
K Y B E R N E T I K A - V O L U M E 22 (1986), N U M B E R 2

EQUITRAN: A COMPUTER PROGRAM FOR ANALYSIS
OF A NONDETERMINISTIC DISCRETE DYNAMIC SYSTEM

PETR KŮRKA

A nondeterministic discrete dynamic system determines a transition graph, whose vertices
are states of the system and whose oriented edges are possible transitions between states. We
present here a computer program, which creates such a transition graph on the base of given
transition rules and analyses its structural properties.

1. INTRODUCTION

Discrete dynamic systems offer a convenient tool for modelling complex dynamic
systems encountered in biology and behavioural sciences. Systems of this kind are
usually described by qualitative rather than numerical variables which specify
whether specified substances are synthesized, whether some kind of behavioural
pattern is going on, etc. The dynamics of the system is expressed by rules specifying
under what conditions changes in the values of these variables happen. When such
a system is formalized, we obtain a finite number of states (characterized by the
values of the variables) and a set of rules which determine possible transitions
between these states. Usually there are several transitions leading out of a given
state, so the system is nondeterministic. The system stays in a state for an indefinite
time (there are no assumptions on the probabilistic distribution of this time) and then
switches to some other state, to which a transition leads (again we do not consider
the probabilities of these switchings).

The trajectories of the system may be viewed therefore as paths in its transition
graph, whose vertices are states and whose oriented edges are possible transitions.
When this transition graph is too large to be manageable, automatic methods are
required to find its most important structural properties determining the behaviour
of the system. Of interest are for example ergodic states, ergodic sets of states or
cycles of states, which determine possible ultimate destination of the system. A general
method for achieving this goal is to define an equivalence on the set of states and

construct the factor graph, whose vertices are equivalence classes, and there is
a transition from a set A to B iff there are states x e A, y e B and a transition from
x to y in the original graph. Thus equivalence classes are the "macrostates", whose
inner structure is not investigated and the dynamics of the system is viewed, with
substantial simplification, as a flow through macrostates. The equivalence may be
either forced on the graph from outside or it may be determined by the structure
of the graph alone.

This method is implemented in a computer program EQUITRAN (EQUIvalences
on TRANsition graphs), which reads the table of transition rules of a discrete dynamic
system, creates its transition graph and factorizes it through various equivalences
as specified by the user.

2. NONDETERMINISTIC DISCRETE DYNAMIC SYSTEMS

Let us review here some methods of defining a nondeterministic discrete dynamic
system and its transition graph.

2a. Transitional system

The system is described by n discrete variables assuming values in finite sets
WU...,W„. A state of the system is a vector Y = (Y , . . . , Y„) where Ye Wt for
1 ^ /' g n. The dynamics of the system is determined by a finite set of transition
rules. Suppose x is a special symbol not contained in any Wt. A transition rule is
apairofvectorsU-* V where U = (Vu ..., U„), V= (Vu ..., V„) Ut, V- e Wt u { x }.
We say that there is a transition from a state Y to a state Z when Y 4= Z and there
exists a transition rule U -> V such that

(1) (V/ ^ n) (U; = x or U; = Y;)

(2) (V/ ^ z/)((Vi = x and Zt = Y) or Z ; = V).

Thus the left-hand side U of a transition rule specifies to which states the rule may
be applied. The cross x in U means "no matter what is the value of corresponding
variable". The right-hand side V specifies the new values of the variables. The cross
here means "no change of the value of the corresponding variable". A transition
rule expresses the idea that for specified values of some variables other variables
assume new prescribed values. The transitional system is a generalization of kinetic
logic (see [5]) to many-valued variables and simultaneous nondeterministic changes
of several variables.

2b. Kinetic logic

The system is described by n boolean variables. The dynamics of the system is
described by n n-ary boolean functions flt ...,f„: {0, 1}" -* {0, 1}. A state of the

190

system is a vector Y= (Y„ ..., Y„), Y;e{0, 1}. There is a transition from a state
F toZi f

(3) Y* Z and (Vi ^ n) (Z ; =L (Y 1 , ..., Y„) or Z ; = Y;).

Thus the functions / . give trends of the variables i.e. values, which the variables
tend to assume. In a transition from one state to another some variables change
their values according to these trends.

A modified system of kinetic logic is obtained when we require that only one vari
able changes at a time. In this case we define that there is a transition form Y to Z
if

(4) (3/ = n) (Z ; = f{(Yv ..., Y„) * Y & (V/ * 0 (Z, = Yj)).

2c. Semi-Thue systems

Let V be a finite alphabet, V* the set of words with letters from V. A state of the
system is a word y e V*. The dynamics of the system is given by a finite set of product
ions of the form u -> v, where u, v e V*. There is a transition from a state y to z
if there is a production u -> u and words p, q e V* such that y = pt<g, z = puq.
Contrary to the preceding system, the set of states is infinite here. Semi-Thue systems
in connection with discrete dynamic systems are investigated for example in [3].

