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EQUITRAN: A COMPUTER PROGRAM FOR ANALYSIS 
OF A NONDETERMINISTIC DISCRETE DYNAMIC SYSTEM 

PETR KŮRKA 

A nondeterministic discrete dynamic system determines a transition graph, whose vertices 
are states of the system and whose oriented edges are possible transitions between states. We 
present here a computer program, which creates such a transition graph on the base of given 
transition rules and analyses its structural properties. 

1. INTRODUCTION 

Discrete dynamic systems offer a convenient tool for modelling complex dynamic 
systems encountered in biology and behavioural sciences. Systems of this kind are 
usually described by qualitative rather than numerical variables which specify 
whether specified substances are synthesized, whether some kind of behavioural 
pattern is going on, etc. The dynamics of the system is expressed by rules specifying 
under what conditions changes in the values of these variables happen. When such 
a system is formalized, we obtain a finite number of states (characterized by the 
values of the variables) and a set of rules which determine possible transitions 
between these states. Usually there are several transitions leading out of a given 
state, so the system is nondeterministic. The system stays in a state for an indefinite 
time (there are no assumptions on the probabilistic distribution of this time) and then 
switches to some other state, to which a transition leads (again we do not consider 
the probabilities of these switchings). 

The trajectories of the system may be viewed therefore as paths in its transition 
graph, whose vertices are states and whose oriented edges are possible transitions. 
When this transition graph is too large to be manageable, automatic methods are 
required to find its most important structural properties determining the behaviour 
of the system. Of interest are for example ergodic states, ergodic sets of states or 
cycles of states, which determine possible ultimate destination of the system. A general 
method for achieving this goal is to define an equivalence on the set of states and 



construct the factor graph, whose vertices are equivalence classes, and there is 
a transition from a set A to B iff there are states x e A, y e B and a transition from 
x to y in the original graph. Thus equivalence classes are the "macrostates", whose 
inner structure is not investigated and the dynamics of the system is viewed, with 
substantial simplification, as a flow through macrostates. The equivalence may be 
either forced on the graph from outside or it may be determined by the structure 
of the graph alone. 

This method is implemented in a computer program EQUITRAN (EQUIvalences 
on TRANsition graphs), which reads the table of transition rules of a discrete dynamic 
system, creates its transition graph and factorizes it through various equivalences 
as specified by the user. 

2. NONDETERMINISTIC DISCRETE DYNAMIC SYSTEMS 

Let us review here some methods of defining a nondeterministic discrete dynamic 
system and its transition graph. 

2a. Transitional system 

The system is described by n discrete variables assuming values in finite sets 
WU...,W„. A state of the system is a vector Y = ( Y , . . . , Y„) where Ye Wt for 
1 ^ /' g n. The dynamics of the system is determined by a finite set of transition 
rules. Suppose x is a special symbol not contained in any Wt. A transition rule is 
apairofvectorsU-* V where U = (Vu ..., U„), V= (Vu ..., V„) Ut, V- e Wt u { x }. 
We say that there is a transition from a state Y to a state Z when Y 4= Z and there 
exists a transition rule U -> V such that 

(1) (V/ ^ n) (U; = x or U; = Y;) 

(2) (V/ ^ z/)((Vi = x and Zt = Y) or Z ; = V). 

Thus the left-hand side U of a transition rule specifies to which states the rule may 
be applied. The cross x in U means "no matter what is the value of corresponding 
variable". The right-hand side V specifies the new values of the variables. The cross 
here means "no change of the value of the corresponding variable". A transition 
rule expresses the idea that for specified values of some variables other variables 
assume new prescribed values. The transitional system is a generalization of kinetic 
logic (see [5]) to many-valued variables and simultaneous nondeterministic changes 
of several variables. 

2b. Kinetic logic 

The system is described by n boolean variables. The dynamics of the system is 
described by n n-ary boolean functions flt ...,f„: {0, 1}" -* {0, 1}. A state of the 
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system is a vector Y= (Y„ ..., Y„), Y;e{0, 1}. There is a transition from a state 
F toZi f 

(3) Y* Z and (Vi ^ n) (Z ; =L (Y 1 , ..., Y„) or Z ; = Y;). 

Thus the functions / . give trends of the variables i.e. values, which the variables 
tend to assume. In a transition from one state to another some variables change 
their values according to these trends. 

