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INFLUENCE OF CONTAMINATION LEVEL DEVIATIONS
ON THE TEST ERROR PROBABILITIES

JAN AMOS VISEK

Limits of the ratio of the worst possible deviations of the most powerful test error probabilitics
with respect to the deviations of the contamination level parameters in Rieder’s model of con-
taminacy are given for the finite sample size under weak regularity conditions on the deviations
of contamination parameters. Asymptotic approximation of these limits in the local alternative
set-up is presented, too.

1. INTRODUCTION

Recently a few attempts were performed to modify Hampel’s influence curve
idea for the hypotheses testing purposes (see [ 1], [2], [6] and [8]). Derived results
may serve as characteristics of the sensitivity of the test risk with respect to the
“throwing in” an extra datum into the sample, but they did not give, without a more
detailed analysis, any hint at the solution of the problem of the test risk behaviour
under small deviations of the contamination level parameters. This problem was
for the first time attacked in [9] for Huber’s model of contaminacy. In present
paper Rieder’s model of contaminacy is considered. Let us explain the problem
in more details.

Having estimated contamination level parameters of given model of contaminacy
one may find a least favourable pair of distributions, if any, and construct a test
based on its likelihood ratio (i.e. one establishes the most powerful test). Now it is
of interest to know what are the worst possible deviations in the error probabilities
of this test in the case that the estimation of the contamination level parameters
was wrong. This problem was solved by an infinitesimal approach which enabled
to derive formulae for the size and power dependency, defined as the derivatives
of the size and power of the (ﬁxed, above mentioned) test with respect to the con-
tamination parameters. Then asymptotic approximation of these formulae in the
local alternative setting was found (for more extended discussion of the results of
this type the reader is recommended to consult the last section of [8]).
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2. NOTATIONS

Let NV denote the set of all positive integers and R the real line being endowed
by the Borel g-algebra #. Let (', o) be a measurable space and ./ the class of all
probability measures on it. Let for every neN and i = 0,1 P,,e #, Py, + P,,
and let p;, denote a density of P,, with reqpect to a o-finite measure u. Let us recall
Rieder’s model of contaminacy. For ¢;,, = 0, 6;, = 0, 0 < ¢, + J;,, < | put

‘/m(f‘m’ lll) - tQ (:'/f/ Q(B) = (l - {m> Pln(B) ”1 for a” Be Q{)
Definition 1. Let Q;, € 2, (¢;,, 6,,) be such that for 7, € dQ,,/dQ,, we have

Q()n(nn > 1) = SUp {Ql(nn > t): Q, € ‘0}0:1(8017’ 50")}
and
an(ﬂ.'” > t) = inf{Q"(ﬂ'” > Z): ! € ‘/ﬂln(glm 51)1)}
for all 1€(0, ). Then (Qo,, Q1,)> if any, is called the least favourable pair {LFP)

for (Po,(€om Oon)s Z1aE1m O14))-

One of possible solutions of the LFP problem for the above recalled model of
contaminacy may be described by the densities g, and gy, {with respect to ) of
Qo, and Q,, respectively (see [4]):

Let 4,edP,,/dP,, and Ay, and 4,, be solutions of equations

(1) AOHPOH(AII < Ao,,) - Pln(An < AOH) = Vi + COOHAO/:
and

(2) P1”<A1” < An) - A]"POH{AIH < An) = VOnAln + Wiy,
where v;, = (1 — g,)" ' (&, + 04) and w;, = 6,(1 — ;)" '. Then

q 1 —s
S max 1A0"’ min 1A1n Aln}} QOn + an a.e.

qon I — Eon
and

- 80” (vlnpOn + wOnPln) on {An < AOII} ?

