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INFLUENCE OF CONTAMINATION LEVEL DEVIATIONS 
ON THE TEST ERROR PROBABILITIES 

JAN ÁMOS VÍŠEK 

Limits of the ratio of the worst possible deviations of the most powerful test error probabilities 
with respect to the deviations of the contamination level parameters in Rieder's model of con-
taminacy are given for the finite sample size under weak regularity conditions on the deviations 
of contamination parameters. Asymptotic approximation of these limits in the local alternative 
set-up is presented, too. 

1. INTRODUCTION 

Recently a few attempts were performed to modify Hampel's influence curve 
idea for the hypotheses testing purposes (see [1], [2], [6] and [8]). Derived results 
may serve as characteristics of the sensitivity of the test risk with respect to the 
"throwing in" an extra datum into the sample, but they did not give, without a more 
detailed analysis, any hint at the solution of the problem of the test risk behaviour 
under small deviations of the contamination level parameters. This problem was 
for the first time attacked in [9] for Huber's model of contaminacy. In present 
paper Rieder's model of contaminacy is considered. Let us explain the problem 
in more details. 

Having estimated contamination level parameters of given model of contaminacy 
one may find a least favourable pair of distributions, if any, and construct a test 
based on its likelihood ratio (i.e. one establishes the most powerful test). Now it is 
of interest to know what are the worst possible deviations in the error probabilities 
of this test in the case that the estimation of the contamination level parameters 
was wrong. This problem was solved by an infinitesimal approach which enabled 
to derive formulae for the size and power dependency, defined as the derivatives 
of the size and power of the (fixed, above mentioned) test with respect to the con
tamination parameters. Then asymptotic approximation of these formulae in the 
local alternative setting was found (for more extended discussion of the results of 
this type the reader is recommended to consult the last section of [8]). 
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2. NOTATIONS 

Let N denote the set of all positive integers and R the real line being endowed 
by the Borel <r-algebra Sft. Let (X, stf) be a measurable space and Jt the class of all 
probability measures on it. Let for every neN and i = 0, 1 PineJt, P0n + Pin 

and let /?,•„ denote a density of P,„ with respect to a cr-finite measure /<. Let us recall 
Rieder's model of contaminacy. For ;;,„ > 0, <5,„ > 0, 0 < e,„ + <5,„ < 1 put 

-*.-(в.-, ðin) = {QєJt: Q(B) > (l - єiи) Pin(B) - ðin for all B є л > • 

Definition 1. Let Qin e 5Pin(ein, Sin) be such that for nn e do,0„/do ln we have 

oo,K > 0 = sup {Q'(n„ > 1): Q' e 0>On(eOn, S0„)} 
and 

Qm(nn > t) = inf {Q"(n„ > t): Q" e 0>ln(eln, <5lB)} 

for all te(0, oo). Then (Q0 n, oln), if any, is called the least favourable pair (LFP) 
for (0>On(eOn, <50„), 0>ln(eu, 6ln)). 

One of possible solutions of the LFP problem for the above recalled model of 
contaminacy may be described by the densities q0n and q_„ (with respect to n) of 
Q0n and 0_n, respectively (see [4]): 

Let An e dP1(,/dP0„ and zf0„ and zl ln be solutions of equations 

( 0 z10„P0„(z1„ < A0l) - P1/((zln < A0n) = vln + co0„z10„ 

and 
(2) Pm(dln < An) - A_„P0JAU, < A,) = v0nAln + CO],, , 

where v,-„ = (I - £,-„)"- (ein + 8in) and «,,.„ = <5,„(1 - ";„)"-. Then 

Ci_\n ___ \j2_ S ] " 

C\0n ' ~~ ''On 

and 

max {A0и, min {A„, Aln}} Q0n + ß l и a.e. 

On = i 

1 eo„ 
V l „ + tOoи^On 

( 1 — Є 0„) POn 

1 - є On 

~ (vuPon + co0иp lл) OП {ZІЯ < ZІQ,,} , 

on {z10„ < An < z1lи} , 

(a>i„Pon + v0 яp l и) on {/Jlя < zl,,} . 
vo„^i„ + <»i« 

To avoid the degenerated case Q0„ = Qu a.e. let us assume hereafter A0„ < Aln. 
Hence the most powerful test for testing Hn: Pe SP0„(e0n, <50„) against A„: P e 

e ^i„(fii,n <5i„) f° r a sample of size m may be based on the statistics 

T m » = £/C„(x/), 
i= 1 

where x e 9Cm and IC„(x) = log{qln(
x)lq0n(x)}. Let us call a test <t>„ based on T „ 
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LFP(e0n, £j„, (50„, <5ln)-test. Moreover it follows that 

