s 

need different programs. The P~-probability of each S[n] is f ] (n*)"1, hence, 
i = i 

(28) P ~ ( X A i - C „ ) < m 1 - « " > , 
i = i 

so that ^ 

£ P ~ ( X A i ~ A ) < o o , 
>' = 0 i = l 

oo oo 

hence, for some K, P~( fl A ) > 0 and f) A. * 0-
ii = K „ = K 

Now, let j ; = ,)1} y2}... es/"" be a rational PIID-sequence, then each sequence 

u e X A j , where ||A,|| = n* = n iff j ; = a,., defines uniquely a sequence xe J^00 

such that )> = w (x ,«! , . . . , «r)- Hence, there is a fixed program px which, given n, n l 5 . . . 



...,nr,y\n\ and v\n\, computes x\n\, another fixed program p2 computes the 
concatenation y\n\ * v\n\ given n, nu ...,nr and x\n\. So 

(29) |K£/W(x[n]| n, nu ..., nr) - Kum(y[n\ * v\n\ \n, nu ..., nr)\ < const 

(different pairs <.y[«], v\n\} yield different x\n\, so y\n\ and v\n\ can be effectively 
computed from x\n\, n, nu ..., nr). We may embed stf into 3& by identifying, say, 
each aj with the first bk to which cij corresponds by factorization. So we may take, 

due to (25), such a v e X A,- that for all n eJf, 
i = l 

(30) Kow(v\n\ | y\n\) > log,,, ( f[ nf) - f(n) , 
i = l 

where f(n) is an appropriate o(w)-function. 

Let qx be the shortest program which generates y\n\ (in fact, qt is P0(y[«]) up 
to g(n) where g(n) is an o'n)-function with respect to which y is a PIID-sequence). 
So qy can be taken as the r-adic number of y\n\ in the set of all rc-tuples which 
are possible initial segments of a PIID-sequence with respect to the given g(n), 
n, nu ..., nr. Let q2 be the shortest program which generates v\n\ given y\n\, nu ... 
..., «,., again, q2 can be taken as the m-adic number of the 2n-tuple y\n\ * v\n\ 

in the set of all 2n-tuples such that y\n\ is given and v\n\ e X Aj- Different y\n\ * 

* u[n]'s yield different x[n]'s, different <o1, q2}'s yield different y\n\ * v\n\'s, 
hence, the shortest program for x\n\ cannot be shorter than l(qt * q2) = l(qt) + 
+ l(q2) (up to an o(ra)-function). However, the same argumentation as used in the 
proof of Theorem 1 shows, that qt * q2 cannot be encoded, in &, by a sequence 
shorter than n — f'(n), if (30) holds, for an appropriate f'(n) e o(n). Combining 
this result with (29) we obtain that x is absolutely random and the theorem is proved. 

• 
As the limit probabilities of frequences of letters in strictly PIID-sequences corre

spond to ratios of nt and finite cardinality m of the basic alphabet 3d, only rational 
PIID-sequences can be obtained by factorization of absolutely random sequences 
from ^°°. Let (pu ..., pr} be any probability distribution including those with 
irrational p;'s, let Cp be the set of all sequences from .s/00 which are PIID-sequences 
with limit values of relative frequencies of letters corresponding to <p1( . . . ,p r>, 
let pr(pu ..., pr, •) be the probability measure defined in the same way as pr(nu ... 
..., nr, •), but with ntjm replaced by p(. The well-known assertion of information 
theory and coding theory then enables to prove that pr(pu ..., pr, Cp) = 1, hence, 
the set Cp is non-empty so that there exist non-rational and, consequently, non-
strictly PUD sequences. 

The following theorems shows that even a slight weakening of the notion of PIID-
sequence admits also sequences not satisfying the limit assertion (23) of Theorem 3 
for relative frequencies of blocks of letters. Let c < 1 be given, a sequence y e j ^ 0 0 



is called a c-PIID-sequence, if for all n e Jf 

(31) * W * M I») = c • W»])) • 
Theorem 5. For each si = {aua2, ...,ar}, r ^ 2, each probability distribution 

<p1; ..., pr>, each c < 1 and each e > 0 there exist <p*,. . . , p*> and a c-PIID-
sequence x = xux2, ...,e stf00 such that 

(i) p*>0, iSr, } > * = 1 , 
i = l 

(ii) max {\p{ — p*\: i < r} < e , 
(iii) l im j r (a ,x[n] ) = p*, ; < r , 

(iv) there exist keJ/"+ and u e / such that fr(u, B(k, x) [n]) = 0 for all neJf 

(i.e., a does not occur in B(k, x)). 