Vin + wOHAOII
qon = ( - 8011) Pon on {AOII é An § Aln} )

1 — 80" (a)lnpOn }" \0:1171,;) on {,Al" < A"} :

‘OnAln + @y

To avoid the degenerated case Qon = @y, a.e. let us assume hereafter 4,, < 4,,.
Hence the most powerful test for testing H,: Pe 2,,(¢o, o,) against A,: Pe
€ 2,,(¢,,, 61,) for a sample of size M May be based on the statistics

n

TulX) = YIC(x),

i=1

where x € Z* and IC,(x) = log {q1.(x)/ [do.(x)}. Let us call a test @, based on T, ,
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LFP(g,, €1pr Oo» 01,)-test. Moreover it follows that

QOH(A < AOI! = (1 - 80/1) POn(A < AOH) - 5011 ’
(3) QOH(AIII ~ An) = (l 8On) POu Aln < An) + Eon + 5071 >
an(An < AOIY) = (} - Hlu) Pln An < AOn) + E1n + (sln 4

and
an\A < A ) - (l - 81:1) Pln(\Aln < An)

In

(see (5.10), (5.14), (5.15) and (5.16) in [4]).

ln

3. SENSITIVITY OF LFP-TEST WITH RESPECT TO PARAMETERS
OF MODEL OF CONTAMINACY

Let us firstly explain the problem attacked in this scction. Having prescribed
contamination level to be given by the quadruple (&g, &, Oop 01,) We can find
LEP {0, &1, Ou» 01,)-test then we would like to study the worst possible beha-
viour of the LFP (eq,,, €1, o, 01,)-test under another quadruple (2, £, g, 04,)- To
cope with the problem we may try to find LFP of distributions for

LEP (0,5 &1, Ogus 0y,)-test with respect to (2, (o, d0u)s 21 E vy 51,,))

(definition see below) and then use an infinitesimal approach to establish a characteris-
tics of sensitivity of the test risk with respect to changes of contamination level.
Now, let us give the promised definition.

Definition 2. Let Qi € 2,(&,, ,,), &, =2 0,5, 20, 0 < &, + 4, < I, be such

th

that for every t € R we have

Q(I)E(Icn(x\) > [) = SUp ‘{.Q,(IC”{X) > t) Ql € t@Gn{,gOn’ 50”)}
and
QIIC,(x) > 1) = inf {Q"(IC,(x) > 1): Q" € 2,(E,, 01,)} .

Then (Qf%, O15), if any, is called the least favourable pair for IC,(x)(LFP;¢) with
regpeCt to (g0n(80n, 50n) ln(gln’ 51:1))

Remark 1. In the Definition 1 we have required ¢;, = 0,6;, =2 0,0 < ¢;, + 6, < 1
which implies v;, > 0 and w,, = 0. Since 4,, = 0 by (1) it implies

(4) P4, < 4,,) >0
and hence 4,, > 0. Rewriting (2) as

(1 —&p,) Pdy, < 4,) = 610 = A1,(1 — &1,) {Pofdy, < 4,) + vo,)}
and taking into account 4,, > 4,, > 0 one obtains

(5) (l - 8ln> Pln(\Aln < An) — 5111 > 0 .
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On the other hand
. P2 (1 — &) {Pf4, S 4,,) + P4, < 4)) + &,
and hence (see (5))
P> = {1 —&,) P4, £ 4,) =6, 2 (1 = &,,) P4, < doy) + &1, + 8y, -
But then thereisa d,, > J,, such that

(l - 8111) Pln(Au § AOn) + &y, + 51" <1 ’
i.e.
811:(1 P]n(An = On)) < l - Pln(An é AOn) - 51"

and therefore there is a &, > &,, such that
&l = P4, £ 40,)) <1 — P4, £ 4,,) = 8,,,
ie.
(6) 8+ 0 < L= (1 = &,) P4, < 4,,) .
Likewise it i1s possible to arrive at
(7) P.(4,, < 4,)>0
and find &,, > ¢, and J,, > J,, such that
(8) (1 = &,) Po(dy, £ 4,) + & + S0, < 1.
The following lemma gives the form of the least favourable pair under the conditions

entitled by (5)—(8).