QjAn < A0n) = (1 - £0„) PjAn < A J - S_ 

(3) Qo»(Aln < A„) = (1 - £0„) PjA]n < A„) + £0„ + .5 

Qi„(A„ < A J = (1 - £,„) Pln(An < A0n) + £„, + S 
and 

Q.jA,,, <zl„) = (l -eln)Pln(Aln <An) -S 

(see (5.10), (5.14), (5.15) and (5.16) in [4]). 

o„ 

i„ > 

3. SENSITIVITY OF LFP-TEST WITH RESPECT TO PARAMETERS 
OF MODEL OF CONTAMINACY 

Let us firstly explain the problem attacked in this section. Having prescribed 
contamination level to be given by the quadruple (e0„, £!„, 80n, Sln) we can find 
LFP (/:0„, eln, <50„, c^J-test then we would like to study the worst possible beha
viour of the LFP (E0„, £,„, (50„, c51„)-test under another quadruple (E0„, £ln, <50„, ^,„).To 
cope with the problem we may try to find LFP of distributions for 

LFP (e0„, eln, S0n, <5j„)-test with respect to (0>On(lOn, S0n), &>ln(&lm Sln)) 

(definition see below) and then use an infinitesimal approach to establish a characteris
tics of sensitivity of the test risk with respect to changes of contamination level. 
Now, let us give the promised definition. 

Definition 2. Let Qlc e 0>in(sin, Sin), £,„ ^ 0, Sin >, 0, 0 < e;„ + <5;„ < 1, be such 
that for every ( e S w e have 

Q0
c(ICn(x) > t) = sup {Q'(JCjx) >t):Q'e 0>On(eOm 80n)} 

and 
Qlc(ICn(x) >t) = M{Q"(ICn(x) > t): Q" e 0>ln(zlm Sln)} . 

Then (Q'0
C, Q\c), if any, is called the least favourable pair for ICn(x) (LFP/C) with 

respect to (^0„(fi0„, S0n), 0>ln(elm Sln)). 

Remark 1. In the Definition 1 we have required e,„ >- 0, <5,„ > 0, 0 < £,„ + 8ln < 1 
which implies v,„ > 0 and coin ^ 0. Since A0n ^ 0 by (1) it implies 

(4) PjAn < A J > 0 

and hence A0n > 0. Rewriting (2) as 

(1 " £i„) I\„(4„ < A„) - <5ln = Aln(l - eln) {P0n(Aln < An) + v0„} 

and taking into account Aln > A0n > 0 one obtains 

(5) (1 -sln)Pln(Aln<A„)-Sln>0. 
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On the other hand 

1 ^ ( 1 - BU) {PjAn < A0n) + Pln(Au < An)} + e„, 

and hence (see (5)) 

1 > 1 - [0 - BU) Pu(Aln < A„) - 8U} > (1 - eln) PJA„ < A0n) + eln + ,5ln . 

But then there is a <~,„ > <5ln.such that 

(1 - BU) Pln(An < A0n) + eu + 8U < 1 , 
i.e. 

fii„(l " Pi„(^„ < ^o„)) < 1 - Pj<An < ^o„) - ^i„ 

and therefore there is a eln > eln such that 

e,„(l - Pln(A„ < A0n)) < 1 - Pln(A„ < AQn) - 8in , 
ì . e . 

(6) ~„, + 8ln < 1 - (1 - ~j„) Pu(An < A0n) . 

Likewise it is possible to arrive at 

(v) PU(AU < *„) > o 

and find e0„ > fi0„ and <~0„ > <50„ such that 

(8) (1 - £~o„) Po„(^i„ = 4 ) + e~0n + «~0„ < 1 . 

The following lemma gives the form of the least favourable pair under the conditions 
entitled by (5)-(8). 

