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SPECTRAL DECOMPOSITION OF LOCALLY
STATIONARY RANDOM PROCESSES

JIRT MICHALEK

This paper deals with locally stationary random processes introduced by Silverman in [1].
The spectral representation of such processes is obtained; the results generalize those of Silverman.

The notion of a locally stationary process is introduced by Silverman in [1].
This is a new kind of a random process generalizing the notion of a weakly station-
ary process. Let {x(t)}, t € R, be a random process, generally complex, with vanishing
mean value and finite covariance function R(s, 1) = E{x(s) X(1)} on R, x ®,, where
%(t) is the complex conjugate to x(t). The author of [1] says that the random process
{x(t)}, te R, is locally stationary in the wide sense, or has a locally stationary
covariance, if its covariance can be written as

t .
R(s, 1) = R, (i; > Ry(s — 1) for every pair s,1eR,,

where R, 2 0 and R, is a stationary covariance function. We can put R,(0) = 1,
R,(0) = 1 without loss of generality. In case R, = const & 0 we obtain a weakly
stationary covariance function. Some examples of locally stationary processes are
exhibited in [1], too.

We need the following facts about the harmonic analysis of nonstationary random
processes. Following [2], we say that x{t) is harmonizable if x(r) can be expressed
in the form

x{1) = f : e de(l), ‘

where the integral is meant in the quadratic mean and é(A) is a second order random
process with zero mean value and covariance function 74, u) = E{&(4) &(u)} of
bounded variation on ®, x R,. It is proved in [2] that x(t) is harmonizable if and
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only if its covariance function R(s, f) has the spectral representation
+ o + o
R(s, 1) = J f !0 ddy(4, p)
—0d -

where y(4, p) is a covariance function of bounded variation on R; x R;. The last
integral is understood in the Riemann-Stieltjes sense. In such a case we shall say
that R(s, t) is harmonizable, too. When

ddy(A, p) = f(%, p) d2 dp,

then f(A, p) is called the spectral density function of x(z). If x(¢) is locally stationary
and harmonizable with spectral density function then, as it is proved in [1], its
covariance function has a spectral representation

o pto
R(s,t)=f j‘ elhm £(Q, pydA dp,

—w0J -0

where f(4, p) is a locally stationary covariance, too, i.e.

SOk = £y (l : ") - ),

f1 = 0 and f, is a stationary covariance.

This relation can be understood as a generalization of the famous Wiener-Khint-
chine relation for the case of locally stationary random process.

The following Theorem 1 and Theorem 2 are opposite assertions with respect
to the generalized Wiener-Khintchine relation. '

Theorem 1. Let x(r) be a harmonizable random process with the spectral density
function f(2, u) of the form

Fan) = £y (* na-n,

where f; = 0 and f, is a stationary covariance function. Then x() is a locally station-
ary random process.

Proof. We assume that x() is harmonizable having a spectral density, i.e. its
covariance function R(s, ) has representation

) R(s, 1) = j " f " g g, (l * ")fz(A - W dadu,

w 2

where {12 X2 |£,((2 + 1)/2) fo(A — p)] dA dp exists.
Let us consider the transformation T(A, u) = (u,v), where u = (1 + p)/2, v =
= A — p. Using this transformation, the integral (1) can be expressed as

R(s, ) = f J e (5 £,(u) 1) dw aw,
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hence
R(s.1) = R, (EZJ) Rs — 1)
where

Ry(x) = Jﬂo e folu)du, R,(y) = JH - ' f1(v) dv.

P —-®

As f; = 0, R, is a stationary covariance and as f, is a stationary covariance, it is
R, = 0. It means that R(s, t) is a locally stationary covariance function. O
We need the following Lemma 1 and Lemma 2 for proofs of further results.
Lemma 1. Let £, g be complex functions on (oo, + o), let £(+), #(*) be second order
stochastic processes with E{&(s) fi(t)} = (s, ¢). If {72 fd¢, [I5 g dn exist in the
quadratic mean -then

+ oo +oo o oo
EU fng’ gdﬁ}:J J /3 ddTy, .