2d. Lindenmayer systems

Let V be a finite nonvoid alphabet. The states are again words from V* and the
dynamics is given by a finite set of productions of the form x -> v, where x e V,
v e V*. There is a transition from a state y to z when y = yty2 ... y„, y; e V, z =
= -jZ2 ••• z„ for some z ; e V*, and yt -> z;, i = 1,. . . , n are productions of the
system. Lindenmayer systems are treated for example in [4].

3. TRANSITION GRAPHS

A graph is a pair (X, E) where X is a finite set of vertices and E c X x X is an
antireflexive relation, i.e. x e l » (x , x) ^ £ . We shall write x -> y when (x, y) e E.
An equivalence on X is a reflexive, symmetric and transitive relation ~ £ X x X.
It determines a partition X / ~ consisting of equivalence classes of ~ . An equivalence
~ is finer than ~ (« is coarser than ~) if x ~ y implies x x y. If (X, E) is a graph
and ~ is an equivalence on X, then the factor graph (X, E)j ~ is a graph whose
vertices are equivalence classes of ~ and there is an edge A -> B for A, B e X / ~ if
A =j= B and there exists an edge x -> y in the original graph for some x 6 A, y e B.
A path in a graph (X, E) is a sequence of vertices xx -> x2 —> ... -> x„. The factoriza
tion of this path is the path (A ;) ; = 1 ,„ in (X, £) / ~ to which there exist indices

191

1 = h < h < ••• < im+i — n + 1 s u c n t n a t xkeAj for ij ^ fe < ij + i- The
factorization of a path is therefore its image in the graph.

The factor graph should retain essential dynamic properties of the system. A path
in the factor graph, for example, should correspond to some possible trajectory
of the system, i.e. it should be a factorization of some path in the original graph.
This is not true in general, so this condition may serve as a criterion of acceptability
of an equivalence.

Definiiion 1. Let (X, E) be a graph and ~ an equivalence on X. We say that ~
reflects paths, if any path in (X, E)/~ is a factorization of some path in (X, E).

3a. Destination division of an equivalence

Suppose we have a transitional system with variables Ylt ..., Y„ and we are interest
ed only in time development of specified variables (Y.)(eAf. We can define an equi
valence ~ by

(5) Y ~ Z iff Y = Zf for all i e M .

This equivalence, however, need not reflect paths in the sense of Definition 1, i.e.
it identifies states from which the system may evolve in quite different ways. A finer
equivalence is therefore required. A possible solution to this problem is the following

Proposition 1. Let x be an equivalence on a graph (X, E). Then there exists the
coarsest equivalence ~ which is finer than ~ and satisfies

(6) (Vx, y) (x ~ y => (Vx') (x -> x'' -> (3 /) (y -» / & / ~ x')))

We say that ~ is the destination division of x.

Proof. Construct nondeterministically a sequence of partitions stf0,srf1, ...,stfp

as follows. srf0 is X/x. Suppose that ssft has been constructed and let there exist
A, Be s4% such that for the set C = {x e A \ (3x' e B)(x -+ x')} neither C = 0
nor C = A. Define then next partition srfi+1 = J / ; — {A} u {A — C, C}. This
procedure ends when for all sets A, Bestf p either C — 0 or C = A. Define X / ~
as s/p. Clearly ~ is finer than ~ and satisfies (6). Suppose ~ ' is another equivalence
which is finer than ~ and satisfies (6) but is not finer than ~ . Then for some i < p ~ '
is finer than stft but not finer than s4i+1. Since s4i+1 — srf{ — {A} u {A — C, C}
there exist x e C , ye A — C with x ~ ' y. Furthermore there exists x'e B with
x -* x' and by (6) there exists y' ~ 'x ' such that y ~> y'. Since ~ ' is finer than
s/h y' e B and this is a contradiction. •

Note. The condition (6) in Proposition 1 may be replaced by a less strict condition

(7) (Vx, y) (x ~ y => (Vx') (x -» x' & x' + x => (3 /) (y -* y' & x' ~ y'))

and Proposition 1 remains valid.

192

Proposition 2. The destination division of an equivalence reflects paths.
Proof. Let (A ;) ; = 1 ,,..,„ be a path in (X, E)\~. Choose some xx e Ax and suppose

that we have constructed a path (x;), = 1 k. k< n, whose factorization is (A,), = 1 k.
There exist x e Ak, y e Afc + 1 with x -> y. By Proposition 1 (either condition 6 or 7)
there exists x„+xe Ak+ j with x„ -> x„+ v

3b. The communication equivalence

Definition 2. Let (X, E) be a graph. Two states x, y e X communicate if either
x = y or there exists a path from x to y and a path from y to x.

