KYBERNETIKA — VOLUME 22 (1986), NUMBER 4

CONTROLLABILITY OF NONLINEAR SYSTEMS
WITH DELAYS IN BOTH STATE
AND CONTROL VARIABLES

K. BALACHANDRAN

Relative controllability of nonlinear systems with distributed delays in state and control is
considered. Using the Schauder fixed point theorem, sufficient conditions for relative controlia-
bility are obtained. These conditions extend some previous results by considering more general
class of dynamical systems.

1. INTRODUCTION

‘Controllability of linear systems with lumped delays in state and control has been
studied by Chyung [2] and Manitius and Olbrot [10]. Curakova [3] considered
the controllability of linear systems with distributed delays in state and Klamka [7]
for the systems with distributed delays in control. In [ 9], Manitius derived a determin-
ing equation and a sufficient condition for controllability of stationary systems with
distributed delays in state and control. The results of [ 7] were extended to nonlinear
systems by Klamka [8] and Balachandran [12]. An example of nonlinear system
with distributed delays in control is given in [11]‘ Sufficient conditions were obtained
by Dauer and Gahl [6] for nonlinear systems with distributed delays in state and
lumped delay in control. In this paper we shall consider the controllability of non-
linear systems with distributed delays in both state and control variables. The approach
we will use is to define the appropriate control and its corresponding solution by an
integral equation. We then obtain the solution by applying the Schauder fixed point
theorem. :

2. BASIC NOTATIONS AND DEFINITION

Let C,4n[to, t;] denote the Banach space of continuous " x B™ valued functions
defined on the interval J = [to, ¢;] with the norm defined as follows; for (z,v) e
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€ Cn+m[t0! tl]a
Iz o1l = N1z + [lo]  where

|zl = sup |z(z)] for 1e[to, ;]
and

Jo] = sup [o(f)] for te [ty t,].
Let k > 0 be a given real number. For functions u: [t — h, t,] > R™and t € [t,, t,],
(to < ty), we use the symbol u, to denote the function on [ — k, 0), defined by u,(s) =
= u(t + s) for se [—h, 0). In the sequel some integrals are in the Lebesgue-Stieltjes
sense which is denoted by the symbol d,.

We consider the controllability of nonlinear perturbations of linear delay system

® X(t) = Lix, u)
where the operator L is defined by
Lix,u) = A(t) x(1) + B(1) x(t — h) +

+'rih1<(t, sy x(t + s)ds +J.0

d, H(t, s) u(t + s).
~h
We will show that, if the system (1) is relatively controllable, then the perturbed
system

(2 %(1) = L(x, u) + f(t, x(t), x(t — h), u(t), u(t — h)), te[to, 1]
x(f) = @(t), e[ty — h, 1]

is relatively controllable provided the function fsatisfies appropriate growth condition.

Here the vector function x(f) e R”, u(f) is an m-dimensional control vector and
ueC,[to — h,t;]. The n x n matrix functions 4, B are assumed to be continuous
on J and the n x n matrix function K(t,s) is continuous on J x [~h,0] and
H(t,s) is an n x m matrix, continuous in t for fixed s and of bounded variation
in s on [—h, 0] for each te J. The n-dimensional vector function f is continuous
in its arguments. The following definition of controllability [9,2] is assumed.

Definition. System (1) or (2) is said to be relatively controllable on [, t,], if for
every continuous function ¢ and initial control function u,, defined on [t, — h, to]
and every x, € R" there exists a control u(z) defined on [t,, ¢,], such that the solution
of system (1) or (2) satisfies x(t,) = x;.

3. PRELIMINARIES

Let ¢ be a continuous function on [t, — h, t,]. Then there exist a unique solution
of the system (1) on J satisfying x(¢) = ¢(¢) for t € [t, — h, t,] and is given by

1,

3) xlt) = Xt t0) o(to) + J‘

to—

X(t,s + h) B(s + h) o(s) ds +
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fo w+h
+ J j X(t, 5)K(s, 0 — 5) p{w) ds dow +
to—h J to

T 0
+ ,f X(1, 5) “‘ d, Hs, o) u(s + w):l ds
to v —h

where X(¢, s) is an n x n matrix function satisfying
0

axX(t, s)for = A(t) X(t, s) + B() X(t — h,s) + j K(t, 0} X(t + o, s) dw

for 1o £ s £ t < ty, such that X(¢, f) = I, the identity matrix and X(t,s) = 0 for
t < s. Since 0X/dt exist, it is obvious that X(¢, s) is continuous in f for fixed s, where
s < t. It is easy to prove as in [6] that X(t, 5) is continuous in (¢, s) in the compact
region 1o £ s <t <ty