Proof. As [12 fd¢ = Li.m. [} fd¢ itis sufficient to prove Lemma 1 for bounded
A= —®

intervals only, i.c. Botwo

B B B pB
E{J. fdfj gdﬁ}:J‘ Jfgddl"g,,.
A A ada

According to the definition of the stochastic integrals _;'ﬁ fdeg, )'/‘i g dn there exists
5 > 0 for every & > 0 such that for every subdivisions 2,, 2, of [A, B] with the
norms |2,] < 8, |2,] < é

2

} < &

|
2
E }<£2.

{
This fact gives, further, that

e { [V rac ["aaal — 2 ey St it
< [(EljZa(s}‘)Aﬁ(s,)lz)”Z + (E fAf d¢ )] e

for every 2,, 2, with |2,] < 5, [|2.] < 0. That proves firstly the existence of the
Riemann-Stieltjes integral [} [X /g ddI;, and secondly the equality

B B B B
EU fdg[ gdﬁ}=f J./jq“ddl‘c,,. O
A A AJA

Lemma 2. Let &(1) be a second order stochastic process having the derivative &'

FdE — SA(E) ALr)

I
I

g dn = 3 g(s7) Anls;)

=
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in the quadratic mean with continuous covariance function. If ]iﬁfdé exists in
the quadratic mean then

fmf(r) défr) - jjmf(r) £(1)dr.

Proof. Let I be the covariance function of &(+). The existence of &'(+) implies
the existence of the second derivative 82I(s, ?)[ds 0t because E{&(s) (1)} =
= &I'(s, 1)}és ot. Now, let [*2fd¢ exist. Then the integral [*2 [*2/7ddI exists
as the limit of [} fX /7 ddI’ when 4 - — o0, B — 4 oo. This integral can be approxi-
mated by sums of the form

b Zf(s;*)f(tf) AAT(s;, 1))
where s; < 57 < ;. 1 t; £ tf £ t;,,. The existence and continuity of 8I'(s, £)[ds 0t

yield that AAI(s;, t;) = 21“ (s, t)fos at! roas) As; AL With0 < 0, < 1,0<0, < 1.
I

i+ 02A;
That proves the existence of the integral

j jf()r(z)”“ ) s as

and at the same time the equality
B B B B a2
J j F(5)7(1) ddI(s, 1) = J J £6)70) T g gy
Ada Ada os ot

As 9*['(s, 1)/os 0t is the covariance function of ¢ the existence of

f "7 700 E1ED g ar
AJA

os ot

insures the existence of the stochastic integral % f(r) £(¢) dt. It remains to prove
the equality [3 /(1) d&(t) = [Rf(£) €(1) dt. Let us prove that E|[3fd& — [Rf&']> =0

We have
e o)L effra{-
el 3%

According to Lemma 1

e{[Croe [} = [ s etae 20 -

[ f(s) HOES ar (s P goqr because E{&(s) & (1)} = ir.é.i_‘)
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In this way we obtained that {3 d¢ = [Xf¢'. This equality holding for every bounded
interval [A, B] gives immediately that {23 f(¢) d&(s) = [T2 f(1) &(t) dr. O

Theorem 2. Let x(7) be a harmonizable random process with spectral density
function f(4, p) of the form

f i) = 1 (l E “) £ - 1)

where f, is continuous and nonnegative, f, is a continuous stationary covariance.
Then x(7) has the following spectral representation

+ o0

/ itd /-

x{t) =J el 2/ Ay da,
-

where z(4) is a locally stationary random process, too.

Proof. Theorem 1 says that x(¢) is locally stationary. Being harmonizable x(f)
can be expressed as

+ o R
*(i) = f o dE(J),
-®
where &(2) is a second order random process with covariance function y(2, u). We
assume the existence of spectral density function of x(r), i.e.

) , A+ u
®) ddy(A, p) = f{4, p)didu = f, (—f) fo(d — wydidp.
Tt follows from the existence of {13 [Z2 |f(4, p)| d4 du that

10, 1) = fm J‘“wfl (” - 1i)fz(u — o) dudy.