A modified system of kinetic logic is obtained when we require that only one vari
able changes at a time. In this case we define that there is a transition form Y to Z 
if 

(4) (3/ = n) (Z ; = f{(Yv ..., Y„) * Y & (V/ * 0 (Z, = Yj)). 

2c. Semi-Thue systems 

Let V be a finite alphabet, V* the set of words with letters from V. A state of the 
system is a word y e V*. The dynamics of the system is given by a finite set of product
ions of the form u -> v, where u, v e V*. There is a transition from a state y to z 
if there is a production u -> u and words p, q e V* such that y = pt<g, z = puq. 
Contrary to the preceding system, the set of states is infinite here. Semi-Thue systems 
in connection with discrete dynamic systems are investigated for example in [3]. 

2d. Lindenmayer systems 

Let V be a finite nonvoid alphabet. The states are again words from V* and the 
dynamics is given by a finite set of productions of the form x -> v, where x e V, 
v e V*. There is a transition from a state y to z when y = yty2 ... y„, y; e V, z = 
= -jZ2 ••• z„ for some z ; e V*, and yt -> z;, i = 1,. . . , n are productions of the 
system. Lindenmayer systems are treated for example in [4]. 

3. TRANSITION GRAPHS 

A graph is a pair (X, E) where X is a finite set of vertices and E c X x X is an 
antireflexive relation, i.e. x e l » ( x , x ) ^ £ . We shall write x -> y when (x, y) e E. 
An equivalence on X is a reflexive, symmetric and transitive relation ~ £ X x X. 
It determines a partition X / ~ consisting of equivalence classes of ~ . An equivalence 
~ is finer than ~ ( « is coarser than ~ ) if x ~ y implies x x y. If (X, E) is a graph 
and ~ is an equivalence on X, then the factor graph (X, E)j ~ is a graph whose 
vertices are equivalence classes of ~ and there is an edge A -> B for A, B e X / ~ if 
A =j= B and there exists an edge x -> y in the original graph for some x 6 A, y e B. 
A path in a graph (X, E) is a sequence of vertices xx -> x2 —> ... -> x„. The factoriza
tion of this path is the path (A ;) ; = 1 ,„ in (X, £ ) / ~ to which there exist indices 
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1 = h < h < ••• < im+i — n + 1 s u c n t n a t xkeAj for ij ^ fe < ij + i- The 
factorization of a path is therefore its image in the graph. 

The factor graph should retain essential dynamic properties of the system. A path 
in the factor graph, for example, should correspond to some possible trajectory 
of the system, i.e. it should be a factorization of some path in the original graph. 
This is not true in general, so this condition may serve as a criterion of acceptability 
of an equivalence. 

Definiiion 1. Let (X, E) be a graph and ~ an equivalence on X. We say that ~ 
reflects paths, if any path in (X, E)/~ is a factorization of some path in (X, E). 

3a. Destination division of an equivalence 

Suppose we have a transitional system with variables Ylt ..., Y„ and we are interest
ed only in time development of specified variables (Y.)(eAf. We can define an equi
valence ~ by 

(5) Y ~ Z iff Y = Zf for all i e M . 

This equivalence, however, need not reflect paths in the sense of Definition 1, i.e. 
it identifies states from which the system may evolve in quite different ways. A finer 
equivalence is therefore required. A possible solution to this problem is the following 

Proposition 1. Let x be an equivalence on a graph (X, E). Then there exists the 
coarsest equivalence ~ which is finer than ~ and satisfies 

(6) (Vx, y) (x ~ y => (Vx') (x -> x'' -> ( 3 / ) (y -» / & / ~ x'))) 

We say that ~ is the destination division of x. 

