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FENCHEL-LAGRANGE DUALITY 
IN VECTOR FRACTIONAL PROGRAMMING 
VIA ABSTRACT DUALITY SCHEME 

TRAN QUOC CHIEN 

This paper deals with a generalization of both Fenchel and Lagrange duality in vector frac
tional programming. In the first section the concepts of maximum and supremal are introduced 
and discussed. In Section 2 a simple abstract duality scheme is presented. The last section is 
devoted to the so-called Fenchel-Lagrange duality in vector fractional programming which is 
built up on the basis of the abstract duality scheme and a set separation theorem. 

0. INTRODUCTION 

The duality questions in one-objective fractional programming have extensively 
been studied by many authors. Most of dual programs are established via a trans
formation to a convex program, see Schaible [10, 11]. In Cambini and Martein [2] 
a duality of Fenchel type via a separation theorem of two convex sets is introduced. 
In Tran Quoc Chien [5, 6, 7] a duality theory of Lagrange type is built up on the 
basis of the so-called abstract duality scheme. In this work we introduce a more 
general abstract duality scheme which seems to be able to unify all known non-
differentiable duality theories as Lagrange duality, Fenchel duality and perturbation 
duality theory. One of the applications of the abstract duality scheme is just the 
Fenchel-Lagrange duality in vector fractional programming given in Section 3 of 
this work. Another application of this scheme will be presented in the following 
paper where the perturbation theory of duality in vector optimization is built up 
on its basis. 

1. OPTIMALITY CONCEPTS 

1.1. Basic assumptions. Throughout this work we suppose that all spaces are real 
and Yis an ordered linear space if other requirements are not added. All elementary 
notions as linear hull, convex hull, affine subspace, dual space, affine function, 

299 



convex resp. concave function or core (cor A), intrinsic core (icrA), algebraic 
closure (lin A) etc. can be found in Holmes [9]. Basic notions concerning partial 
ordering and ordered spaces can be foun in Gratzen [8]. The positive cone Y+ of Y 
is supposed to have nonempty core. 

1.2. Notations. For elements a, b e Y we denote 

a = 6 iff a - beY+ 

a > b iff a - b e Y+ + = Y+ \ {0} 

a P b iff a — b e cor Y+ 

a ^ b iff" a < £> . 

For two subsets A and B in Ywe define 

A >• B iff Va e A Vfo e B: a >• b 

where >- may be any relation of = , > , P and :>. 

A is said to be bounded (resp. weakly bounded) from above if there exists a point 
a e Ysuch that 

A = a (resp. A = a) . 

Analogously, the boundedness (resp. fhe weafc boundedness) from below is defined. 

1.3. Definition. A nonempty set Q <=. Yis called a Y+-quasiinterval if 

Q = (Q - Y+) n (O + Y+). 

The cone Y+ is said to be reproducing if Y+ — Y+ = Y 

Given a subset A and a Y+-quasiinterval Q in Y an element a e Q is called 
a supremal of A with respect to Q if 

a s lin (A - Y+) and (a + Y+ +) n *2 n lin (A - Y+) = 0 . 

A point a e A is called a maximum of A if A ^ a- The set of all supremals with 
respect to Q resp. all maxima of A are denoted by Supn A resp. Max A. Analogously, 
an infimal with respect to Q, a minimum, Min A and Inf^A are defined. If Q = Y 
then the letter £2 is omitted. 

1.4. Remark, (i) The notion Y+-quasiinterval is more general than the traditional 
definition of interval (a set of the form {y e Y: a = j ; = h}). For example, let Y = R2 

and Y+ = R+, then the parallelogram in Fig. 1 is a Y+-quasiinterval, but it is not 
an interval. 

(ii) Generally, the inclusion Max A <= Sup A does not hold. For example, let 
Y = R2, Y+ = R\ and (see Fig. 2) 

A = {(yt, y2) € R2 : (0, 0) = (yu y2) < (1, 1)} u {(0, 1), (1, 0)} . 
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Then 
Max A = {(0, 1), (1, 0)} , whereas Sup A = {(1, 1)} . 

In case that dim Yis finite and Y+, A are closed, then Max A <=. Sup A. Nevertheless, 
we have A n Sup A c Max A. 

L'2 

Fig. 1. 

1 >ì 
Fig. 2. 

1.5. Lemma, (i) Max A = Max (A - Y+), Min A = Min (A + Y+). 

(ii) Supfl A = Supn (lin A) = Supfl(A — lin Y+). 

(iii) Inf., A = Inf0 (lin A) - Infn (A + lin Y+) . 

Proof. Since assertion (i) is evident and assertion (iii) is analogous to (ii), it 
suffices to prove (ii). Obviously 

lin (A - Y+) c lin (lin (A) - Y+) 

and the inverse inclusion follows from lin (A) — Y+ <= lin (A — Y+). We have 
thus proved Supfl A = Supj, (lin A). Further, we have 

lin (A - Y+) => lin ((A - lin Y+) - Y+) 

for (A - Y+) -> (A - lin Y+) - Y+. Since the inverse inclusion is obvious we 
obtain Supjj A = Supfi (A — lin Y+). 

1.6. Lemma. Suppose that Y is a linear topological space with int Y+ = cor Y+ 

and A is an arbitrary subset in Y Then 

lin (A - Y+) = A - У+ . 

Proof. Obviously lin (A — Y+) c A — Y+. So it remains to prove the inverse 
inclusion. Let a e A - Y+. Choose a point e e int Y+ and let e' be an arbitrary point 
on the segment [a - e, a[. Since a e A — Y+ and e' < a there exists a point a' e A — 
— y + such that e' <| a'. Hence e' e A — Y+ and consequently, by definition, a e 
e lin (A - Y+). 