2

Let us prove that f(i) has the derivative in the quadratic mean. As familiarly known,
such a derivative exists if and only if y(4, y) has the generalized second derivative
on the diagonal (4, 4)

. Ak AN
lim —A—”M = lim ! fi ut v So(u — v)dudo.
B=0.k' =0 hh' n~0,4'~0 hh' J, 2 2

As f, is assumed to be continuous there exists the quadratic mean derivative &'(4)
of &(4) and its covariance function
A+ p

3 E{é’(i)f’(u)}=f1( : )fz(i-u)

is, as we see, locally stationary. Now, we can apply Lemma 2 and we immediately
obtain

@ ) = f e 0
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The following Theorem 3 expresses the inverse formula to the formula (4).
Theorem 3. Let z{J) be a locally stationary random process with the continuous
covariance function f(4, 1) = f1((4 + w)[2) fo(A — ). If (L2 (72 |7 (A )| <
then there exists
+ e
(%) x(t) = J‘ et z03) di
-
in the quadratic mean sense and x(z) is locally stationary, too. If [*% [*% |[E{x's).
. X(f)}] ds dt < oo then
+o
() = iJ' ™ x(1) dt .
2m
Proof. The integral (5) exists if and only if the integral £ [T% ¢!t47m (3, 1),
. d2 du exists, where f(4, p) is the covariance function of z(+). As we assume the
existence of {12 [*%2 |f(4, u)| dA dp and |e'**] £ 1 then the integral (5) exists in the
quadratic mean sense. It follows that x{¢) is harmonizable with covariance function

o ptw
R(s, 1) = I. J. Qi £, (#) Fald = pydadp

o

—n

according to Lemma 1. By use of transformation T(4, ) = (u, v), u = (4 + p)/2,
v = A — u wecan write

R(s, t) _ J<+w J-+°° ei(s*r)"fl(u) ei(¥)ﬂf2(0) dv = R, ( )RZ(S - t) .

Surely, R, = 0 and R, is a stationary covariance. It means that x{r) is a locally
stationary process, too. We have proved that

s+t
2

+ o oo
Ry(x) = j e fo(v) dv, Ry(y) = J e fi(u) du
The integral
1 re
w(d) = _j o x(d) d
2n

—

exists in the quadratic mean sense because according to Lemma 1
+ oo

E{w(2) W(y)} = @ J j“’ f o~ et E{x(s) 5(0)) ds dt =

—w

= ﬁjﬂmjwme_“””“)lzl (s ; t) Ry(s — f)dsdt =
T —wd —w

@ © AEE
= (Vrl)'i.r r e i R (1) e"‘( z )Rz(v) dudo =
20 e J

v ro i, 2+
= 511; e iti-mu Rl(“)duzlj e"l( 7 ) Rz(v) dv = f; (——2\’{)]:‘2(,1 _ ”)
— TJ_ o

249



exists for every pair (4, u). Now, we must prove that w{1) = z(1) for every Ae R;.
For this reason we estimate
z}

|

Surely, z(4) = LLmA(]/h) J3*" 2{u) du, where the integral is understood in the

2

n——jmmwwa

quadratic mean sense. The integral {;*" z{u) du exists in the quadratic mean because

the process z {*) has the continuous covariance function and therefore the integral
J37" {47 E{z(u) 2(v)} du dv exists. We can express -
2}

{- r”' 1rh[z(u) — (A)] du
[ et - 1200 - 2

[1-efil,
according to Lemma 1. The continuity of E{z(u) Z(v)} at the point (4, 2) implies
that 1im E|(1/h) [37" 2(u) du — z{1)]* = 0. With respect to the inverse formula
b0

for harmonizable processes

1 +t —1(/ +hyt __ e —iAt At+h
Lim. — J‘ - x{f) dt = J' z(u) du

. it 1

for h > 0 and every A € R,. Then it is possible to write

1 1t
E {~ z(u) du — el %(1) dt}
h), i -
bt —idsig—ish _ Fo
—limEJL ) x(s) ds L e x(r) dtl =
o (20 ), —ish 2n ) o

= lim —— J'H rm e 1) e E{x(s) X(1)} ds dt =

e 4m —ish

—zdJ

+oo ﬂi.s —nsh -
i it ) e Ry [ — sE! Ry(s — t)dsdt
Cw —~1sh 2

“because |(e“"’ - D ——1sh){ <1 and [T2(%%|R(s, 1)] dsdt exists. Now, we use
the triangular inequality