The equation (3) can be written as

4 xi(t) = x(t, @) + f X(t,s) Uih d,, H(s, ©) u(s + w)] ds

to

where
'

xi(t, @) = X(1, to) o(to) + Jw

to—

X(t,s + h)B{s + h) o(s)ds +
h

T0 w+h
+j‘ j X(1,5)K(s, 0 — s5) p(w) ds do .
to—h o 1o

The second term in the right-hand side of (4) contains the values of the control
u(t) for t > to as well as for t < t,. The values of the control u(t) for t € [t — h, to]
enter into the definition. To separate them, the second term of (4) must be transformed
by changing the order of integration. Using the unsymmetric Fubini theorem, we
have the following equalities

() i) = xilt o) + J ikd,,m ( f " X (s — o) H(s — o, w)ufs) ds) -

to+ o

0 to
= x,(t, p) + J dye (J X(t,s — w) H(s — o, ®) uy, ds) +
-h toto

+ j HO X(t,s — w)d, H/fs ~ w,w)}u(s)ds

10 —h
where
: H(s,w) for sgt
( = b =
H{s, ) {0 for s>t
and the symbol dg, denotes that the integration is in the Lebsegue-Stieltjes sense
with respect to the variable w in H(¢, ). For brevity let us introduce the following
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notation

© 4t ) = rh Ao (J' X(t,s — o) H(s — , o) e ds>

- totw
) 0
(7 5(t,5) = J X(t,s — ) d, Hfs — o, o)
~h
and define the controllability matrix
gl
(8) W(to, ;) :J S(ty, 5) S, 8) ds
to

where the prime indicates the matrix transpose. Hence the solution of the linear

system (1) can be written as
t

9) x. (1) = x.(t, ) + q(t, us,) + f S(t, 5) u(s) ds
to

and the solution of the perturbed system (2) is given by

(10) x(t) = x.{t) + Jﬂ X(t, $) £(s, x(s), x(s — h), u(s), u(s — h)) ds.

to

4. MAIN RESULTS

Theorem 1. The system (1) is relatively controllable on [t,, t,] iff Wis nonsingular.
Proof. Assume W is nonsingular. Let the control function u be defined on J as

(11) u(t) = S'(ty, ) W x, — x(ty, @) — q(ts, ug)] -

Then from equation (9), it follows that

151
xg(ty) = xglty, @) + q(ty, uy,) +j S(ty,5) S'(t, ) WL

D = xu(tn, @) — gty u,)] ds = x,

Conversely, assume that W is singular. Then, there exists a vector v % 0, such that
v'Wo = 0. It follows that

ty
J‘ v S{ty, 8) (v S(ty,5)) ds = 0.
to

Therefore, v’ S(t,,s) = 0 for seJ. Consider the zero initial function ¢ = 0 and
u,, =0 on [t, — h, 1,] and the final point x, = v. Since the system is controllable
there exists a control u(f) on J that steers the response to x; = v at t = t, that is,
x1(t;) = v. From ¢ = 0, x(t;, ) = 0and v'v % 0for v + 0. On the other hand

v =x.(t;) = J-h S(ty, s) u(s) ds
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and hence

1y
'o =J. o' S(ty, s)uls)ds = 0.
1o

This is a contradiction for » & 0. Hence Wis nonsingular. 0

Now we are able to prove our main result on the controllability of the nonlinear

perturbed delay system (2). For this, we will take ‘
p=(x,x,u,u)eR" x B" x R" x R"
and let
lp| = x| + |x'] + Ju] + ]
Theorem 2. If the continuous function f satisfies the condition
im E2!_ g
{pl— | p|

uniformly in ¢ € J and if the system (1) is relatively controllable on J, then the system
(2) is relatively controllable on J.

Proof. Let ¢, u,, be continuous on [t,; — h, to] and let x; € R". Define

T: Coimlto — by t1] - Cn+m[t0 -~ h,t]

by T(x, u) = (y,v)
where
(12) ot) = S'(1, 1) W_ll:xx — x(t1; 0) — a(ty, u,,) ~

- Jm X(t1, 5) £(s, x(s), x(s — h), u(s), u(s — h)) dsJ for telJ -

to

o(t) = u,(¢) for t€ [to — h, 1,], and
(13) o) = xults 0) + alt. ) + j " S(e ) ols) ds +

+ Jl X(1, 5) £(s, x{s), x(s — h), u(s), u(s — h))ds for teJ

1
y(l) = (p(t) on [to -~ h, to],
Let
ay = sup|S(t,s)| for t,<sStsh

2 = [W (1o, 1,)]

az = sup [x(t,; @] + |xi| + |g(ts, w,)| for ted
as = sup |X(t,s)] for (t,5)ed x J

b= max {(t; — t5) ay, 1}, ¢, = 8bajarat, — t,)

¢ = 8ay,(ty — to), dy =8aja,asb, d;=8a,
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¢ =max {c,,c;}, d=max{d,,d,}
sup |f] = sup [| (s, x(s). x(s — h), u(s), u(s — B))|: s€ J].
Then, |U(t)| =< 01“2[03 + a4(t, - to) sup |f[] =

=Sy §~‘bsup 17l <

< i [d + esup|f[]
and
)l < a5 + ayty — to) [[o] + aa(t; — to)sup |f] < bllo| + &d + fesup |f].