1.7. Definition. A linear functional $ e Y* is strictly positive if x e Y+ + => <2>(x) > 
> 0. A base for Y+ is a nonempty convex subset B of Y+ with 0 $ B such that every 
x 6 Y+ + has a unique representation of the form Xb where beB and A > 0. 
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If <P e Y* is strictly positive and we set B = [<P, l ] n Y+, where [$ , a] = 
= {x e Y: <P(x) = a}, then B is a base for Y+. 

From [9] (§ 6, C) it follows immediately 

1.8. Lemma. If Yis a linear topological space of finite dimension and Y+ is closed, 
then Y+ has a compact base and every set of the form {y e Y: a ^ y ^ b} is compact. 

1.9. Lemma. Suppose that Yis a linear topological space of finite dimension, Y+ 

is closed and A is such a subset in Ythat lin A = A. Then 

Sup A cz lin A . 

Proof. Let a e Sup A. Fix arbitrary a > a and a <§ a. Then the set C = 
= (a + Y+) n(a - Y+) is compact (by Lemma 1.8) and a e i n t C . Suppose, on 
the contrary, that a £ lin A = A. There exists a neighbourhood U of a such that 
U n A = 0 and U <= C (for a e int C). Since a e lin (A - Y+) = A - Y+ (see 
Lemma 1.6), there exist yx e A — Y+ with yx -* a. For each yx there exists an yx e 
e Y+ + such that yA + yx e A. Since A n U = 0 and [ / c C one can choose 0 < 
< f j | l such that aA = yA + txyx e C and aA $ U. If C is compact one can, without 
loss of generality, admit that ak -* a'. We have then a' e A — Y+ and a' > a which 
contradicts a e Sup A. 

1.10. Definition. A set C <= is said to be inside stable if 

( C - C ) n Y + + = 0 , 

sup-stable with respect t o i c Yif 

V a e A 3 c e C : a ^ c , 

inf-stable with respect to A c Yif 

Va e A 3e e C : c ^ a . 

Obviously 

1.11. Proposition. The sets Max A, Min A, Supfi> A and Inffi A are inside stable. 

If the concerned sets are, moreover, sup-stable resp. inf-stable with respect to A 
then we have the same concept of solution as the von Neumann core in game theory. 
We try now to find out some sufficient conditions for Supfl A and Max A resp. 
Inffi A and Min A to be sup-stable resp. inf-stable with respect to A. 

1.12. Lemma. Suppose that Y is a linear topological space of finite dimension, 
Y+ is closed and A c Yis bounded from above. Then A — Y+ = A - Y+. 

Proof. Let a e A — Y+. There exist axe A and yxe Y+ such that aA — yx -» a 
or aA = aA — yA — a —> 0. Since A is bounded from above there is a point u e Y 
such that ax = yx + a + a'x <. u for all aA. For aA -» 0 there exist e e int Y+ and 
1 0 such that yx < u — a + e for all X > X0, which, considering the compactness 
of the set {y e Y+ : y < u — a + e}, implies the existence of a subnet (yx) c (yx) 
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with yk. -» y+ e Y+. Then ak. -» y+ + a e A. We have thus a e A - Y+. The inverse 
inclusion is obvious. 

1.13. Proposition. Suppose that Y is a linear ordered topological space such that 

(i) Y+ = F+ or Y++ = corY+ 

and A is a nonempty compact set in Y Then Max A and Min A are nonempty. 

Proof. Let C be a chain in A (i.e. Vc, d e C: c = d or d = c). If C has a greatest 
element then C is obviously bounded from above. If C has no greatest element then C 
can be regarded as a net in A because one may write C = (X)XEC and C is an oriented 
direction. Then since A is compact there exists a limit point a e A of C. Condition (i) 
then guarantees a = x for all x e C. Our assertion follows now from the Zorn 
Lemma. The proof that Min A + 0 is analogous. 

1.14. Proposition. Suppose that all conditions of Proposition 1A3 remain valid. 
Then Max A resp. Min A is sup-stable resp. inf-stable with respect to A. 

Proof. It suffices to prove that Max A is sup-stable with respect to A because 
the proof that Min A is inf-stable with respect to A is similar. The proof is divided 
into two parts. Let ye A. 

(i) Y+ = F+: Put B = A n (y + Y+). Since B is nonempty and compact, Max B 
is nonempty by Proposition 1A3. Obviously Max B a Max A and for any point 
a e Max B we have a = y. 

(ii) Y+ + = cor Y+: If there is no / e A with y' — ye cor Y+ then y is evidently 
a maximum of A. If there exists an y' e A with y' > y then consider the set C = 
= A n (y' + F+). C is nonempty and compact, hence, by Proposition 1.13, Max C + 
=t= 0. Obviously Max C <=. Max A and for any a e Max C we have a = y (for 
a — y' e F+ and / - j e cor T+). 

1.15. Proposition. Suppose that Yis a linear topological space of finite dimension, 
Y+ is closed, A c Yand Q is a Y+-quasiinterval with A c: £2. If A is bounded from 
above resp. below, then Supn A resp. Inffi A is sup-stable resp. inf-stable with respect 
to A. 

Proof. Suppose that A is bounded from above. Let u e Ybe such that A c u — Y+ 
and <P e Y+ be such that {y e Y+: <P(y) = 1} is a compact base of Y+. Given y e A 
then the set S = {x e u - Y+: #(x) = $ly)} is compact (see Holmes [9]). Conse
quently B = (y + Y+) n A is compact. Hence, by Proposition 1.13, Max B 4= 0. 
Since A is bounded from above, A — Y+ = A - Y+ by Lemma 1.12. We have then 
Max B cz Supn A and every a e Max £ satisfies a = y. 