Proof. Construct nondeterministically a sequence of partitions stf0,srf1, ...,stfp 

as follows. srf0 is X/x. Suppose that ssft has been constructed and let there exist 
A, Be s4% such that for the set C = {x e A \ (3x' e B)(x -+ x')} neither C = 0 
nor C = A. Define then next partition srfi+1 = J / ; — {A} u {A — C, C}. This 
procedure ends when for all sets A, Bestf p either C — 0 or C = A. Define X / ~ 
as s/p. Clearly ~ is finer than ~ and satisfies (6). Suppose ~ ' is another equivalence 
which is finer than ~ and satisfies (6) but is not finer than ~ . Then for some i < p ~ ' 
is finer than stft but not finer than s4i+1. Since s4i+1 — srf{ — {A} u {A — C, C} 
there exist x e C , ye A — C with x ~ ' y. Furthermore there exists x'e B with 
x -* x' and by (6) there exists y' ~ 'x ' such that y ~> y'. Since ~ ' is finer than 
s/h y' e B and this is a contradiction. • 

Note. The condition (6) in Proposition 1 may be replaced by a less strict condition 

(7) (Vx, y) (x ~ y => (Vx') (x -» x' & x' + x => ( 3 / ) (y -* y' & x' ~ y')) 

and Proposition 1 remains valid. 
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Proposition 2. The destination division of an equivalence reflects paths. 
Proof. Let (A ;) ; = 1 ,,..,„ be a path in (X, E)\~. Choose some xx e Ax and suppose 

that we have constructed a path (x;), = 1 k. k< n, whose factorization is (A,), = 1 k. 
There exist x e Ak, y e Afc + 1 with x -> y. By Proposition 1 (either condition 6 or 7) 
there exists x„+xe Ak+ j with x„ -> x„+ v 

3b. The communication equivalence 

Definition 2. Let (X, E) be a graph. Two states x, y e X communicate if either 
x = y or there exists a path from x to y and a path from y to x. 

The equivalence classes of communication equivalence are also called strongly 
connected components (see [1]). A communication set from which no arrow leads 
in the factor graph is called ergodic set. Ergodic sets represent possible ultimate 
destination of the dynamic system. The system may enter them but can never leave 
them. 

Proposition 3. The communication equivalence reflects paths and it is the finest 
equivalence whose factor graph does not contain cycles. 

The proof of this proposition is trivial. 

3. The destination equivalence 

Proposition 4. Let (X, E) be a graph. There exists the finest equivalence ~ (destina
tion equivalence) satisfying the condition 

(8) (Vx, y) ((Vx') (x -> x' =* ( 3 / ) (y -» / & / ~ x')) & (V/) (y - / => 

=> (3x') (x -> x' & / ~ x')) => x ~ y) 

Proof. Consider a sequence of partitions $40, stf x, ..., s4' where stf0 is identity 
equivalence, constructed recursively as follows: If there exist A, B e srft A + B such 
that for all xeA,yeB 

(Vx') (x -> x' -> ( 3 / ) (y -* / & y' ~, x')) & 

(V/) (j> - / => (3x') (x - x' & / ~ , x')) 

then let sii+x = $/, — {A, B) u {A u E}. (Here ~ ; is the equivalence correspond
ing to the partition s/,). Let stfp be the first partition, to which this procedure cannot 
be applied. It is easy to see that this is the required equivalence. • 

Proposition 5. The destination division of the total equivalence X x X is coarser 
than the destination equivalence. Moreover, both these equivalences satisfy conditions 
(6) and (8). 

Proof. Let s40, ..., s#p be the sequence of partitions from the proof of the preced
ing proposition. Clearly s/0 satisfies (6). Let sft satisfy (6) and let A, Be s${ be such 
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that .~/i+1 = s(t - {A, B} u {A u B}. If x e A, y e B then (Vx') (x -> x' => ( ( 3 / ) . 
• (^ -* J'' & / ~ ; x')) by the proof of the preceding proposition. It follows that 
.a/;+1 satisfies (6); consequently the destination equivalence satisfies both conditions 
(6) and (8). Analogously it may be proved that the destination division of the total 
equivalence satisfies (8). Since by Proposition 4 the destination equivalence is the 
finest equivalence satisfying (8). It must be finer than the destination division of the 
total equivalence. • 

Counterexample. Let (X, E) be a cycle, i.e. X = {x j , . . . , x,,}. E = {(xux2), 
(x2, x3), ..., (x„, x t)}. Then the destination equivalence is the identity, while the 
destination division of total equivalence is the total equivalence. This proves that 
these two equivalences need not be equal. They are equal, however, when the graph 
does not contain cycles. 

Proposition 6. Let [X, E) be a graph not containing cycles. Then the destination 
division of total equivalence and the destination equivalence coincide. 