Lemma 1. Let e,„ < ",-„, 3in < <~,„, e0„ + <~0„ < 1 - (1 - e0„) P0n(Aln < A„), 

~i„ + <>i„ < (1 - ~i„) Pi„(^„ < ^o„), <5o„ < (1 - ~o„) Po„(4 < Ao„) a n d <>i„ < 
< (1 - £,„) Pln(Aln < A„). For any A, B e s4 put 

wx(B) = L for A n B + 0 , 

= 0 otherwise . 
Define for B e srf 

Q,C(B) = {(1 - ~s0,)P0n(An < A0n) - 80n} w{An^0n)(B) + 

+ (1 - ~o„) Po„(P n {zl0„ < A„ < Aln}) + 

{(1 - e0„) P0„(^i„ < 4,) + ~o„ + ^o„} w(zll„sj„}(5) IV 
and 

Q'lCn(B) = {(1 ~ ~ln) Pln(^„ <. ^o„) + ~1„ + $U,} *{An^oM + 

+ (1 - ~i„) P ln(P n {<40n < <d„ < J.,}) + 

+ {(1 - ~i„) Pi„(^i„ < A„) - Sln} w{,in^„}(B) • 

Then (Q0
C, Q,c) is the LFP/C with respect to (0>On(ZOn, ~80n), ̂ l n (~ l n , 5ln)). 
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Proof. It is evident that Q'in e ^ ,•„(£,,, <5,„). Let us denote 

(9) r,, = log l-"A - ei„ 

' £0„ 

Then for any Q'„ e ^0n(80n , <50„) we have 

Q'n(IC„(x) e [r0n, r,,,]) = 1 

and hence we may restrict ourselves on t e (r0n, r,„). But for every f e (r0n, r ln) 
we have {/C„(x) > /} n {/!,„ ^ J,,} + 0 which yields 

e0
C(ICH(x) >t)> Q'n(lC„(x) > t) . 

The proof for / = 1 is similar (compare Lemma I of [9]). • 

Remark 2. It was shown in Lemma 2 of [9] that LFP, with respect to 
(^on"%nJon),^tr(£inJi,))(^®m denotes the set of product "probability mea
sures on ($'", sSm) generated by &) consists of ((Q^)®'", (Q u,)®'"). Therefore the 
following formula for (e!,c)®m will be useful. 

Lemma 2. For any B e sf, put 

Qin(B) = (1 - gin) Pin(B n {A0n < A„ < Aln}) 
and denote 

U„ = Q\n(ICn(x) = r0„) 
and 

Uim = Q\c„(lCn(x) = r ln) . 

Then for any t e (— oo, GO) and x e $-co 

(Q^r\TmjyX) > t) = i (y\ Y m iJ) ^^er^'t^^-^w > 
> t — jr0m — krln), 

where Qfn°(A) = 1 for all A = s4. 

The proof is similar to the proof of Assertion 1 of [8] and will be omitted. 

According to the outline given above we shall try to establish 

lim (sin + Sin - £„ - 5J-1 {(Q%)®" (T„,„(x) > t) - Qfn"(T„Jx) > t)}, 
5 ,n -*« in+ ,Sin~>Sin + 

once we have found (Q1^)®" (Tn„(x) > t). We shall work with the following model 
of contaminacy; a convenience of this model will be apparent from the context 
below. 

Assumptions AS 1. Let e;„ = e;„ + £ ;(T, n) and Sin = din + £;(T, n) where £;: [0, oo) x 
x N -» [0, 1], C;: [0, oo) x N -* [0, 1] are mappings which have right derivatives 
at T = 0 (denoted by djdx £;(0, n), and djdx £;(0, n), respectively), and are non-
decreasing in T and satisfy £;(0, n) = 0 and £;(0, n) = 0, respectively, for all n e N. 
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Definition 3. Denote 

SD(t, n) = UmT~"{(Q'0
c
nf"(TnJx) > t) - Q®;(T„>n(x) > t)} 

T^0 + 

and 

PD(f, n) = hm T-1{(QiT" (IU*) > *) ~ Qt:iT„Jx) > t)} 
T^0 + 

for i e » and n = N. 
These limits, if exist, will be called the dependency of the size and of the power 

of test on the changes of the contamination level, respectively, or briefly size and 
power dependency. 

Theorem 1. Let Assumptions AS 1 be fulfilled. Then 

(10) SD(>, n) = -n{(l - e0„r' (8\dx) C0(0, n) Qo
0„"(T„,„(x) > t) + 

+ [co0n(d\dx) C0(0, n) + (d\dx) C0(0, nj\ Q?r\TB-xJx) > t - r0„) -

- [(1 + v0„) (d\dx) c0(0, n) + (_/3T) CO(0, n)] Q^^T,-!,„(*) > * ~ ri")} 
and 
(ii) pD(t,«) = -n{(i - f,lny (a/at) ^(o, B) Q?;(T„,„(X) > t) + 

+ [©..„(-/_- ^(0, n) + (a/ar) Ci(0, n)] Q f ; " 1 ^ - ! , ^ ) > « - rln) -

- [(1 + vln)(a/aT) £.(0, n) + (5/_T) CI(0, n)] QfrXT,-!,,,'*) > . - t-o„)} 
(for r,, see (9)). 

