
K Y B E R N E T I K A - V O L U M E 22 (1986), N U M B E R 2 

HIERARCHY OF REVERSAL BOUNDED 
ONE-WAY MULTICOUNTER MACHINES 

JURAJ HROMKOVIČ 

We consider one-way partially blind multicounter machines and one-way multicounter machi
nes. We study the reversal bounded version of these machines, where for the input words of the 
length n the number of reversals is bounded by a function/(rc). It is established that time and 
nondeterminism, as the resources, cannot compensate for a substantial decrease of the number 
of reversals allowed. Several hierarchy results are consequences of this result. 

1. INTRODUCTION 

A multicounter machine is a multipushdown machine whose pushdown stores 
operate as counters, i.e. have a single-letter alphabet. Unrestricted multicounter 
machines accept all recursively enumerable sets [4]. So far various types of restricted 
multicounter machines have been considered to define proper subclasses [1, 3, 4, 5, 
6, 8, 9, 10]. In this paper we shall study one-way deterministic and nondeterministic 
multicounter machines with reversal number restriction, and one-way partially blind 
multicounter machines introduced in [5]. The reversal number bound is considered 
as a function f(n) of the input word length. It is established that time, nondeterminism, 
and counters, as the resources, cannot compensate for a substantial decrease of the 
number of reversals allowed. Several hierarchy results are consequences of this result. 

This paper consists of four sections. The basic definitions are given in Section 2. 
The main theorem and its consequences are formulated in Section 3, and the proof 
of the main theorem is given in Section 4. 

2. DEFINITIONS 

Let us first informally define one-way multicounter machines, and one-way partially 
blind multicounter machines. The formal definitions can be found in [4, 5]. 

A multicounter machine consists of a finite state control, a reading head which 
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reads the input from the input tape, and a finite number of counters. We regard 
a counter as an arithmetic register containing an integer which may be positive or zero. 
In one step, a multicounter machine may increment or decrement a counter by 1. 
The action or the choice of actions of the machine is determined by the input symbol 
currently scanned, the state of the machine and the sign of each counter: positive 
or zero. The machine starts with all counters empty and accepts if it reaches a final 
state with all counters empty. The class of one-way multicounter machines without 
time limitation will be denoted by COUNTER, the deterministic version by 
DCOUNTER. The class of one-way multicounter machines working in quasirealtime 
(for each machine there exists such a constant d that the length of each part of any 
computation, in which the reading head is stationary, is bounded by d) will be 
denoted by QR-COUNTER, the deterministic version by QR-DCOUNTER. 

A one-way partially blind multicounter machine is a one-way multicounter machine 
which has no information about the contents of its counters, i.e. it does not know 
whether its counter are empty or nonempty. If by the computation should any counter 
go negative, no further transitions are allowed and the machine does not accept 
the input word. The machine accepts the input words if it ends the computation 
in a final state with all "pblind" counters empty. The class of one-way (deterministic) 
partially blind multicounter machines will be denoted by PBLIND (DPBLIND), 
the class of quasirealtime (deterministic) partially blind multicounter machines will 
be denote by QR-PBLIND (QR-DPBLIND). 

Let M be a class of multicounter machines introduced. Then if (M) denotes the 
class of languages accepted by machines in M. Let A be a multicounter machine 
from the class M and L(A) be the language accepted by A. L e t / be a real function 
defined on natural numbers. Then LRf(A) denotes the set of all words in L(A) for 
which there is an accepting computation containing at most/(n) reversals, i.e. changes 
from increasing to decreasing contents of a counter or vice versa, where n is the 
length of the input words. Let G be the class of all functions q from natural numbers 
to positive real numbers such that for all natural numbers n: f(n) 2: q(n). Then we 
define the classes of languages 

&Kf(M) = U LRf(B) and i£(M - R(f)) = (J <£H(M). 
B E M qeG 

In what follows we shall often consider computations in which a multicounter 
machine reads a group of identical symbols whose number is greater than the number 
of states. Clearly, there has to be a state q which will be entered twice or more in 
different configurations in this part of computation. If these two occurrences of the 
state q are adjacent (no further state q and no two equal states different from q 
occur inbetween) we say that this part of the computation is a cycle with state 
characteristic q, reading head characteristic — the number (positive or zero) 
of symbols over which the reading head moves to the right in this cycle, and counter 
characteristic for each counter, which is the difference between the counter contents 
at the beginning and at the end of the cycle. Thus, the counter characteristic can be 
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positive, if the machine increases the contents of the counter in this cycle, can be 
negative if the counter contents is decreased in this part of the computation, and it 
can obviously be zero. 