Proof. Define a partition {X0,...,Xp} as follows: X0 = {x eX\ (ly) (x -> y)} 
Xi+1 = {xeX - (X0v . . . u Xt)\(Vy)(x -* y-'-> y e X 0 u .. . u Xt). Here pis the 
first number for which Xp+1 = 0. Define by induction equivalences ~ ; on Xt by 
the formula 

x ~ i y (Vx') (x -> x' => ( 3 / ) (y -> y' & x' ~_, y' for some j < i) 

& (V/) (>' -» y' -> (3x') (x -+ x' & x' ~j y' for some j < i) . 

Let the equivalence ~ on X be the union of all ~ ; , and let us prove that it is both 
destination division of total equivalence and destination equivalence. It is easy to 
see that ~ satisfies (6). Let x be another equivalence satisfying (6). Then we can 
prove by induction that xeXh y a x=> yeXhy ~ ; x , consequently x is finer 
than ~ , so ~ is the destination division of total equivalence. Conversely we can 
prove by induction that if x e l , and (Vx') (x -* x' => ( 3 / ) (y -> y' & y' ~ x')) & 
(V/) (y -* y' ~> (3x') (x -> x' & y' ~ x')) then y e Xt and y ~ x, so ~ satisfies (8). 
Finally we can prove that if x is an equivalence satisfying (8) and x ~ ; ;?, then x x y, 
so x is coarser than ~ , and ~ is the destination equivalence. • 

Proposition 7. The destination equivalence reflects paths. 

The proof follows from the fact that the destination equivalence satisfies condition 
(6). 

4. THE PROGRAM EQUITRAN 

For the purposes of analysis of discrete dynamic systems we developed a computer 
program, which is based on the transitional system described in Section 2a. The 
syntax of input data is summarized in Fig. 1. The parameter NVAR determines 
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the number of variables. For 1th variable DIM(7) determines the set of its values, 

which is ({0, 1, ... DIM(I) - 1 } . A state of the system is then any integer vector 

Y= (7(1),. . . 7(NVAR)) where 0 ^ Y(l) < DIM (I). Initial states are given by 

a vector INI = (INI (l), ... INI (NVAR)), where INI (/) e { x, 0 , 1 , . . . DIM (7) - 1 } . 

IITRAN INPUI D.VIЛ (DЛГЛ . '1 i .'...'UO 

ГRtt: FÜRMAT ASSП.NMĽíП.: 10 PЛPЛпL !L!:S 
NVñR, 1 I TLĚ , NROW.HI OL ,GR. '.ІII..:I: ГS,STATES,CҮCLЄ. 

ONLҮ NVЛR ASSIGNMENl 1" '"•'! [Г.ATORҮ. 

lili: OPDER OF ASSIGNMI I'I :.' ARГCI RЛRҮ. 

IHE.УF' ASSIGNMENTS END 10 1. ÏH . ГHU.ÜLON. 

FIXED FORMAT DЛTЛ FOP P, F-.-.i:l IĽES 

NAM.DIM,INI,USĽ.L.R. 
ГHI . >:' GIN IN FIRST ГмR D AFII: P SFҺГCO! ON . 

! CYCLES 

I 
I N A M ( I ) 
I D I M ( I ) 
! J.Ni ( I ) 

l U S E ( I ) 
I L ( K , I > 

HARnl 

.1 NTEQi: 

< X . 0 , 

< Y , N : 
< X , 0 , . 

I H - N V A R I R ( K , I > K X , 0 , . . I 

1 + 2 I I 

I : ; K N V A R I C O M ( K ) I C H A R ( 7 8 -

) :i. M < J ; - 1 

' E S , N O ) 

> I M ( I > - 1 

I M ( I > - 1 

2*NVAR> 

I! !•: I N! ;.•'. i\ I I .•: : '•: i R Л N . GRЛPH 
I R P I N l CYC i . -' 
IENDS F K Ü : URMfl PARAMI II I ' 
I NЛMI 0! : I - T H VЯRIABLЄ 
IDIMĽN.STÜN OF ] • ľ l l V м R l Л L I 1 
Ц N Г I I Л L VALUE 0 ! '. i l l VЛR. 
IUSE Üľ Г.-TH V Л P I Л F I . I : 
I I - I I ! COMPONENl Oľ LEFT S I D Г 
I Oi Ҝ - T H I R Л N S П ІON RULE 

I I T1-1 COMPONENI OF RIGHT S I D E 
I Of Ҝ I I I T R A N S I T I O N RIJLĽ 
ICOMMFNІ 01 K-TH RULt: 

Fig. 1. 