In the same way one proves the inf-stability of Inf A with respect to A if A is 
bounded from below. 

1.16. Proposition. Suppose that Y++ = cor Y+ = int Y+, Q is a closed Y+-quasi-
interval, A c Q and one of the following conditions holds 
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(i) A is a bounded from above, 
(ii) A is weakly bounded from above and Y+ is reproducing. 

Then Supfi A is sup-stable with respect to A. 

Proof. Let y e A. If (i) holds there exists 5 e Ywith s = A. If (ii) holds then there 
exist ueY with u £ A — Y+ + and c, de Y++ such that c — d = u — y (note that 
Y+ is reproducing) and in this case we take s <= c + y. Set M = {y + t(s — y): t ^ 
^ 0} n Q n lin (A - Y+) and f0 = sup {t: y + t(s - y)e M). Since s £ cor (A -
- Y+) and M is closed, t0 = 1 and a0 = y + £0(s - y) e M. If there exists an 
a > a0 with a e Q n lin (A — Y+) then a0 e cor (a — Y+) (for Y+ + = cor Y+) 
and it follows that there exists t > t0 with y + t(s — y) e M which contradicts 
definition of t0. Hence a0 e Supfl A and a0 ^ y. 

In the same way we obtain 

1.17. Proposition. Suppose that Y++ = cor Y+ = int Y+, Q is a closed Y+-quasi-
interval, A c Q and one of the following conditions holds 
(i) A is bounded from below, 

(ii) A is weakly bounded from below and Y+ is reproducing. 

Then Inffi A is inf-stable with respect to A. 

1.18. Lemma. Suppose that Y++ = cor Y+, Q is a Y+-quasiinterval, A a Q and 
B = Y\(A - Y). Then Sup„ A cz Inf f lS. 

Proof. Let a e Supfl A then, by definition, 
(i) (a + Y++)nQn lin (A - Y+) = 0 
and 
(ii) a 6 O n lin (A - Y+). 

Given y+ e Y++ we prove that 
(iii) a + y+ £ l in (A - Y+). 

Indeed, if a + y+ e l i n ( A - Y+) then a e cor (A — Y+) which contradicts (i) 
(note that Q is a Y+-quasiinterval). We have then a + y+eB = B + Y+ and 
a + ty+ -> a e lin (5 + Y+) as t -> 0. If y e Q such that y < a then, by (ii), y e 
e cor (A - Y+) and since cor (A - Y+) n lin (5 + Y+) = 0 we have >> $ lin (5 + 
+ Y+). Hence a e Infs3 B. 

1.19. Corollary. Suppose that Y++ = cor Y+, A c Y and £ = Y\(A - Y+). 
Then Sup A = InfB. 

Proof. The statement follows from Lemma 1.14 and the fact that A <= Q = Y 
and B <= £2 = Y. 

1.20. Proposition. Let (Ax)XeA be a family of subsets in Y such that Max Ax resp. 
Min Ak are sup-stable resp. inf-stable with respect to Ax for all X e A. Then 

(i) Max ( U ^A) = Max ((J Max A,) 
XeA XeA 

resp. 
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(ii) Min ( U AA) = Min ( U Min Ax). 
XeA XeA 

Proof. The statement follows immediately from definitions. 

1.21. Proposition. Let (Ax)XeA
 De a family of subsets in Y and Q be a Y+-quasi-

interval in Y such that Supfl Ax resp. Inffl Ax are sup-stable resp. inf-stable with 
respect to A,. Then 
(i) Supn ( U Supfl A,) = Sup„ ( U A^) 

XeA XeA 

resp. 

(ii) Inf„ ( U Info 4 . ) = M o ( U 4 . ) -
XeA XeA 

Proof. From the sup-stability of Supfi Ax with respect to Ax for all X we have 

\}AX~Y+ c z U S u P f l A , - Y+ 
XeA XeA 

which implies 
(iii) lin ( U 4 . - Y+) cz lin (U SuP n Ax - Y+). 

X X 

Further, we have 

Supft Ax c lin (Ax - Y+) => U SuPf2 Ax c \J lin (A , - Y+) => 
x x 

=> U Sup« Ax - Y+ c U lin (A , - Y+) c lin (\JAX - Y+) => 
X X X 

-> lin (U Supn A, - Y+) c lin (UA , - Y+), 
X X 

which, together with (iii), gives 

lin (UA , - Y+) = lin (U SupQ Ax - Y+) . 
A A 

From the last equality we obtain then the equality (i). Equality (ii) is proved 
similarly. 

2. ABSTRACT DUALITY SCHEME 

2.1. Basic assumptions. In the sequel suppose that Q is a Y+-quasiinterval in Y 
and & and 9 are arbitrary fixed sets. Further, suppose that P:Q -> 0* and D: Q -*• 9 
are multivalued maps fulfilling the following conditions 
(i) Primal Availability: 

yi < J>2 => P(>'i) => ^ 2 ) . 
(ii) Dual Availability: 

>>! < y2 => D(yt) cz 2>(j,2). 

2.2. Definition. Put 

\ = {pe&\lyeQ:peP(y)} = \)P(y), 
yeSi 
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®o = U D(y) 

n(p) = {yeQ\peP(y)} pe0>o 

and 
v(d) = {y e Q | d e />(»} d s ^ 0 . 

Problems 

(2.2.1) SuP j 2 / .(^0) 

resp. 

(2.2.2) Infov(^o) 

are called abstract primal resp. abstract dual. The points p* e ^ 0 resp. d* e ^ 0 are 
called optimal solutions of the primal resp. the dual if A^p*) n Supft/t(^o) + 0 
resp. v(d*) n Infn v(i?0) 4= 0. 