Lemma 1. Let {‘m é Eln’ 51” = Sun ‘SOM -+ 5011 <1 - (1 - gOn) POn(Aln < An)’
Eyn + 01y < (1 = &1,) P4, < 40,), 60, < {1 — &,) Pos(4, < 4o,) and §;, <
< (1 - al,,) Pl,,Al,, < 4,). For any 4, Be & put

wiB)=1 for AnB+0,

= 0 otherwise .
Define for Be <7

1(B) = (1 = 50)) PodfAy £ 40,) = S0} wis, 20l B) +
+ (] - 50") POH(B m {AOn < Ail < Al"}) +

-+ {(1 - gOn.) POu(Aln g An) + 50'1 + 50"} W{Amédn}(B)
and
{ﬁ(B) = {(1 - gln) Pln(An = AOH) -+ gln + gln} W{Ané.’lo,x}(B) +

+ (1 = &,) P (Bn{dy, < 4,<A4,})+
+ {(l - 51”) Pln(Alll é An) - 51”} “){AméAn}(B)
Then (Q[5., 0€) is the LFP ¢ with respect to (2,(Eon S0n)> 2 1a(Eim O14))-
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Proof. It is evident that QIf € 2,,(Z,,, 3,,). Let us denote

m

1 —¢
9 Fin = lo — Aiu .
( ) s {1 — o, }

Then for any Q) € P,(Eom d0,) We have
OIC(x) € [romry,]) =1
and hence we may restrict ourselves on 1€ (rg,, ry,). But for every te(rg, ry,)
we have {IC,(x) > 1} n {4y, £ 4,} + 0 which yields
onIC(x) > 1) Z QIC,(x) > 1).
The proof for i = 1 is similar (compare Lemma 1 of [9]). O

Remark 2. Tt was shown in Lemma 2 of [9] that LFP,  with respect to
(PE™ Eom Son)s P ol (81 014)) (P®™ denotes the set of product probability mea-
sures on (2™, /™) generated by 2) consists of ((Q05)®", (Q15)®™). Therefore the
following formula for (Qjs)®™ will be useful.

Lemma 2. For any B € ., put

0.(B) = (1 — &,) Pi{B {4y, < 4, < 4,,})
and denote
= QIr(IC,(x) = ry,)
and
Uin = QIc(IC(x) = ry,) .
Then for any f € (-0, oo} and x €

m m~—j
(QIC ®m (X) > [) - Z <m> Z mk )U Uk ~m(m Jj— A)( " - A”(X) >

i=o \J / ¥=o
>t — jrom — kFy,),
where 05°%(4) = 1forall A = .
The proof is similar to the proof of Assertion 1 of [8] and will be omitted.

According to the outline given above we shall try to establish
lim (gin + Sin — &y — 51'11)_1 {(Q{f)@n (T;x,n(x> > t) - .62"(Tn n(\() > t)} ’
Bin—8in+,0in0in+
once we have found (QI)®" (T, (x) > ). We shall work with the following model

of contaminacy; a convenience of this model will be apparent from the context
below.

Assumptions AS 1. Let &, = ¢, + &(t, n)and &;, = &, + {(t, n) where &;: [0, a0) x
x N - [0, 1], {;: [0, ) x N — [0, 1] are mappings which have right derivatives
at T = 0 (denoted by 9/dt £(0, n), and 9[ot £(0,n), respectively), and are non-
decreasing in t and satisfy &0, n) = 0 and {0, n) = 0, respectively, for all n e N.
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Definition 3. Denote

SD(t, n) = lim v~ "{(QLS)®" (T, ..(x) > 1) — QSNT, (x) > 1)}

On
=04+

and
PD(t, n) = lim r“{(Q’lﬁ‘)(@” (T,,,,,(x) > 1) — QPN(T, Ax) > 1)}

]n
=04

forieR and n = N.

These limits, if exist, will be called the dependency of the size and of the power

of test on the changes of the contamination level, respectively, or briefly size and
power dependency.