Proof. Evidently, given a probability distribution (pu ..., pr} and e > 0, there 

always exist positive integers nu ..., nreJ/~+ such that, for m = £ «,, max {|p; — 
; = i 

— (n ;/m)|: i < r} < e, set p* = n;/m. Consider the sets 0&k = Q(knu ..., knr), 
keJf + , of all fern-tuples with /cn; occurrences of a, for all i g r. Let y = yu y2,... 
...e !Mk be an absolutely random sequence over the new alphabet 3Sk, let z = zuz2,.. 
... be the sequence y taken as a sequence over the original alphabet s£. So B(km, z) = 
= y, and each B(km, z) (n) = y„ contains at least fe occurrences of each aj (all n ; 

are positive). Hence, if e.g. a e (J (.s/ — {a,-})*"", then 5(fem, z) + a, so that 
J = I 

/r(a, B(km, z) [n]) = 0 for all n e^T. Clearly, fr(aj, y„) = jr(aj-, <Z(„_1)/im+1, ••• 
..., znkm}) = «i/m = pf due to the definition of y„ as a sequence from Q(knu ..., knr), 
so that (iii) holds. The only we have to prove is that for each c < 1 there exist keJ/" + 

such that z = z(k) is a c-PIID-sequence. 
The sequence y e 38™ is absolutely random, so that for each n and an o(n)-function 

/(»). 
(32) i ^ > [ n ] | n ) ^ n - j ( « ) 

with respect to the alphabet <Mk. If qe3S* is the shortest program such that 
U(lMk) (q, n) = y[n\ and lmk(q) — n — j(n), then a cannot be encoded in the 
original alphabet .a/ by a sequence shorter than 

(33) (n - /(»)) (log. |B t | | + g,(fi)) + a2(«) 

for appropriate gt(n), g2(n) e o(n). But 

(34) logr | |B t | = logr IQ(knu ..., knr)\\ = mkHr(p*,..., p*) - h(mk) , 

h(n)eo(n), so that, given c < 1, we may choose keJ/~+ such that q cannot be 
encoded in S%k by a sequence shorter than e'(n — f(n)) Hr(p*,..., p*) for a c' < 1, 
but c' > c. Given n eJf, the algorithmic complexity of z\n\ may differ from the 
algorithmic complexity of z[n'] , where n' — n is the smallest integer divisible by km, 
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at most, by a value independent of n (z„+1, zn+2,..., z„, are joined to z[n\ and 
n' - n < km). But z[n'~\ = y[n"~\ for n" = n'jkm. Combining these results we 
obtain that z(k) is a c'-PIID-sequence, hence, it is also a c-PIID-sequence as c' > c. 
The theorem is proved. D 

5. CONCLUSIVE REMARKS 

The model explained in this paper is of purely mathematical nature and forms 
a theoretical background and limitation for models more close to practical use. 
The theoretical ineffectiveness of the present model goes in two directions: 

(1) The notions of absolute random sequence and PIID-sequence are of asymptotic 
nature, as they are defined up to an o(n)-function. Hence, each finite sequence can be 
an initial segment of an absolute random or PIID-sequence and no definite conclu
sions about the absolute randomness or PIID-property of infinite sequences can be 
taken on the grounds of their initial segments. On the other hand, such an asymptotic 
conception makes the definitions independent of a particular choose of the universal 
Turing machine U (algorithmic complexities defined w.r. to two universal Turing 
machines Uu U2 differ only by an additive constant which depends only on Uu U2, 
and such a difference is irrelevant from the point of view, how the classes of absolute 
random sequences and PIID-sequences are defined). The asymptotic feature of this 
conception may be eliminated by giving a fixed universal Turing machine U and 
a. fixed o(w)-function/: Jf -* J/", but even in this case it would be interesting to know, 
which properties of the defined notions are independent of the chosen parameters 
and it is just what we tried to investigate here. From a point of view the asymptotic 
notions defined here can be seen as analogies of those statements of classical prob
ability theory which are asymptotically valid "almost surely" or "with the probability 
one", but it would deserve a more detailed consideration to find how far this analogy 
goes. Some philosophical remarks concerning the classical "almost surely" valid 
statements can be found in [2], Chapter 4. 

(2) Even with U and / fixed the notions still remain to be ineffective because of 
the fact that they are defined through an effectively non-computable function Kv(x\ S). 
This difficulty can be partially eliminated when replacing U by a less efficient com
putational device (by a partial recursive function, formally said) ¥ such that Kv(x | S) 
is computable. An intuitively reasonable example of this approach consists in taking 
into considerations only such programs p which compute, given S, the desired 
sequence x within a priori given time and space limitations (in non-trivial cases these 
limitations may depend on x through, say, l(x), cf. [4]). 

On the other hand, the twofold idealization (or abstraction) connected with the 
model presented here enables to pick out the basic methodological feature of this 
model which can be easily extended to algorithmical-complexity-based models of more 
complicated notions of classical probability (e.g. Markov chains). Defining a notion 
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conceived, as it is the rule in classical probability theory, as a property of a generator 
which produces random outputs, we must always suppose that this property is pro
jected, somehow, into the combinatorial properties of the output sequence (in the 
opposite case this property would be of purely metaphysical nature with no possibility 
to test it on the ground of the observed outputs). Now, the combinatorial (algo
rithmic-complexity based) alternative of the notion in question can be defined by 
the set of infinite output sequences for which the corresponding combinatorial 
property represents the shortest way how to define them (the only combinatorial 
property binding the realizations of classical i.i.d. sequences is the asymptotic sta
bility of relative frequences of particular letters and it is just the property from 
which the definition of PIID-sequences takes profit). Again, a more detailed formula
tion and investigation of this methodological principle would deserve some effort. 
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