Let s be the number of states of a multicounter machine A, and k be the number 
of counters. Then we can bound the number of all cycles with different characteristics 
by s . s . (2s + 1)k . 

Now, we introduce the following notation which we shall use in this paper. Let d 
be a real number. Then {d} is the smallest natural number k such that d ^ k, and [d~\ 
is the greatest natural number m such that d 2: m. Let j and g be functions defined 
on naturals. Then the fact lim f(n)jg(n) = 0 will be denoted byj(;i) = o(g(n)), and 

Ji->oo 

the fact that there exists a constant c such that limj(n)/a(n) = c will be denoted 

by f(n) = C(g(n)). Let N be the set of natural numbers. 
For u e {a-, b}*, # a(u) denotes the number of occurrences of a in u. 

3. RESULTS 

We shall study the hierarchy of reversal bounded multicounter, and partially blind 
multicounter machines, where the reversal bound is a function of the input word 
length. 

The following results were shown in [1]. Let rl < r2 be positive, real numbers. 
Then1 

SC(COUNTER-R(0)) _ Sf(COUNTER-R(l)) c S?(COUNTER-R(log2 n)) 

Sf(COUNTER-R(nri)) c S?(COUNTER-R(nr2)) 

SC(COUNTER-R((log2 n)r')) _ SC(COUNTER-R((log2 n)r2)). 

All these results were proved for deterministic multicounter machines, and two-way 
ones in [ l ] too. Some stronger results for two-way multicounter machines can be 
found in [3]. 

We generalize these assertions for one-way multicounter machines, and extend 
them for partially blind ones too. In fact, we prove that determinism, one pblind 
counter, real time, and g(n) reversal number bound can be more powerfull than 
nondeterminism, arbitrarily large number of counters, unbounded time, andj(n) = 
= o{g(n)) reversal number bound. This result is formulated in the following main 
theorem. 

Theorem 1. Let g, and j be functions from N toN fulfilling the following conditions. 

(1) n ^ g(n) ^ f(n) for all neN 

(2) f(n) = o(g(n)) 

1 In the sequel for the sets A, B symbol — means that A is a proper subset of B. 
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Then 
Se(QR-DPBLIND-R(g)) - Se(COUNTER-R(f)) * 0 . 

Using Theorem 1 we obtain several hierarchy results formulated in the following 
theorem. 

Theorem 2. Let g, a n d / be functions from N to N fulfilling the conditions (l),(2), 
(3), and (4) of Theorem 1. Then 

Se(QR-PBLIND-R(f)) c Se(QR-PBLIND-R(g)) 
Se(PBLlND-R(f)) c Se(PBLIND-R(g)) 
Sf(QR-COUNTER-R(f)) c Sf(QR-COUNTER-R(g)) 
Sf(COUNTER-R(f)) c Se(COUNTER-R(g)). 

Clearly, Theorem 2 does not involve all hierarchy consequences of Theorem 1. 
The hierarchy results contained in Theorem 2 can be formulated for deterministic 
machines, and for different types of time restriction too. 

Concluding this section we formulate an open problem. What is the relation 
between Se(QR-PBLIND-R(f)) and S?(QR-COUNTER-R(f)), where/is an arbitrary 
function? 

4. THE PROOF OF THEOREM 1 

The proof technique is a generalization of the proof technique used in [2, 7] for 
multihead finite automata. 

We shall consider the language L(g) — {w = uxu% ... up \ # a(w) = # b(w), 
Uj e a + b+ for ;' = 1, ..., p, p g {g(n)J2}, and for all v, y in {a, b}* such that w = vy 
it follows # a(v) ^ # b(v)}. This language belongs to Se(QR-DPBLIND-R(g)) 
because there is a QR-DPBLIND machine B (with one pblind counter) which 
accepts L(g) within the reversal bound g. The machine B reading the symbol a 
increases the content of its pblind counter by 1 and reading the symbol b decreases 
the content of its pblind counter by 1. If B ends the computation with empty pblind 
counter it will accept the input word. Let w = uxu2...uk be an input word for 
k > {g(n)J2}, ut in a + b + . Then B according to its definition has to reverse its pblind 
counter at least 2k — 1> g(n) times what means that the computation on w cannot 
be accepting. 