Remark 3. Notice that for bin = 0 and C.(T, n) = 0 (i = 0, 1) the relation (10) 
and (11) turn into (4) and (5) of [9]. (10) and (11), though seemingly complicated 
allow a simple asymptotic approximafion in the local alternative set-up (see Corrollary 

-)• 

Proof of Theorem 1. Let us denote 

M0„ = Qo*(IC„(x) = r0n) , 

V0n = Q0k(
[Cn(x) = ?-i-.) 

and for any B e s4 

Q0n(B) = (1 - s0n) P0n(B n {zl0n <A„< Aln}) . 

Then we have (compare Lemma 2) for m, n e N and x e ff00, i e R 

QT{{Tm,n(x) > t) = 

= 1 ( j ) Y ^ fe~
 7) ML VLQT-J-k) (Tm-,-M(x) > i - jr0n - krlm)) 

and 
I-o„ = M0„ - A(T, n) , 

and 
U0n = V0n + X(T, B) 

where 
(12) A(T, B) = €0(T, n) P0„(_ln :_ 40„) + Co(*, n) 
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and 

(13) *(-> ") = £O(T, n) [1 - P0„(^„ S A„)] + £_(-, n) . 
Moreover 

Qo„ = (1 - <A(T, «)) Q0„ , 
where 

(14) ^(T,n) = ( l - £ o „ ) ^ ^ . ( T , « ) . 

Now for fixed j and k write 

( 7 ) L o „ ( m " 3\uk
0nQ,tr3-k(Tm-j-U*) > t'jron - krln) -

- (J) MJ
0„(m ~ J ) " ^ " " ' " ^ - . - U * ) > f - jr0n - fc-_) = 

= ( 7 ) ( m " 7 ) (KMo« - % n)y - M0n] C/^er-^-fc(Tm_,_M(x) > f-;>0„ - fcrln) 

- M0„[(Y0n + «(t, n))* - Vk
n] QtrJ-k(Tm-i-kJx) > t-jr0n - krln) -

- MiXlQfrJ-k(Tm_j_kin(x) > t~jr0n - fcrln) -

_ QfrJ-\Tm.j.kJxx) > t - jr0n - krln)]} . 

A straightforward computation gives 

lim 1 [(M0, - Mr, n)y - M ' J ~IS-S?"~-'"-(~«-j-*..W > ' ~ J>o- ~ ^i») = 
T-+0+ T 

= - j i 2(0, n) Min'V
k
nQfrJ-k(Tm-j-kJx) > t - jr0„ - fcr_) , 

ox 

lim 1 M0„[(F0/C + x(x, n)f - Vk
n)QZm~J~k(Tm-j-k,n(x) > l - F0n - krln) = 

T - > 0 + T 

and 

= fcf x(0, n) MiX«TlQlm-J-k(Tk-j~k,n(x) > t - jr0n - fcr._) 
ÖT 

lim - M0X„ [ e o ^ ' - ' - ^ T n - , - , » > t -J>o„ - krln) -
T-+0 + T 

_ Q®rJ-*(Tm_j_kn(x) > < _ j r o _ _ fcriB)] _ 

. ( w _ _/ _ fc)£ ^(o, n) M"BY*,Ö?--•-*(Tm_J_„» > t - y>0„ - fcrln) 
ox 

So one obtains 

lim - t (") Y (m
 k

 j) í(M0n ~ %, n)У - M0И] . 
T-0+ X _=0 \J ) k = 0 \ K ) 

• Uk

0nQ$ГJ-k(Tm-j-k,n(x) > t - jr0n - krln) = 
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m-ì 
= — m — 

õъ *(M£(m
;-

 l)"s7(W * J)M»"^»:"J^-^>(-
t'o„ - jro„ - fer.,,) = - m ^ A(0, n) ^ ^ ( ^ ^ . „ ( x ) > t - r0n) 

ox 
and likewise 

ljm 1 - /m\ Y /m - AMo„[(V0„ + x(z, n)f - V*„] Sr^U^-*,„(*) > t -
T^O+ XJ = O\J J k = o \ k J 