Analogously are defined the abstract max-primal 

Max /t(^0) 
and the abstract min-dual 

Min v(£?0) 
and their optimal solutions. 

2.3. Theorem. (Weak Duality.) If the condition 
(hi) Weak Duality Condition: 

D(y) 4= 0 => P(y') = 0 V / > y . 
holds, then 

ju(^o) ? v (^ 0 ) . 
Proof. Let y' e p.(&0) and y" BV(20). We have then P(y') 4= 0 and />(/') + 0. 

Hence, by condition (iii) y' cannot be greater than y". 

2.4. Corollary. (Max-Min Strong Duality.) If the weak duality condition holds then 

Max n(0>o) n Min v(^0) = K&o) n v(3)0) . 

2.5. Theorem.(Sup-Inf Strong Duality.) Suppose that Y+ + = cor Y+ and the weak 
duality condition and the following one 
(iv) Sup-Inf Strong Duality Condition: 

V / e c o r Q(P(y) = 0 Vj > y' => D(y) * 0 Vj > y') 
hold then 

cor (Q) n SupG y(0>o) = cor (Q) n Inffl v(20) . 

Proof. If 0>o = 0 or 90 = 0 then, by condition (iv), 

cor (Q) n SuPf2 /.(^0) = 0 = cor (Q) n Infn v(^0)-

Suppose hence that §>0 * 0 and ^ 0 * 0. Let y* e cor (i2) n Sup« n(&>0) which 
means 

j * e Q n lin (/i(^0) - Y+) and (>>* + Y+ +) n lin (/<^0) - Y+) n fl . 0. 
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We have then 
P(y* + y+) = 0 Vy+eY+ + :y* + y+eQ, 

which, by condition (iv), implies that 

D(y* + y+) + 0 Vv+eY++ . 

Consequently, y* e Q n lin (v(^0) + Y+). 
For any y+ e Y+ + such that y* — y+ e £2 we have 

y* - y+ecorOOn)- r+) • 
So, since (because of the weak duality condition) 

cor(/i(^0) - Y+) n cor(v(^0) + Y+) = 0 , 
one has 

y* -y+tlin(v(®0) + Y+). 

We have thus proved that 
y* e cor (Q) n Inffi v(S>0). 

Conversely, let 
y* e cor (Q) n Inffi v(S>0) , 

which means 

y* e Q n lin (v(^0) + Y+) and (y* - Y+ +) n lin (v(S>0) + Y+) n £2 = 0 . 

Analogously, by condition (iv), we have 

y * e £ 2 n l i n ( / x ( ^ 0 ) - Y + ) 
and 

y* + y + e c o r ( v ( ® 0 ) + Y+) 

for all y + e Y+ + with y* + y+ eQ. Hence 

y* 6 cor (Q) n Sup„ /u(^0) . 

3. FENCHEL-LAGRANGE DUALITY FOR VECTOR FRACTIONAL 
PROGRAMMING 

3.1. Definition. Suppose that X is a linear space, Unk and Vnk are nonempty subsets 
in X, unk: Unk -» R and vnk: Vnk -> R are real functions forn = 1, ...,N and k = I,... 
..., k(n). Further, let Z be a linear ordered space, S be a nonempty subset in X and 
a: S -* Z. Let £3 be a nonempty R + -quasiinterval in RN — Y. Here in this section, 
in order to avoid misunderstanding we accept the following notations: 

If Y+ = cor R+ then the Max, Supn, Min and Infn notations, which are introduced 
in Section 1 will be replaced by Maxw, Supw, Minw, and Inf£ respectively. If Y+ = 
=R+ we will use the notations Maxs, Sup8,, Mins and Inf£ respectively. If there is 
no assumption about Y+ we will use the standard notations without the letters w and s. 
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Now put 

JF = {x e S n ( f l f l ^ n V„fc): fl(*) 6 Z+} 
n = l k = \ 

a nd, under the assumption that all occurring denominators do not vanish on W, 
K(n) K(n) 

f(X) = ( Z "<*(*)/ Z V„k(x))„=\ N • 
k=\ 1 = 1 

We shall consider the problem 

(FP) Max-Sup„j(iF) 

where the notation Max-Supfl means that both maximum and supremal concepts 
will be studied. Problem (FP) is called the vector fractional program. 

3.2. Remark.. The duality questions of scalar fractional programming have been 
investigated by Schaible [10, 11] and other authors. In Cambini [2] a version of 
Fenchel duality in scalar fractional programming was introduced. As far as the 
vector fractional programming is concerned, in Tran Quoc Chien [5, 6, 7] a duality 
theory of Lagrange type is constructed via the abstract duality scheme. In this section, 
on the basis of the abstract duality scheme introduced in Section 2, a unified duality 
theory will be built up, which contains all old Lagrange and Fenchel duality and 
gives a considerable possibility of numerical applications. 

3.3. Abstract primal problem 

Put N 

0i = X x [ ] (R x RKW) x Z 
« = i 

N 

p0(y) = P 0 = I x [ ] | « t x RK(n)) x Z + VyeQ, 
n = \ ' 

P„u(y) = {{x, (r„0, • •., r„K(n))„= !...„, z) e 0: x e S n U„k n Vnk& 
K(n) 

& r„k = "nk(x) - yn %k(x) & ^0 = Z Vni & Z = #(*)} 
i=\ 

P(y) = P0n(f) f\P„k(y)) for y = (yu...,y„)eQ. 
n=\ k=\ 

and 

From definitions it follows immediately 

3.3.1. Lemma. If v„k(x) = 0 for all feasible n, k and x then the multivalued map 
P: Q -> 0, that was just defined above, satisfies the primal availability. 