Here the cross x means that states with any value of the variable in question are 
initial; we say that a state 7is initial if 

(10) (VJ) (Y(I) = INI (7) or INI (7) = x ) . 

Transition rules are given by pair of vectors (L(K, 1),... L(K, NVAR)) -* (R(K, I),... 
...R(i<C,NVAR)), where L(K,I), R(K,I) e { x , 0, 1, ... DIM (7) - 1 } , 7 C = 1 , . . . 
... NRULES. Here x is again a special symbol; there is a transition from a state 7 
to Z iff there is K so that 

(11) (V/)(7(7) =L(K,I) or L(K,I) = x ) , and 

(V7)(Z(7) = R(K,I) or (R(K,l) = x &Z(7) = 7(7)). 

The vector USE specifies equivalence (5) from Section 3a by condition 

(12) Y~Z iff (VJ) (USE (7) = Y=> 7(7) = Z(7)) . 

The program first creates the transition graph of all states accessible from initial 
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ones along possible transitions, and if GRAPH = 'YES' has been specified, prints 
it out. When not all variables have been used, i.e. USE (/) = N for at least one /, 
the destination division of the equivalence ~ and its factor graph are determined. 
The original transition graph is in this case freed. The program then determines the 
factor graph of communication sets, and if SETS = 'DESTINATION' has been 
specified, its factorization through destination equivalence. The requested sets and 
their transition graph are then printed. Furthermore, the program can print all 
cycles of states. 

The algorithm for determining the communication sets is taken from [ l ] , the 
algorithm for determining the cycles of a communication set is adapted from [2]. 
The program is written in PL/l (F compiler), and runs under OS/IBM operating 
system. It works well with transition graphs of several hundred states. 

5. AN EXAMPLE: GENETIC REGULATORY SYSTEM 

A typical nondeterministic discrete dynamic system is a genetic regulatory network 
(see [5] pp. 217 — 225), which consists of operons, genes and regulatory sites of 
DNA molecule. An example of such network can be seen in Fig. 2. Here we have 

1 , 2 3 1 4 M 5 
_ _ - i Ł »= L , нt_ L, 

Fig. 2. 

an operon A, which contains a gene for protein 1, operon B coding proteins 2 and 3, 
operon C coding protein 4 and operon D coding protein 5. Furthermore, these 
operons contain positive or negative regulatory sites to which specified proteins bind. 
When a protein binds to a negative regulatory site, the operon is inactivated and 
its proteins are not synthesized. On the other hand, the operon which contains 
a positive regulatory site may be active only if regulatory protein binds to this site. 
The question is which operons will be induced and which will be repressed. 

The state of such a system may be described by four boolean variables A, B, C, D, 
which assume value 1 when operon is induced, i.e. its proteins are synthesized, 
and 0 otherwise. The transition rules for this system are given in the table in Fig. 3. 
For example if B = 0 then the protein 2 is not synthesized, so the operon A may be 
activated to A = 1. Thus we have the first transition rule x O x x -> 1 x x x (in the 
printout the crosses are replaced by spaces). Since the scheme in Fig. 2 does not 
specify the concurrence of events, there are several possibilities how to express it with 
a set of transition rules. For example the second rule may be split into two independent 
rules B = 1 => A = 0 and B = 1 => D = 0 ( x l x x - » O x x x and x l x x ^ 
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-* x x xO) and the order of the changes (A = 0, D = 0) would be indeterminate. 

Conversely, rules 1 and 7 may be combined into two other rules B = 0, C = 0 => 

=> A = 1 and 5 = 0, C = 1 = > A = 1 , D = 1 and the indeterminacy of the system 

would be reduced. 

EEEEE QQQ U U I ["ITTT RRRR A N N 
E Q Q U U if I R R A A NN N 

P Q Q U U 1 •' 1 RRRR A AAA A N NN 
EEEEE QQQ Q UUU I 'J V R R A A N N 

INPUT DATA: 
11T L E ; Q E N E 1 IC R E G UI... A f 0 R Y SYS T E M 

NUMBER OF VARIABLES 4 
FORMAT Of PRINTED PAGE: 00 001,. 1.1 UN;: X oO ROWS 

'.'ЛRÏЛĎI I , ;.,•:;'. 