— 7ro„ ~~ 'cri„j = 

= m f x(0, n) QfrX(Tm_1<n(x) > t - rln) . 
ox 

Finally 

l i m ~ £ ("XL (muj) MiX.[ f i? . " - y -*(T_- i -Ux) > ' - .fro. - ferln) -
T-»0+ T j = o\J J k=0 \ lc J 

_ e®-^-^(T_ ;_A. i, i(x) > t ~jr0n - krln)\ = 
r\ 

- m-i],(0,n){QZm(Tm,n(x) > t) - M0nQ®r\Tm_Un(x) > t - r0„) -
ox 

~ V0nQtr[(Tm-r,„(x)>t- '"in)} • 

Taking into account that (see (3), (12), (13) and (14)) 

~ MO, n) «- A {0(0, ») P0„(4 _ _ 0 B ) + | - Co(0, B) , 
OT OT OT 

~ *(0, «) = f £0(0, n) [I - P0„(_lH _ _„)] + i C,(0, n), 
OT OT OT 

^ ( 0 , n ) = (l -80-)-1-f-£0(0,n) , 
<7T <7T 

M0„ I- ^(0, B) = | . £0(0, n) {P0„(zl„ _ _0„) - co0„} 
OT OT 

and 

V0„ i <A(0, „) = I £0(0, ») {P0a(_ ln _ _„) + v0„} , 
OT OT 

one concludes the proof of the first assertion of Theorem 1. 
The proof of the second one may be performed in a similar way. • 

Now we would like to derive asymptotic approximations for (10) and (11). 
For some h > 0 let {P8: |0| _ h} denote a one-real-parameter family in Jt and 

parameters eh dt e [0, 1) be given so that 0 < et + 8t < 1, i = 0, 1. For each n e N 
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and i = 0, 1 put 

hn = h.n~1/2, eia = etn-1/2, din = 5itr
1/2, 

" o n = " - * „ ' " i n = "h„ • 

Further we shall assume that the family {P„: \9\ < ft} and parameters e, and <5; 

fulfil the following regularity conditions (see [5]). 

Assumptions AS 2. Let Pg -4 P0 for all \9\ < h and denote a suitable version 
of dPa/dP0 by pg. Let pfl(x) be twice differentiable in 0 for all x e 3C and put A(x) = 

[logp0(x)]fl = o . Further let 

0 < lim 
0 ^ 0 

Pe 
1/2 

dP 0 = Л2(x) dP 0 < oo 

and e0 + ð0 + <5, < (2ft Л(x) - e. + e 0 ) + dP 0 , 

where (l(x))+ = max {/(x), 0}. Finally, let there b e / e jSf^Po) such that 

3 2 

sup 
lвi<iï Õ 

; Pв(x) = /(*) 

for all x e dC. 

Lemma 4. (Rieder). Put din = (2k)"1 n1/2rin and Ljx) = (2/i)" l n1/2jCn(x). 
Then under the Assumptions AS 2 

lim d;„ = d-, and lim L„(x) = L(x) for all x e SC 
n->oo n-»oo 

where d; are the unique solution of the equations 

J (do - A(x)Y d P 0 = (2ft)"1 (e, + <S0 + <5.) 

and 

f(A(x) - dt)
+ dP 0 = (2/7)"1 (e0 + 50 + <5.) 

and 

L(x) = max {d0, min {A(x), dt}} — (2h)~1 (e1 — e0) . 

Denote EPo L
2(x) = a2, then 

l im EQon T„,„(x) = - 2 f t V , 
n-> oo 

lim EQl„ T„,„(x) = 2ft V 
II-* oo 

and 
varQin T„,„(x) = varQin {«1/2lCn(x)} = 4ft V + 0(n~1/2) . 

For the proof see [5], Theorem 4.1 and its proof. 

Let hereafter <P and <p denote the standard normal distribution and its density 
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with respect to Lebesque measure, respectively. Further let vn(t) denote the charac
teristic function of ICn(x) with respect to P0 and ain = varQ.n {n1/2ICn(x)}. 

Lemma 5 (Petrov, Edgeworth). Let us denote fiin = EQ.n Tm>„(x) and let 
lim sup lim sup \vn(t)\ < 1. Then under Assumptions AS 2 we have for any teR 

n -> oo 111 -* oo 

and z; = (t - //,„)<xrj 

Q?n"(Tn,n(x) <t)- <P(Zi) + «~1/2 R(zt) = o(n-»2), 
where 

R(u) = (27t)~1/2 exp j - - 1 (48/i V ) " 1 y(u2 - 1) 

and y is the third cumulant of 2/i L(x) with respect to P0. 