Now following the approach and notations in Section 2 we obtain the abstract 

primal problem 

(P) Max-Supfi fi(0).. 
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It is easy to verify the following 

3.3.2. / ( > ) - < = ti(&0) - RN
+ . 

Hence, as a consequence of Proposition 1.5, we obtain 

3.3.3. Proposition. Problems (FP) and (P) are equivalent in the sense 

Max s/(J^) = Max s / i(^0) 
and 

Supa /(#•) = Sup^H^o)-

Now in order to establish a reasonable dual to problem (P) we recall first the 
following concept of set separation. 

3.4. Set separation 

3.4.L Definition. Given a family {A;: iel} of subsets in X, a family of linear 

functionals on X{&t: iel}, not all zero, is said to separate {A;: iel} (in Vlach's 

sense) if 

(0 X>< = ° 
(ii) | sup <<2>;; x> < 0 

(iii) there exists at least one j el such that 

inf <<£;, x> < sup (<Pj, x>. 
xeAj xeAj 

A family {A;: i el} is said to be separated if there exists a family {$ ; : i el} of 
linear functionals on X which separates {A,-: i e / } . 

3.4.2. Theorem. A finite family {A;: i el} of convex subsets in X is separated 

(a) if and only if Pi icr A; = 0, when icr A; + 0 for all iel. 
iel 

(b) if and only if A,- n f) cor A; = 0, when cor A; + 0 Vi e 7 \ {j}. 

(c) if Aj n Pi i c rA ; = 0, when i c rA ; *- 0 V i e J \ { / } and codim (affA;) < + GO 
iel\{j) 

V i e / \ { ; } . 

Proof. See Bair [ l ] , Theorem 2.1 of Chapter 6. 

3.5. Abstract dual problem 

Let ^ * be the dual space to &. Every element pe0"* has the form 

P = % (r«0, hi, ••; f„K^„=l...N, z) 

where x eX*, rnke RVn = l . . . JVand/c = 0, 1 ... K(n), z e Z*. 
N 

Let {p°, p"k: n = 1 ... N, k = 1 ... K(n)} be a family of 1 + E ^ ( n ) functionals 
in ^ * of the following form 
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P0 = (*0>(r0no^0
nu...,r°nlc(n)l^...„,-z0) 

P*k = (x*k,(Kl?nl...,KkKM)n~X...N,?,k) 

3.5.2. Lemma. If sup <p°, p> < +00, then 
pePo 

(i) x° = 0, -z°eZ*+ 

(ii) f°n0 < 0 and f°nk = 0 Vn = 1 .. . JV Vfc = 1 . . . K(n). 

Proof. The statement follows easily from the structure of P0 . 

3.5.3. Lemma. If snk = sup <p"\ p> < +00, then 
P£Pnk(y) 

(i) fnk
t = 0 Vm + n Vi = 0, 1, ..., K(m) and z"k e Z* 

(ii) r„"t=-Pn"0 Vie {!,...,K(n)}x{fc}. 

Proof. The statement (i) follows immediately from the structure of P„k(y). Since 
fnk

k and f„% are nonnegative (for rnk and r„0 may be arbitrarily negative) one can write 

snk = sup [<x"\ x> + £ (r„"0 + rff). rBi + 
X6Sn(7„fcnF„fc i*A,0 

r„,sR 

+ ( # + fn
nl) . (unk(x) - ynvnk(x)) + <z""\ a(x)>] . 

Since rni are arbitrary for i + k, 0, we have 

fit + Kk = 0 vi + fc, 0 

or fn
fc = -rn"0 Vi + fc,0, 

From Lemma 3.5.3 it follows immediately 

3.5.4. Lemma. If sup <p"\ p> < +oo, then 
pePnk(y) 

sup {<p"\ p>: p e Pnk(y)} = sup {<x"\ x> + (ff0 + f g ) . («nk(x) -

- w U * ) ) + <z"\ a(x)>: x e S n U„fc n Vnk} . 

3.5.5. Lemma. If the family (3.5.1) separates the family {P0, P„k(y): n =» X... 
...JV, fc = 1 . . .K(n)}, then 

IV F(n) 

0) Z S«*-o 
B = l l f c = l 

(ii) For each n = 1, ..., JV r% + r^ = r" is constant for all fc = 1, . . . , K(n) 

(iii) s„»(>>) = sup {<p"\ p>: p e Pnk(y)} = sup {<x"\ x> + r"(unk(x) - ynvnk(x)) + 

+ {znk,g(x)y.xeSnUnknVnk} 
N K(n) 

(iv) I £5*00 gO. 
B = l f t = l 

Proof. From definition of set separation and Lemma 3.5.2(f) we have immediately 
assertions (i) and (iv). Assertion (iii) follows then from Lemma 3.5.4 and assertion (ii). 
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So it remains to prove (ii). Fix an n e { l , . . . ,N} . From Lemma 3.5.2(ii), Lemma 
N K(n) 

3.5.3(i) and condition p° + £ E P"k = ° w e obtain 
n = l t = l 

K(») 

l t=! 

and K(n) 

£ ^ = 0 Vfc=l,...,K(n). 
i = l 

Now combining Lemma 3.5.3(ii) and the last equality we have 
KM 

Ko + ft - -Ho - I ^ - I i-n"o = ?" = 0 for all fc = 1, ...,K(n). 
i*fc,0 i = l 

The lemma is thus proved. 