By Proposition 1in [5], f satisfies the following condition: for each pair of positive
constants ¢ and d, there exists a positive constant r such that, if |p| < r, then

(14) ef(t,p)| +dSr forall tel.

Also, for given ¢ and d, if r is a constant such that the inequality (14) is satisfied,
then any r, such that r < r, will also satisfy the inequality (14). Now, take ¢ and d
as given above, and let r be chosen so that the inequality (14) is satisfied and
sup Jo()| S 4r, sup |u, (1) S dr for te[ty — h 1]
Therefore, if x| < 4r and |Ju|] < 4r then
[x(s) + |x(s = m)| + [u(s)] + |u(s — B)| <+ forall seJ.
It follows that
d+csuplf|sr.
Therefore,
|o(t) < #[8b forall teJ
and hence lo| = r/8b.
It follows that
|¥(6)] < §r + 5r forall teJ,
and hence that
Iyl < 3.
Thus we have proved that, if
G = {(x,u) € Cosm[to — b, t,]: |x] £ 4 and |u| < 47}
then T maps G into itself. Since f is continuous, it implies that the operator T is
continuous. By using Arzela-Ascoli’s theorem it is easy to verify that, T'is completely
continuous. Since G is closed, bounded and convex, the Schauder fixed point theorem
guarantees that, T has a fixed point (x, u) € G. It follows that

t

x(1) = %t 0) + 4(t, us,) +J S(t, s)u(s) ds +

to

+ J' " X(t, ) f(5, x(s), x{s — h), u(s), u(s — h)) ds

to
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for te J and x(1) = () for t & [t, — h, t,]. Hence x(¥) is the solution of the system
(2) and

x(t)) = x.(t;; @) + q(ty, u,) + f“ S(ty, s) St sy w1,

to

.[x1 = x(ty; 0) — q(ty, u,) — J!IX(tl, s) f{s, x(s), x(s — h), uls), u(s — h))] ds +

to
(31
+ J. X(ty, s) f(s, x(s), x{s — h), uls), u(s — b)) ds = x, .

Hence, the system (2) is relatively controllable on [t5, t,]. O

Corollary. If the continuous function f is bounded on J x R" x R" x R™ x R"
and if the system (1) is relatively controllable on J, then the system (2) is relatively
controllable on J.

5. EXTENSIONS

The results can be directly extended to the general nonlinear perturbed delay
system. For that, consider the general linear delay system
(15) X(t) = Lfx, u)
where

0 0
Lix, u) =f d, Alt, s) x(t + s) +j

—h

d, H(t, s) u{t + s).
h

A(t,s) is an n x n continuous matrix in ¢ uniformly with respect to se[—h, 0]
and of bounded variation in s on [ = h, 0] for each ¢ € J, its corresponding perturbed
nonlinear delay system is

(16) %(f) = Lix, u) + g(t, x(t), x(t — h), u(t), u(t — h)).

Let x,(1; ¢) be the solution of the equation
0
%(1) = f d, A(t, 5) x(t + 5)
-h

with initial function x(¢) = ¢(t) on [t, — h, 5] and let Y(s, f) be the n x n matrix
solution of
s+ a(s)
Y(s, 1) + J Y(o, 1) Ao, s — w)dw =T
s
where

~ {n if th<s<t—h
“(S)_{t s if t—h<s<t

and I is the identity matrix. Then there exists an absolutely continuous solution of
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(15) and it can be written as

salt) = xilt; 0) + j o ( J " Y = ) His - 0, @) uy(s) ds) +

tot®

t 0

+ J‘ [J Y(s — w,1)d, H{s — o, m)] u(s)ds.
to LJ -4

Define the following
0
Sy(s, 1) = j Y(s — o, ) d, H(s — o, o)
~h
and

{53
Wilto, 1)) = f Sy(s, 12) Si(s. 1,) ds.

to

Hence the solution of the system (16) can be written as

*(1) = xalt) + J " Y(s, 1) g(s, x(5), x(s — h), uls), u(s — B))ds.

to
The proofs of the following theorems are similar to the proofs of Theorem 1 and 2,
and hence they are omitted.

Theorem 3. System (15) is relatively controllable on J iff W, is nonsingular.
Theorem 4. If the continuous function g satisfies the condition
i 922 _ o
ol |p|

uniformly in te J and if the system ([5) is relatively controllable on J then the
system (16) is relatively controllable on J.
(Received June 28, 1984.)
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