The equivalence classes of communication equivalence are also called strongly
connected components (see [1]). A communication set from which no arrow leads
in the factor graph is called ergodic set. Ergodic sets represent possible ultimate
destination of the dynamic system. The system may enter them but can never leave
them.

Proposition 3. The communication equivalence reflects paths and it is the finest
equivalence whose factor graph does not contain cycles.

The proof of this proposition is trivial.

3. The destination equivalence

Proposition 4. Let (X, E) be a graph. There exists the finest equivalence ~ (destina
tion equivalence) satisfying the condition

(8) (Vx, y) ((Vx') (x -> x' =* (3 /) (y -» / & / ~ x')) & (V/) (y - / =>

=> (3x') (x -> x' & / ~ x')) => x ~ y)

Proof. Consider a sequence of partitions $40, stf x, ..., s4' where stf0 is identity
equivalence, constructed recursively as follows: If there exist A, B e srft A + B such
that for all xeA,yeB

(Vx') (x -> x' -> (3 /) (y -* / & y' ~, x')) &

(V/) (j> - / => (3x') (x - x' & / ~ , x'))

then let sii+x = $/, — {A, B) u {A u E}. (Here ~ ; is the equivalence correspond
ing to the partition s/,). Let stfp be the first partition, to which this procedure cannot
be applied. It is easy to see that this is the required equivalence. •

Proposition 5. The destination division of the total equivalence X x X is coarser
than the destination equivalence. Moreover, both these equivalences satisfy conditions
(6) and (8).

Proof. Let s40, ..., s#p be the sequence of partitions from the proof of the preced
ing proposition. Clearly s/0 satisfies (6). Let sft satisfy (6) and let A, Be s${ be such

193

that .~/i+1 = s(t - {A, B} u {A u B}. If x e A, y e B then (Vx') (x -> x' => ((3 /) .
• (^ -* J'' & / ~ ; x')) by the proof of the preceding proposition. It follows that
.a/;+1 satisfies (6); consequently the destination equivalence satisfies both conditions
(6) and (8). Analogously it may be proved that the destination division of the total
equivalence satisfies (8). Since by Proposition 4 the destination equivalence is the
finest equivalence satisfying (8). It must be finer than the destination division of the
total equivalence. •

Counterexample. Let (X, E) be a cycle, i.e. X = {x j , . . . , x,,}. E = {(xux2),
(x2, x3), ..., (x„, x t)}. Then the destination equivalence is the identity, while the
destination division of total equivalence is the total equivalence. This proves that
these two equivalences need not be equal. They are equal, however, when the graph
does not contain cycles.

Proposition 6. Let [X, E) be a graph not containing cycles. Then the destination
division of total equivalence and the destination equivalence coincide.

Proof. Define a partition {X0,...,Xp} as follows: X0 = {x eX\ (ly) (x -> y)}
Xi+1 = {xeX - (X0v . . . u Xt)\(Vy)(x -* y-'-> y e X 0 u .. . u Xt). Here pis the
first number for which Xp+1 = 0. Define by induction equivalences ~ ; on Xt by
the formula

x ~ i y (Vx') (x -> x' => (3 /) (y -> y' & x' ~_, y' for some j < i)

& (V/) (>' -» y' -> (3x') (x -+ x' & x' ~j y' for some j < i) .

Let the equivalence ~ on X be the union of all ~ ; , and let us prove that it is both
destination division of total equivalence and destination equivalence. It is easy to
see that ~ satisfies (6). Let x be another equivalence satisfying (6). Then we can
prove by induction that xeXh y a x=> yeXhy ~ ; x , consequently x is finer
than ~ , so ~ is the destination division of total equivalence. Conversely we can
prove by induction that if x e l , and (Vx') (x -* x' => (3 /) (y -> y' & y' ~ x')) &
(V/) (y -* y' ~> (3x') (x -> x' & y' ~ x')) then y e Xt and y ~ x, so ~ satisfies (8).
Finally we can prove that if x is an equivalence satisfying (8) and x ~ ; ;?, then x x y,
so x is coarser than ~ , and ~ is the destination equivalence. •

Proposition 7. The destination equivalence reflects paths.

The proof follows from the fact that the destination equivalence satisfies condition
(6).

4. THE PROGRAM EQUITRAN

For the purposes of analysis of discrete dynamic systems we developed a computer
program, which is based on the transitional system described in Section 2a. The
syntax of input data is summarized in Fig. 1. The parameter NVAR determines

194

the number of variables. For 1th variable DIM(7) determines the set of its values,

which is ({0, 1, ... DIM(I) - 1 } . A state of the system is then any integer vector

Y= (7(1),. . . 7(NVAR)) where 0 ^ Y(l) < DIM (I). Initial states are given by

a vector INI = (INI (l), ... INI (NVAR)), where INI (/) e { x, 0 , 1 , . . . DIM (7) - 1 } .