A = "'B 

B = "'ň 

THE TRANSITION t 
NUMBER OF STATE; 
NUMBER OF EDGES: 

: I I ! ;)fl G R A P i l 

0 1 1 1 0 1 0 1 0 1 1 0 
1 0 0 0 1 0 1 0 
1 0 0 1 1 0 0 0 
1 0 1 0 101 1 
1 01 І 1 0 0 1 

THE T R A N S I T I O N GR, 
Fig. 3. 

RAP! I HAS BEEN PRINTED 

The table of transition rules is the main part of the input of the program. Other neces

sary data are number of variables (in our case NVAR = 4), number of values of each 

variable (here 2 — binary variables), initial value of each variable (here A = x, 

which means indeterminacy and B, C, D = 0), and which variables are to be used 

(here all variables are used). 

The input data together with default values are summarized on the first page 
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of the computer printout (Fig. 3), which also gives all possible transitions between 
states accessible frim the initial ones. On the next page (Fig. 4) the transition graph 
of communication sets is printed. A set is displayed by its reference number and by 
its summary state. In a summary state there are values of variables which do not 

i.LUETIC REGULATORY SYSTEM ':!.;•,'!,": ; .! ! :i GRAPH OF COMMUNICATION SET 
SET DESCENDANTS 

I.OOXX 4:0100 6:0110 2:0111 5:10XX 3:0101 
2:0111 6:0110 3:0101 
3:0101 4:0100 
4:0100 6:0ii0 
5:1OXX 
6:0110 

THE TRANSITION GRAPH OF COMMUNICATION SETS HAS BEEN PRINTED 

GENETIC REGULATORY SYSTEM COMMUNICATION SETS 

1 • 

oeoo * 
001 o 
001 i 
0001 

0100 

::> 6 

1000 0110 
1010 
1011 
1001 

COMMUNICATION SETS HAVE BEEN PRINTEI 

GENEIIC REGULATORY SYSTEM CYCLES OF SET 5 

1 000- > 1 01 0- > 1 01 1 •-> 1 001 - > 1 OOO 

THE CYCLES OF COMMUNICATION SETS HAVE BEEN PRINTED 

PROGRAM EQUITRAN TERMINATED NORMALLY Fig. 4. 

vary throughout the set and x 's for variables which vary throughout the set. Next, 
all communication sets are listed. This print is organized so that the possible transi
tions lead only downwards. In the last row there are ergodic sets 5, 6, from which 
no exist is possible. Finally all cycles of states are printed. Here both sets 1 and 5 
are formed by one cycle. 

We see from this analysis that the system may proceed through the cycle of states 

198 



0000 -> 0010 -> 0011 -> 0001 -> 0000. This cycle is, however, unstable. Once the 

system leaves it, it enters after some delay either a stable state 0110 or a stable cycle 

1000 -> 1010 -* 1011 -> 1001 -> 1000. 

GENETIC REGULATORY SYSTEM TRANSITION GRAPH OF REDUCED SET 
SET DESCENDANTS 

1 :00XX 3:10XX 2:01XX 
2:01XX 
3:iexx 

THE TRANSITION GRAPH OF REDUCED SETS HAS BEEN PRINTED 

GENETIC REGULATORY SYSTEM REDUCED SETS 

SETS HAVE BEEN PRINTED 

0001 0101 1001 
0011 0111 1011 
0010 0110 1010 
O O 0100 1000 

REDUCED SE 

ri.i!l..r 1.1. RF.UJLfi roRY SYSl EM 

ERGODIC SETS HAVE BEEN PRINTED F i 5> 

PROGRAM EBUITRAN TERMINATED NORMALLY 

Suppose now that we are interested only in behaviour of variables A and B, so the 

vector of used variables would be YYNN. The results of this run ate in Fig. 5 (first 

part of the printout has been omitted). The states are now grouped into reduced 

sets consisting of states, which agree in the values of used variables. The printout 

consists of transition graph of reduced sets, list of reduced sets and list of ergodic 

sets. We see that as long as only A and B variables are considered, the system has two 

possible stable states 01 and 10. 

(Received July 4, 1984.) 
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