Theorem 1. Let Assumptions AS 1 be fulfilled. Then
(10) SD(1, n) = —n{(1 — &y,) " (9]07) &0, n) Q((?j," (T, ,,(x) > 1) +
+ [@0,(007) £(0, ) + (9]07) L6(0, )] Q& ™ HThoy ) > t = 7o,) —
*K1+WMMMﬂ%®u0+(MﬂC®"ﬂQW‘ nealX) > €= ry))

and

(11) PD{t, n) = —n{(1 — &,,) 7" (8/07) &,(0, n) QT (x) > 1) +
+ [0/t £,(0, n) + (0ot £,(0, n)] YT, _, n(x) >t — ry,) —

in

— (1 + vy,) (9]07) £(0, n) + (8]7) L4(0, )] QT Too 1 Wlx) >t — ro,)}
(for r,, see (9)).

Remark 3. Notice that for §;, = 0 and {{(t,n) = 0 (i = 0, I) the relation (10)
and (11) turn into (4) and (5) of [9]. (10) and (11), though seemingly complicated
allow a simple asymptotic approximation in the local alternative set-up (see Corrollary

1).
Proof of Theorem 1. Let us denote
MOn = QOk(ICn(x) = r()n) ’

VOn = QOk(Icn<x) = 7‘1,,)
and for any Be &/

Oon(B) = (1 — £,) Pou(B 0 {dow < 4, < 44,}).
Then we have (compare Lemma 2) for m,ne Nand xe Z”,ie R
on'(Twalx) > 1) =
& (m\ " (m = ik (m—j—k) k
= Z Z k My, VOnQO (Tm i- kn(x) >0 — jro, — rlm))

k=0
and
Loy = Mo, — A1, 1),
and
UOn = VOn + %(T’ n)
where
(12) Az, n) = &1, n) Po,(4, = Agy) + LolT, 1)
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and

(13) #(t, n) = &1, n) [1 — Pou(dy, < 4,)] + Lo(t, n) .

Moreover

QOM = (1 - l/I<T3 n)) QOn 3
where
(]4) l//(’C, ”) = (I - 8071)VI é,’(‘f, n) .

Now for fixed j and k write

m\,. [m—]j ~m— .
<j>LJ0n< k j) U?)n 81 ! k(‘Tm—j—k,n(x> >t~ Jron — krln) -

- (] ) M{)"< k J) V(;cnA(C))gp:"_jw,\'(Tm—j~k,n(x) >t — ern - krln) =

~ M{[(Von + t, n)) — VETOSm I (T, s h(X) >t — jro, — kry,) —
- M{)nVokn[Q(?,:nﬂ_k(T m—j—k, n(x) >t = jrop — k"1n) -
— QG I M j—anlX) > 1 — jro, — kry)]} .
A straightforward computation gives

lim L [(Mqy = Az, n)Y — M3 US Q"I K (T (%) > 1 — jron — krys) =

=04 T
= —j 5‘2 N0, n) MMV OO M (T join(X) > t = jro, — kry,),
hm E M{)n[(VOk + X(T’ n))k - V(;n) Q®m - k( m*j—k,n(x) >1— .ern - krln) =
=04 T
= k —aa_ %(O n) ]‘4VOMI/(§(11_1 A(?nm_j—k(’]-;c—j‘k,n(x) >t - ern - krlu)
and

lim MV (B8 H(Ty o X) > 1 = Jroy — ki)

=04 T
- Q(?;’l-j—k(Tm—j—k,n(x) >t = jr0n - krln)] =
=—(m—j— k)g- Y(0, n) My, Ve, 08m I M s jop u(X) > 1 = jro, — kry,) .
T

So one obtains

im 2§ ('7) h ( - f) [(Mo, — X5, m)) — Mj,].