2172

) =

© @
- (: V(e[ e L] o)

which holds for every & > 0. The first term in (6) tends to zero for # — 0, the second

z(/l)—%;fiw o= x() di

(i) — Hmz(u) du

A
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term can be calculated by aim of Lemma 1 as follows

Atk +oo 2 Ath pa+h
+ 0 + o0
+ %J‘ f e iU R, <S + t) Ry(s — f)dsdt —
4n° ) J-w 2
1 A+ h 1 + o0 . 1 + o0 . 1 A+ h
—E{- | zu)du — el 5(t) dt\ — E)J— e M x(1) dr Hu) du'l =
hJ 2n o 2w, nJ,
ith pAth
=L £ (S22 fal — o) dudo + £1(2) £2(0) —
h* ), 2 2

+ow ptoo —ish __
-1 cTis (,e i) e Ry st! Ry(s — t)dsdr —
4n? ) _ o) —ish 2

t@ preo ish _ ¢4t
- 4—:[—2". J. g i (—E—TSE—I) R, (5; )Rz(t —s)deds.

As [(e'* — 1)/(ish)] = 1 and lim (™" — 1)f(ish) = 1. it is
h=0

o,

1 At+h 1 + o0 -
lim E{ |~ du — — e x(1) di
e o]

-0 i

which proves that
+ 0

(1) = %j o xli) dt 0

—»

We have so far assumed the existence of the spectral density function of x(1).
At this moment we omit this assumption and let x(r} be generally locally stationary
and harmonizable. It means that there exists a spectral decomposition

x(1) = wa e d&(d),

where E{d&(4) d&()} = ddy(2, u) and y(4, u) is a covariance function with bounded
variation on R, x . The covariance function of x(t) R(s, t) can be expressed as

0 R = [ an - & ()R-

. 2

~on

where R; 2 0 and R, is a stationary covariance function. When we put s = ¢, then
R(s, s) = Ry(s) . Ry(0) = [ 2 [£% e(~# ddy(4, ), similarly when 5 = —¢, then

K (i - %) = Ry(0) Ryofs) = IW f e aa, ).

~0J -
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These relations imply that

R(u,u)=R1<u;U>R2(u—v)=R<“_”,U‘“>R(u+U’u-l—v)

2 2

for every pair (u, v). Now, we shall put
s+t
2
into (7). Then s = x + y[2,t = x — y[2 and
R R PY (V) [ (4
Ry(x) Ry(y) =J J. € “x+2)e W ) ddy(4, p) =

-

+ o pt+ o . i (m)
=j .( el*(4=m e ddy(2, 1)

-

X, §s—t=y

@

We again apply the transformation T:u = (4 + p)/2, v = A — p which implies
a new measure r{u, v) in R, x R, by the relation

f f ddru, v) = f '( ddy(s w),

T-1(ExF)
where E x F is a measurable rectangle in R, x R,. In terms of r(u, v) we obtain

Ry(%) Ry(y) = j'
If we put y = 0 then

+o +oo
Ry(x) = f J‘ei"" ddr(u, v) = J e dr,(v)

@©

+ o0

—w®

fe“‘" e ddr{u, v) .

where
+ o0
dry(v) = J‘ ddr(u, v),

similarly for x = 0O we get

+ o0

Ro(y) = J ¢ dr(u)

-~

where
+ o
dryu) = j ddr{u, o).
But it means, together, that

o +o ‘o
J' e drz(u)f e dr,(u) =J‘ e ddr(u, v)

- @

which yields that
ddr(u, v) = dry(v) dry(u).
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The process x(¢) is locally stationary, it means that R, = 0 and R, is a stationary
covariance; hence R, can be written as

+ oo
Ry(y) :f e dF (u),
where F is a probability distribution function because we put R,(0) = 1.
This fact implies that
dry(u) = dF,(u).
As Ry = 0and hence R is real, then

Ry(x) = {‘j“’ e dry(v) = Ry(x) = J

V=0

+

e ™ dF,(v) = J. e di,(—v) ;