3.5.6. Definition. We introduce now the following set 

9 = {d = (x"\z"\r")„ = 1. w |3c"k6X*, Z " " G Z + , Vn, fc, [>-,...,»•") e R++ & 
t= l . . .K(») 

W Jf(n) 
&Z 1 ^ = 0} 

n = l k = l 

and the multivalued maps 

Dw(y) = {de®:iKj:snk(d,y)S0} 

and 

where 
Ds(y) = {d e Dw(y): r" > 0 Vn - 1 . . . iV} , 

snk(d, y) = sup {<x"\ x> + r"(unk(x) ~ ynvjx)) + 

+ <z"\ g(x)y. xeSnUnkn Vnk} . 

3.5.7. Lemma. If vnk(x) ^ 0 for all feasible n, fc and x then both maps Dw(y) and 
Ds(y) satisfy the dual availability. 

Proof. The statement follows immediately from definition. 

3.5.8. Assumption. In the sequel we suppose that 

vnk(x) ^ 0 for all feasible n, fc and x . 

3.5.9. Lemma. If Y+ = {(yu ..., yN) e RN: y„ > 0 Vn = 1 ... N}, then the maps 
P(y) and Dw(y) satisfy the weak duality condition. 

Proof. Let y* e Q such that Dw(y*) + 0. Let >> > >>* which means j>„ > >>* 
for all n = 1, ,.., AT. Suppose, on the contrary, that P(y) # 0. Choose p' = (x', 

(r'no, • • •, r'mn))„=u..N, d(x')) 6 P(j). We have 
K(«) 

E ("„&(*') — yn
vnk(x')) s= 0 for all feasible n, and 
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fl(x') 6 Z + . 
K(n) 

Since vJx) > 0 for all feasible n, k and x and Y o„*(x) + 0 for all n, there exists, 
fc=i 

for each n, a fc e {1, ..., K(n)} with i>„fc(x') > 0. So we have, for all n, 
K(n) K(n) 

S M*0 - )'* «U*0) > I M*0 - y. »*(*')) = o. 
4 = 1 fc=l 

Hence, for a d e Dw(y*) we have 

0 > X snk(d, y)^Y [<*•*, *'> + r»(«„*(*0 ~ V* VM')) + <*"*. 3(x')>] > 
n,k n.fc 

> Z ~r"(unk(x') - y, vnk(x')) = 0 
n,fc 

which is absurd. We have thus proved P(y) = 0. 

Analogously we have 
3.5.10. Lemma. The maps P(y) and £>s(j) satisfy the weak duality condition 

3.5.11. Definition. Denote 

(i) 3>w = U Dw(y) with vw(d) = {y e Q: d e Dw(y)} 
yen 

and 
(ii) 3s = U 0s(j>) with vs(d) = {y e Q: d e Z)s(»}. 

According to Definition 2.2 we will have the following dual problems to the 
fractional program (FP): 

Minw-Inf£ vw(S>w) 
and 

Mins-Inf£ f(3>s), 

which are called Fenchel-Lagrange duals to program (FP). 
Now we shall prove some duality principles for this duality. 

3.6. Theorem. (Weak Duality.) We have 

flf) = v\2w) 
and 

/ ( # • ) = v s ( ^ s ) . 

Proof. The statement is a consequence of Theorem 2.3, Lemmas 3.5.9 and 3.5.10 
and relation 3.3.2. 

3.7. Theorem. (Maxs-Mins Strong Duality.) 

Maxs/(.F) n Mins vs(^s) = /(#") n v\3s) 

Proof. The assertion follows from Corollary 2.4, Proposition 3.3.3, relation 
3.3.2 and Lemma 3.5.10. 
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3.8. Fenchel-SIater constraint qualification 

(i) Fenchel constraint qualification: 

n icr [S n Unk n Vnt] * 0 and i c r Z + * 0 
n,k 

(ii) Slater constraint qualification: 

Vz e Z*+ + 3x e S n ( n Unk n Vnk): <f, a(x)> > 0 . 
n,k 

It is easy to prove the following 

3.9. Lemma. If the Fenchel constraint qualification holds then 

icr P 0 4= 0 and icr P„k(y) + 0 for all feasible n, k and y . 

3.10. Lemma. Suppose that S n Unk n Vnk are convex and uk(x) — y„vjx) are 
concave for all feasible n, k and y and g(x) is concave on S. Then the Fenchel-SIater 
constraint qualification implies the Supw-Infw strong duality condition. 

Proof. The sets P 0 and Pjy) are convex and have nonempty relative core for all 
feasible n, k and y by Lemma 3.9. If P(y) = 0 then by Theorem 3.4.2(a) there exists 
a family {p°, pnk: n = I ... N, k = I ... K(n)} c 3P* which separates the family 
{P0, Pjy): n = 1 ... N, k = 1 ... K(n)}. Put 

K(n) 

rn = Y,Kl Vn » l . . . N 

and 

Then by Lemma 3.5.5 

d = (Г\T\ř»)n^N 
k=\...K(n) 

£ sjd, y)й0. 
n,k 

Suppose, on the contrary, that d $ 2 which means r" = 0 for all n. Then, in virtue 
of Lemma 3.5.3 and the fact that rn0 = 0 for all k, we have r"k = 0 for all feasible 
n, k and i. If there is znk e Z* + then by the Slater constraint qualification there 
exists x e n (S n Unk n Vnfe) with <z"*, g(x)} > 0 that leads to the following ab
surdity "•* 

0 > y > 4 ^ ) > £ <z"*, g(x)> > 0 . 
n,k n k 

So z"k = 0 for all feasible n and k. In this case there exists, at least one xnk 4= 0. 
Then the family {xnk: n = 1 . . . N, k = 1 . . . K(n)} separates the family {S n Unt n 
n V„k: n = I ...N, k = I... K(n)} which, in virtue of Theorem 3.4.2(a), contradicts 
the Fenchel constraint qualification. The lemma is thus proved. 