UI(‘)n ®"m - k(Tm—j—k,n(x) >t - ern - krln) =
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m—1 . m—1-j —
_ m—l(O n)Z(m 1) 5 (m kl )M{)nV(;\n @m=i=H(T, | (x)> 1t~

k=0

- Yow — jro, — kry,) = — mf— M0, n) Q&M T,— 1 (%) > 1 — ro,)
T

and likewise

li L& (m\"S (m — j\ ; k X A®m—j- k
m - Z . Z k MOn[(VOn + %(Ta n)) VOn] Q T, j—k,n x) >1-=

=04+ Tj=0 J k=0

- ern - kr]n) =

=m 9 20, n) O (T 1 (X)) >t — ry,)

T

Finally

L2\ =\ |
lim — Z (]) Z ( k J) Méann[QO(aum / k(T;n—j—k.n(x) >t — Jroy — krln) -

1504 T j=0 K=0
— QO I (T s X) > t — jro, — kry)] =
= (0,1 {QG(Trx) > 1) = Mou Q8™ (Tu 1) > 1 = 1)) =
= Vou Q5 (T 1) > t = 1)} -
Taking into account that (see (3), (12), (13) and (14))

0 0 0
— A0, n) = — 60(0, n) PO,,(A,, < Ao,) + — o0, n) ,
ot 0t ot

9o, my = L ey(0, m[1 = Por(ds < 4))] o Z (0, n),
ot ot

9w&@=(fw’—%0@

ot

0 0
MOn - lp(oa i’I) = 50(0’ l’l) {P0n<An é AOn) - (00"}
ot ot

and

0 0 .
VOn - ‘//(07 n) = 50(0’ n) {POn(A in é An) + v()n} s
ot ot

one concludes the proof of the first assertion of Theorem 1.
The proof of the second one may be performed in a similar way. O

Now we would like to derive asymptotic approximations for (10) and (11).
For some h > 0 let {P,: |0] < h} denote a one-real-parameter family in . and
parameters ¢;, 0; € [0, 1) be given so that 0 < ¢; + 8, < 1,i = 0, 1. Foreach ne N
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and i = 0,1 put
hy=h.n"'2, ¢ =¢en V2 § =386n""%,

1144 t

Py, = P—h,,’ P1n:Ph,.-

Further we shall assume that the family {P,: |0| < h} and parameters ¢; and §,

fulfil the following regularity conditions (see [5]).

Assumptions AS 2. Let P, < P, for all ]9[ < h and denote a suitable version
of dP,/dP, by p,. Let py(x) be twice differentiable in 0 for all x € 2" and put A(x) =

= 0/00 [log py(x)]s-o. Further let

Pl 1\ 1
0< lim-{(L-g—*) dpP, = if/l?(x) dP, < o

00

and ¢y + 0 + 0; < f(2h A(x) — &y + &))" dPy,

where (/(x))* = max {l(x), 0}. Finally, let there be f e Z'(P,) such that

2

T ()

v < f(x)

sup
10]<h

forall xe Z.

Lemma 4. (Rieder). Put d,, = (2h)"' n'?r, and L/(x) = (2h)""' n'?/C(x).

Then under the Assumptions AS 2
limd;, =d; and limL/(x) = L(x) forall xeXZ

n—+ow n—oo

where d; are the unique solution of the equations

j(do — A(x))* dPy = (2h)" ' (g, + 8y + 3y)
and

J.(/l(x) — dy)* dPy = (2h) "' (g9 + o + 6y)

and
L(x) = max {d,, min {A(x),d;}} — (2h)"" (&, — &) -

Denote E, I*(x) = ¢, then

limE,, T, ,(x) = —2h%c*,
limE,, T,.(x)= 2h%*

and

varg, T,.(x) = vary, {n'?IC,(x)} = 4h%¢® + O(n™'7?).

For the proof see [ 5], Theorem 4.1 and its proof.

Let hereafter ¢ and ¢ denote the standard normal distribution and its density
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with respect to Lebesque measure, respectively. Further let v,(r) denote the charac-
teristic function of IC,(x) with respect to P, and o, = var,, {n'/2IC,(x)}.