+ o0
- —»

®
It gives dry(v) = dF,(—v), which means that d Re r,(*) is symmetric, i.e.,
B —-A
J d Re ry/v) = J‘ d Re r,(v)
A -B
and d Im r,(v) is antisymmetric, i.e.,
B -B
J dImr,(v) = —J‘ dImry(v).
A —A
Summarizing these facts we obtain conclusion that the transformation T associated
with definition of locally stationary processes decomposes the induced measure
r(u,v) into two independent parts r,(v), 7,(v), where 7,(+)is a probability distribution
function and the Fourier transform of r,(v) is nonnegative. On the contrary, if E(/l) is

arandom process whose covariance function y(2, i) has bounded vatiation on R, x R,
and if under the transformation T' the induced measure y7~1; i.e.

ddyT~*(u, v) = ddr{u, v),
is decomposable into two independent parts
ddr{u, v) = dr(v) dr,(u)

where 7,(v) is a probability distribution function and the Fourier transform of r,(u)
is nonnegative, then the Fourier transform of £(4) (in the quadratic mean sense)

J+ N 't dg(J)

@

is a locally stationary random process.
The following Theorem 4 gives the answer when a locally stationary random
process is harmonizable.

Theorem 4. Let x(t) be a locally stationary random process such that

Ry(x) = rw ¢ 4Fy(J)

-
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where F, is generally a complex measure with bounded variation. Then x(z) is
harmonizable.

Proof. We know that E{x(s)X(t)} = R,((s + 1)[2) Ry(s — ) = R(s, t) where
Ry(y) = [£2 ™ dF,(u) with a probability distribution function F;. This yields

T (st o
R(s, 1) = ‘f ez sz(l)J‘ el dF () =

—o0 -

‘o phe Ay (L
=[] et et a0,

J—w

Now, let us consider the transformation S: u = y + A[2,v = yu — A[2. Then R(s, {) =
= [12 [f2 e "™ ddy(u, v) where y(u,v) is induced from Fy(u) Fo(4) by the
transformation S. As the function ¢**~* js continuous we can assume that y(u, v)
is normalized as usually assumed in the -harmonic analysis. At this moment we
must prove that y{u, v) is covariance function belonging to a random process &(u).
F (1) F5(2) is of bounded variation so y(u, ) has bounded variation, too. It is
easy to prove that at every point (u, v) and for every pair h, b’ > O there exists

the limit
ot —iutf = ith Fiunfgish’ )
lim J J‘ e (e 1e (e D) R(t, s) dt ds

. (—if) (is)

equal to A,A,7(u, v). Using this fact we immediately see that the sequence

- iutf g~ ikt __
{J e_(e__l) x(t) dt}
. -1t A

is fundamental in the quadratic mean and hence there exists a random variable

o

—it

T

Hr oL —iutfa—ith _
®) 2(u) = Lim. J M =) iy ar

-t

(for every u € R, and every h > O). Surely,
E{z(u) Zo(u)} = A Ay (u, ) .

From the assumption of bounded variation of y(u,v) it is possible to put
y(— o0, —a0) = 0. Formula (8) gives by elementary calculation the additive property
of z,(u) in the following sense

= u -+t u+t.

z“H{—t):ZOz,,(uj) where —t<u, h= s u; = " IR
=

the last equality holds for every subdivision of [ —¢, 1). Let us prove that there exists
the limit
Lim. z,, /—1) = &(u);
11e
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it follows from that

E{Izn:{"t) - Zu+r+z("(t + T))|2} = E{lzr{‘(t + T))Iz} =

= AAY(~(t+ 1), —(t + 1)) >0 as t—> oo forevery t>0.
The continuity of scalar product with respect to convergence in the quadratic mean
yields that
cov (&(u), &(v)) = E{&(u) &)} = lim Efz,. (=) Z (=1} =
ttoo
=lim A, A, (—1, —1) = 3, 0) .
tteo

This assertion says that p(u, v) must be a covariance function. Using the theory
of harmonizable random processes presented in [2] we obtain from these facts
that x(z) is harmonizable and hence x{t) has a representation of the form

i) = f j: i a

{Received May 31, 1985.)
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