Proof. Due to uniform (with respect to nsN) boundedness of nl/2 ICn(x) the proof 
follows directly from Theorem 1, Chapter VI, § 3 of [3] (see Lemma 4 of this paper 
and also Lemma 2 and Corollary 1 of [8] and compare also [7]). In what follows 
let us put for a e (0, 1) 

tx(n) = inf {t e R: Qt(T,Jx) > t) < a} . • 

Corollary 1. Let Assumptions AS 1 and AS 2 be fulfilled. Then 

S D ( * » , n) = n ' / 2 . {(djdx) Co(0, n)(l - e,,,)"1 [d, + ha2] + 

+ (tojdjdx) C0(0, n) + (djdx) Co(0, n)) (d, - d0)} . {<p(ua) . a"1 + o(l)} 
and 

PD(^(n), n) = n1'2 . {djdx) d(0, n)(l - e^)"1 [d0 - ha2] + 

+ (coln(djdx) £.(0, n) + (djdx) d(0, n)) (d0 - dt)} . {<p(ux - 2ha) a~l + o(l)} . 

Proof. Put z0(a, n) = (tx(n) — Hon-\)
aon-v From Lemma 4 and Lemma 5 

it follows that 
(15) z0(«. «) = " « + 0(n~112). 
Due to the equality 

1 + v0„ = (l - e o » ) _ I ( l + «5o„) 

we may write (10) in the form 

SD(f, n) = -n(\ - e0n)-
1 {(djdx) |0(0, n) [Ql"(T,Jx) > t) - Qfr\Tn.itJ(x) > 

> t - rln)] + (djdjdx) C0(0, n) + (1 - s0n) (djdx) C0(0, n)) . 

• K ' - ' ^ i i * ) > t - r0n) - Qtr\Tn.Un(x) > t - rln)]} . 

From the preceding lemma we have 

Qtr\Tn-Ux) > ta(n) - rQn) - Qtr\Tn^,n(x) > t„(n) - rln) = 

= <P(z0(a, n) - <r0>0„) - $(z0(cc, n) - ff0>ln) -

- n-^2[R(z0(a, n) - <r0>0„) - R(z0(«, n) - <70>ln)] + o^1'2) = 

= cp(v0(a, n)) [r0n - r l n] (2WY1 + o(n~1/2) , 
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where v0(a, n)e(z0(a, n) - <T0nrln , z0(a, n) - a0nr0n) and the facts that 

(16) limnl'2(r0n-ru) = 2h(d0-dt) 
It-"' CO 

and 
lim <T0„ = 2/.CT 

n-> oo 

(which follow from Lemma 4) was taken into account. Now from (15) and (16) 
one derives that 

v0(a, n) = ux + 0(n~112) 
and hence 

n [Qťl{Tn_xM > '«(") - ''on) - Ql"~l(Tn.Un(x) > tjn) - r,„)] = 

= <p(ua) a !(d0 - dj) + o(i) . 
The difference 

Qt(TnJx) > Un)) - Qfr'(Tn^Jx) > tx(n) - rln) 

may be attacked in the similar way (it needs more technicalities but the idea is the 
same — see the proof of Corollary 1 in [8] and note that EQoi T„-ln(x) = (n — 1) . 
. n_1/i,„). We obtain 

nm[Q%:(Tn,n(x) > ta(n)) - Q 0
5 ; _ 1 ( T , - 1 » > ta(n) - rln)] = 

= <jo(«a)cr-:1d1 + o(l), 

which concludes the proof of the first assertion of corollary. The proof of the second 
one may be performed likewise. • 

Remark 4. The results of the corollary imply that to keep the size and power 
dependency bounded uniformly with respect to the sample size it requires 

- c.(0, n) = 0(n^'2) and - £f(0, n) = 0(n~1/2) . 
dx dx 

(For the more detailed discussion of these equalities see the last section of [8].) 
On the other hand it is evident that the results presented in Theorem 1, although 
they are a little complicated, are (together with a numerical approximation method) 
much more useful for creating an idea about the sensitivity of the LFP-test with 
respect to failing estimation of the contamination level than those of Corollary 1 
because of the numerical unreliability of the approximation formulae derived in the 
local alternative set-up (see also [7]). 

(Received April 19, 1985.) 
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