Lemma 5 (Petrov, Edgeworth). Let us denote p,, = E, T, .(x) and Ilet
lim sup lim sup [v,,(t)l < 1. Then under Assumptions AS 2 we have for any te R

n—rw [HREE
and z; = (1 — ;) 05,
2T, (x) 1) — (z;) + n V2 R(z)) = o(n~/?),

m

1

where v
2
R(u) = (2n) "> exp {— %} (4813®) ™1 y(u? — 1)

and y is the third cumulant of 2k L(x) with respect to Py,

Proof. Due to uniform (with respect to ne V) boundedness of n'/? IC,(x) the proof
follows directly from Theorem 1, Chapter VI, § 3 of [3] (sece Lemma 4 of this paper
and also Lemma 2 and Corollary | of [8] and compare also [7]). In what follows
let us put for a € (0, 1)

tn) = inf {1e R: OFNT, .(x) > 1) < o . O

Corollary 1. Let Assumptions AS 1 and AS 2 be fulfilled. Then

SD(1,(n), n) = n'? . {(8]07) £0(0, n) (1 — &,) "' [dy + ho®] +

+ (o,{3]07) £4(0, n) + (8]0T) Lo(0, 1)) (dy — do)} - {@(u,) . ™' + o(1)}
and
PD(t(n), n) = n'/2.{0/07) £,(0, n) (1 — &,,)" " [do — ha®] +

+ (,,(0]07) (0, n) + (08]a7) £,(0, n)) (do — dy)} - {@(ux — 2ha) 671 + o(1)} .
Proof. Put zo(x, n) = (1{n) — Hou—1) Gon—1. From Lemma 4 and Lemma §

it follows that
(15) zo{o, 1) = u, + O(n~'?).
Due to the equality

L+ vo, = (1 = go,) 1 (1 + o,)

we may write (10) in the form
SD{t, n) = —n{l — &,,)" ! {(8]dc) £o(0, n) [QSHT,. (%) > 1) — O N T, - ,(x) >
>t = )] + (80,(0/07) Eo(0, n) + (1 = &0,) (8/7) {o(0, n)) .
O8I T (T %) > £ = rou) = Q6 (To-1alX) > 1 = 1)1} -
From the preceding lemma we have
08I (T, 1) > () = ron) = Q& (Tae1x) > 1) = 71,) =
= D(zo(at, 1) — o' Ton) — P(Z0(25 n) — 0o, r1,) —
n~ Y2 [R(zo(a, n) — ag, Yon) — R(zo{, n) — OonFin)] + o(n™1?) =
= @(vo{2t, 1)) [Fow — T1a) (2h0)™" + o(n'?),
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where vo(a, n) € (22, 1) = a5, ry, . zo(a, n) — 65,'r0,) and the facts that

(16) lim n'3(ry, — ry,) = 2h(d, — d,)

and
lim gy, = 2ho

n—>o0

(which follow from Lemma 4) was taken into account. Now f{rom (15) and (16)
one derives that

vola, n) = u, + O(n~'/?)
and hence
nllz[Q(?x:l-_l(rl—l,ru<):) > Ia(n) - rOn) Q?ﬂ"'l( n—1 u ‘ > ,(n> - rln)] =
= ¢(u,) 0" (dy — dy) + 0(1).
The difference
(G)on” n,n \) > I VI)) - (Q)Y)r:,_l(’r;rﬂl,n(x) > tac(”) - rln)

may be attacked in the similar way (it needs more technicalities but the idea is the
same — see the proof of Corollary 1 in [8] and note that E, T,_, (x) = (n — 1).
.n" '), We obtain

llz[Q On n NiiNe ) > ta(n)) - 89’1.'1—1(7—;'_1'”()(:) > t H) rln)] -
= o(u,) 67 'd; + o(1),

which concludes the proof of the first assertion of corollary. The proof of the second
one may be performed likewise. 0

Remark 4. The results of the corollary imply that to keep the size and power
dependency bounded uniformly with respect to the sample size it requires

Sl

£{0,n) = O(n™'"?) and :j-g,.(o, n) = O{n 1%,
T

(For the more detailed discussion of these equalities see the last section of [8].)
On the other hand it is evident that the results presented in Theorem 1, although
they are a little complicated, are (together with a numerical approximation method)
much more useful for creating an idea about the sensitivity of the LFP-test with
respect to failing estimation of the contamination level than those of Corollary 1
because of the numerical unreliability of the approximation formulae derived in the
local alternative set-up (see also [7]).

(Received April 19, 1985.)
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