3.11. Theorem. (Supw-Infw Strong Duality.) Suppose that the following conditions 

hold: 

(i) g(x) is concave on convex set S, 
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(ii) unk(x) — yn vnk(x) are concave on convex set S n Unk n Vnk for all feasible n, k 
and y, 

(iii) the Fenchel-Slater constraint qualification. 

Then 
SupX (/(&)) n c o r Q = Inf£ (vw(&w)) n cor Q . 

Proof. The statement follows from Lemma 3.10, Proposition 3.3.3 and Theorem 
2.5. 

In the sequel we will transform the Fenchel-Lagrange duals to the so-called 
canonical Fenchel-Lagrange duals which are more suitable for the numerical 
calculation. 

3.12. Assumption. In the sequel we suppose that vnk(x) are positive for all feasible 
n, k and x and Q is of the following form 

Q = [au fej] x ... x [a,„ b„] x ... x [av , bN] 

where a„, b„eRv [ - co , +00} and the notations [—00 resp. +00] are equivalent 
to (— 00 resp. + 00). 

3.13. Definition. Putting 

S£ = {3 = (xnk, znk, f", snk)n = 1...N : x"k eX*, znk eZ*+,rn>0, 
t=l . . .K(n) 

snk e R, V«, k, £ xnk = 0 & X *"" = °} » 
n,k n.k 

we define the following function L: Sf -» Q 

L(3) = (yu...,yN) 
where 

(X\ xy + fn unk(x) + (znk, g(x)> - -sn' 
v„ = max ^ an, sup sup 

k=l...K(n) xeSnU„kr,V„k r" V„k(x) 

The problem 
Min-Inffi L(Sf) 

will be called the canonical Fenchel-Lagrange dual to program (FP). 

3.14. Lemma. 

L(S£) + RN
+= v\$s) + R+. 

Proof. Obviously L(S£) <= v\@% hence L(SC) + R+ <= ?(&) + RN
+. Conversely, 

let d = (xnk, znk, r") e 9s and y e v\d) which means 

Ysnk(d,y)^0. 
n,k 
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Then one can choose snk ^ snk(d, y) for all n, k such that £ ~s"k = ° a n d 

L(xnk, z"\ r, snk) g y. So we have y e L(£?) + < . "'" 

3.15. Lemma. 

Mins-Inffi L(JSP) = Mins-Infn vs(3s). 

Proof. The statement follows from Lemmas 1.5 and 3.14. 

Combining Theorem 3.7 and Lemma 3.15 we obtain 

3.16. Theorem. (Maxs-Mins Strong Duality.) 

Max s/(J^) n MinsL(<£) = f(&) n L(;5f). 

The following two lemmas are evident 

3.17. Lemma. If vw(^w) n cor Q c lin vs(^s) then 

Inf£ vw(3w) n cor Q = Inf/J vs(S>s) n cor Q . 

3.18. Lemma. If N = 1 then 3W = 3s and 

V"(3W) = vs(3s). 

3.19. Lemma. Suppose that the following conditions hold: 
(i) Vy G Q 3M Vn Vfc Vx e S n Unk n Vnt: ujx) ~ yn vjx) < M, 
(ii) Vn 3k 3c > 0 Vx e S n U„k n V„t: w„k(x) £ c. 
Then 

vw(Sw) n cor Q <= lin v s(S s) . 

Proof. Let y 6 vw(3w) n cor fi. There exists d = (x"\ z"\ f") e 3W with 

E 5 „ t ( d , y ) ^ 0 . 
n,k 

Without loss of generality we can suppose that r1 > 0 and vtl(x) — c for all 
x e S n Ult n Vu. Fix an arbitrary 8 > 0 and choose an e > 0 such that 

N 

£ K ( n ) , 8 . M < r 1 . « 5 . c . 
n = l 

Now it is easy to verify that d0 = (x"\ z"\ r0), where 

rj = f1 and ?£ = ?" + £ Vn + 1 , 

belongs to 3s for (yi + 5, y 2 , . . . , y„) e vs(d0) . 
So, by a limit passage (5 j , 0), we obtain y e lin vs(Ss). 

Summarizing Theorem 3.11, Lemma 3.15 and Lemma 3.17 we obtain 

3.20. Theorem. (Supw-Infw Strong Duality.) Suppose that the following conditions 
hold: 

(i) g(x) is concave on the convex set S, 
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(ii) u„k(x) — y„ v„k(x) are concave on convex set S n U„k n Vnk for all feasible n, k 
and y, 

(iii) The Fenchel-Slater constraint qualification, 
(iv) vw(3iw) n cor Q <= lin vs(^s). 
Then 

Supfl (/(#")) n cor Q = Inf£ (L(.Sf)) n cor J2 . 

3.21. Proposition. Suppose that u„k(x) are concave on U„k for all n and fe. If for 
each » = 1, . . . , N one of the following cases holds: 
(i) v„k(x) are affine for all k = 1, ..., K(n) and [a„, b„] = (— oo, + oo) 

(ii) v„k(x) are convex for all k = 1, ..., i£(n) and [a„, b„~\ = [0, + oo) 
(iii) v„k(x) are concave for all k = 1, ...,K(n) and [a„, fc„] = (—oo, 0], 
then condition (ii) of Theorem 3.20 is fulfilled. 

Proof. The statement follows easily from the properties of concave functions. 

Now we shall consider some special cases where the Fenchel-Lagrange duality 
can be considerably simplified. 