Now, we shall show by contradiction that L(g) does not belong to Se(COUNTER-
-R(f)). Let h be a function from naturals to positive reals such that h(n) ^ f(n). 
Let there is a COUNTER machine C with k counters, for a natural k, such that 
LRI,(C) = L(g). Let us consider an input word 

x = (as+it>s+1Yld2(k + 1M") a'b' 

of the length n = (25 + 2) dtd2(k + l) h(n) + 2t, where dud2. and t are some 
constants such that dt > s, and d2 > s2(2s + l)k (the number of cycles with different 
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characteristics). It is clear that x belongs to L(g) because 2(s + l) dxd2(k + 1) h(n) <, 
— n for sufficiently large n (h(n) <. f(n) = o(g(n)) i.e. h(n) = o(n)). 

In the following we shall construct a word x' not in L(g) such that A accepts x' 
if A accepts x. Clearly, this will prove our assertion. 

It is easy to see that there exists such a subword 

Xl „ (fl.+i,y+iyM.(*+» 

of x that the machine A when computing on xx does not reverse its counters. The 
fact that no reversal of counters is done in the part yx of the accepting computation 
y on the subword xx implies that each counter can be emptied at most once in the 
computation yx on x^ So we can assume that there exists such subword 

X2 „ (<?- + l 6 . + i)M» 

of the word xx that no counter is reversed or emptied in the part y2 of the accepting 
computation y on x2. 

Now, we shall consider all cycles with reading head characteristic 0 in the computa
tion y2 on x2. Let y = uxy2u2 = uxvxrxv2r2v3u2, where rx and r2 are some cycles 
with the same state characteristic and the reading head characteristic 0, and ux,u2,u3, 
ux, u2 are some parts of the computation. Considering the fact no counter is reversed 
or emptied in y2 it can be easily seen that if y = uxuxrxu2r2v3u2 is an accepting 
computation on x = wxx2w2 then / = uxvxrxr2v2v3u2 is an accepting computation 
on x too. So we can assume that the accepting computation y = uxy2u2 = 
= uxzxoxz2o2 ... zcoczc+xu2, where c < s, and o} consists of all cycles with the 
reading head characteristic 0 and some state characteristic q} (obviously the reading 
head is stationary in the part o} of the computation) and z} involves no cycle with 
reading head characteristic 0 for j=l,...,c+l. 

Using this assumption we obtain that there is such a subword 

x 3 =(as+1bs+1)h 

of the word x2 that the part y3 of the accepting computation y on x3 involves no 
cycle with reading head characteristic 0, and no counter is reversed or emptied 
in the computation >»3 on x3. There exists at least one cycle on each subword as+1 

of x3 and since the number of cycles with different characteristics is bounded by 
s2(2s + i)k < d2 there exist some cycles px and p2 with the same characteristics 
which are situated in two parts of the computation y3 on two different groups of a's 
of the word x3. Let the reading head characteristic of px and p2 be m. Clearly m > 0. 

Choosing m symbols a from the first group of a's and pumping am to the second 
group of a's we obtain a word x' which does not belong to L(g). Now, we shall 
construct an accepting computation on the word x' what proves our assertion for 
9(n) = C(n). 

Let y = uy3v = usxpxs2p2s3u be the accepting computation on the word x = 
= wx3w', where y3 = sxpxs2p2s3 is the part of the computation on x3 and u, u, sx, s3 

are some parts of the computation. Then the accepting computation on x' will be 
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usis2Pip2s3V, because the machine A is after the initial part of the computation 

us1p1s2p2s3 on x in the same configuration (it means in the same state, with the same 

contents of all counters, and with the same postfix w' of the words x and x' on the 

input tape) as after the initial part of the computation us1s2plp2s3 on x'. 

We call attention to the fact that no counter can be emptied in the computation 

S1S2P1P2S3 what is the essential point in our consideration (no counter can reverse 

in the computation s1s2PiP2s3 and n o counter can be emptied in the computation 
siPis2P2s3 imply this fact). 

Remark. For g fulfilling the additional conditions 

(i) g(n) = C(n), 

(ii) 0 is an increasing function, 

the language 

L(g) = {w e {a, b}* | #«(w) = #fe(vv) and for each prefix u of w #O(M) ^ #b(u)} 

is a witness language for ^(QR-DPBLIND-R(g)) - £C(COUNTER-R(f)). Clearly 

L(g) is in X(QR-DPBLIND). Since it is known [9] that £e(QR-DP BLIND) j= 

S £C(QR-DPBLIND-R(g)) for g fulfilling (i) and (ii) we see that L(g) is in 

g(QR-DPBLlND-R(g)). The proof of the fact L(g)$ £e(COUNTER-R(f)) is as 

above. 
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