3.22. Fenchel duality. If the constraint g(x) e Z+ does not occur in program (FP), 
then g(x) may be regarded as g(x) = + oo for all xeX. The dual to program (FP), 
defined in Definition 3.13, is called now the Fenchel dual. Put 

jjp. =. {(x"k, r", s"k)„=mmmmN : x"k e X*, rn > 0, s"k e R, Vn, k, £ xnk = 0, £ s"k = 0} 
k=l...K(n) n,k n.k 

and 
L(xnk,Fn,S"k) = (yi,...,yN) 

where 
r <xnk,xy + f"u„k(x)-s"k' 

yn = max J a„, sup sup "^-^ 

( k=l...K(n)xBU„knV„k f Onk(x) 

The Fenchel dual has then the form 

Min-Inffl L(^x) . 

Theorem 3A6 and Theorem 3.20, where the Slater constraint qualification is 
automatically fulfilled, hold for this duality. 

3.23. Lagrange duality. If in program (FP) all function are assumed to be defined 
on all space X, then the canonical Fenchel-Lagrange dual attains the form 

Min-InfQ L(J5?2) 
where 

if2 = {(z"k, r", s"k): znk e Z*, f > 0, s"k e R, Y. snk = 0} 

and L(znk,F",Snk) = (yu...,yN) 

with 
f f-ujx) + <znk,g(x)>-snk) 

y„ = max \an, sup sup 5 ^ ^ i — a v >' \ . 
{ k=i...K(n) xzx r"vnk(x) j 
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This dual is called the Lagrange dual to program (FP). Theorem 3.16 and Theorem 
3.20, where the Fenchel constraint qualification is reduced to cor X =t= 0, also hold 
for this duality. 

3.24. Scalar Fractional Programming 

Let us consider the program 

(a) a = sup { X uk(x)l X vk(x): x e S n ( f) Uk n Vk) & g(x) e Z+] . 
ii k=l fc=l fc=l 

For program (a) we suppose the following assumptions 

(i) g(x) is concave on convex set S, 

(ii) uk(x) are concave on Uk for all k — 1,...,K, 

(iii) vk(x) are all affine on Vk and Q = ( — oo, +oo) or vk(x) are all convex on Vk 

and Q = [0, + oo) and a > 0 or vk(x) are all concave on Vk and Q = (— oo, 0]. 

3.24.1. Lemma. The Fenchel-Lagrange dual to program (a) is 

(P) J? = inf sup sup / 5 i _ _ _ >*\ u 
So k=l...KxeSnUknVk

 Vk(X) 

where 
K K 

_?0 = { ( x \ _ \ s " ) : x ' [ 6 Z * , - f c e Z * , s * : e R , k = 1,.. . ,X, __ x* = 0, £ s* = 0} . 
fc=i fc=i 

Proof. According to Definition 3.13 it suffices to prove for Q = [0, +oo) 

<x\ x> + uk(x) + <z\ fl(x)> — sk . . ,,,__ __ __v 
y = sup sup / a - - "v y / _j 0 V(x\ z \ s*) e i ? 0 • 

fc=l...KxESnt/tnFfc Vk(x) 

K 

Indeed, let x' be a feasible solution of program (a) with X H t(x0 > 0 > t n e n w e n a v e 

fc=i 

>> p_(xO = <**. *'> + uk(x') + <_* a(x')> - a * V/< = 1 ... K => 

=> j> __ .„(*') _s X ut(x') + X <-*, g(x')y >0~y>0. 
: fc=l fc=l fc=l 

Summarizing Lemmas 3.18, 3.21, 3.24.1 and Theorem 3.20 we obtain 

3.24.2. Theorem. (Strong Duality.) If the Fenchel-Slater constraint qualification 
holds then a = /?. 

Finally we shall consider a more special case of program (a): 

K K 

(o0) a = sup { X uk(x)jv(x): x e S n V n ( n U f c ) & g(x) eZ+] . 
Si fc=l fc=l 

317 



Put vk(x) = v(x)\K and Vk = V for all k = 1, ..., X. Then the Fenchel-Lagrange 
dual to program (a0) is (by Lemma 3.24.1) 

(P0) P = mf\j,(xk,zk,sk) 
•S?o 

where 

, / - t -* -t\ v <**> x> + " t W + <zk,g(x)y - s* ^(x*, z\ sk) = sup sup K - ^ -J ' " v " 
k=l...K xeSnVnVk v(x) 

and 

J?0 = {(jc*, z\ sk): xk e X*, zkeZ*+, sk e R, £ x* = 0, £ s* = 0} . 
k=i t = i 

Put 

cp(xk,zk,?)~i sup <g^> + V») + <g'.g(*)>-_g. 
*=lxeSnFnl7k v(x) 

Obviously 

3.24.3. p(x*, z*5 s
k) = ii(xk, z \ sk) V(x*, z\ sk) e <£0 . 

3.24.4. Lemma. For any feasible solution x of program (a0) and any (xk, zk, sk) e SC0 

we have K 

j t = i 

Proof. Indeed, one has 
K 

<p(xk, z\ *) ^ £ <^x> + ut(x) + <zAa(x)>-s" ^ J > W 
t = i D(X) i>(x) 

Program 

(P') P' =inf<p(xk,zk,sk) 
£a 

is called the revised Fenchel-Lagrange dual to program (a0). 

From Theorem 3.24.2 and the relation 3.24.3 it follows 

3.24.5. Theorem. (Strong Duality.) If the Fenchel-Slater constraint qualification 
holds, then a = />". 

3.25. Remark. In Cambini, Martein [2] a dual similar to (/?') has been established 
for program (a0), where K = 2. 

(Received August 26. 1985.) 
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