IITRAN INPUI D.VIЛ (DЛГЛ . '1 i .'...'UO

ГRtt: FÜRMAT ASSП.NMĽíП.: 10 PЛPЛпL !L!:S
NVñR, 1 I TLĚ , NROW.HI OL ,GR. '.ІII..:I: ГS,STATES,CҮCLЄ.

ONLҮ NVЛR ASSIGNMENl 1" '"•'! [Г.ATORҮ.

lili: OPDER OF ASSIGNMI I'I :.' ARГCI RЛRҮ.

IHE.УF' ASSIGNMENTS END 10 1. ÏH . ГHU.ÜLON.

FIXED FORMAT DЛTЛ FOP P, F-.-.i:l IĽES

NAM.DIM,INI,USĽ.L.R.
ГHI . >:' GIN IN FIRST ГмR D AFII: P SFҺГCO! ON .

! CYCLES

I
I N A M (I)
I D I M (I)
! J.Ni (I)

l U S E (I)
I L (K , I >

HARnl

.1 NTEQi:

< X . 0 ,

< Y , N :
< X , 0 , .

I H - N V A R I R (K , I > K X , 0 , . . I

1 + 2 I I

I : ; K N V A R I C O M (K) I C H A R (7 8 -

) :i. M < J ; - 1

' E S , N O)

> I M (I > - 1

I M (I > - 1

2*NVAR>

I! !•: I N! ;.•'. i\ I I .•: : '•: i R Л N . GRЛPH
I R P I N l CYC i . -'
IENDS F K Ü : URMfl PARAMI II I '
I NЛMI 0! : I - T H VЯRIABLЄ
IDIMĽN.STÜN OF] • ľ l l V м R l Л L I 1
Ц N Г I I Л L VALUE 0 ! '. i l l VЛR.
IUSE Üľ Г.-TH V Л P I Л F I . I :
I I - I I ! COMPONENl Oľ LEFT S I D Г
I Oi Ҝ - T H I R Л N S П ІON RULE

I I T1-1 COMPONENI OF RIGHT S I D E
I Of Ҝ I I I T R A N S I T I O N RIJLĽ
ICOMMFNІ 01 K-TH RULt:

Fig. 1.

Here the cross x means that states with any value of the variable in question are
initial; we say that a state 7is initial if

(10) (VJ) (Y(I) = INI (7) or INI (7) = x) .

Transition rules are given by pair of vectors (L(K, 1),... L(K, NVAR)) -* (R(K, I),...
...R(i<C,NVAR)), where L(K,I), R(K,I) e { x , 0, 1, ... DIM (7) - 1 } , 7 C = 1 , . . .
... NRULES. Here x is again a special symbol; there is a transition from a state 7
to Z iff there is K so that

(11) (V/)(7(7) =L(K,I) or L(K,I) = x) , and

(V7)(Z(7) = R(K,I) or (R(K,l) = x &Z(7) = 7(7)).

The vector USE specifies equivalence (5) from Section 3a by condition

(12) Y~Z iff (VJ) (USE (7) = Y=> 7(7) = Z(7)) .

The program first creates the transition graph of all states accessible from initial

195

ones along possible transitions, and if GRAPH = 'YES' has been specified, prints
it out. When not all variables have been used, i.e. USE (/) = N for at least one /,
the destination division of the equivalence ~ and its factor graph are determined.
The original transition graph is in this case freed. The program then determines the
factor graph of communication sets, and if SETS = 'DESTINATION' has been
specified, its factorization through destination equivalence. The requested sets and
their transition graph are then printed. Furthermore, the program can print all
cycles of states.

The algorithm for determining the communication sets is taken from [l] , the
algorithm for determining the cycles of a communication set is adapted from [2].
The program is written in PL/l (F compiler), and runs under OS/IBM operating
system. It works well with transition graphs of several hundred states.

5. AN EXAMPLE: GENETIC REGULATORY SYSTEM

A typical nondeterministic discrete dynamic system is a genetic regulatory network
(see [5] pp. 217 — 225), which consists of operons, genes and regulatory sites of
DNA molecule. An example of such network can be seen in Fig. 2. Here we have

1 , 2 3 1 4 M 5
_ _ - i Ł »= L , нt_ L,

Fig. 2.

an operon A, which contains a gene for protein 1, operon B coding proteins 2 and 3,
operon C coding protein 4 and operon D coding protein 5. Furthermore, these
operons contain positive or negative regulatory sites to which specified proteins bind.
When a protein binds to a negative regulatory site, the operon is inactivated and
its proteins are not synthesized. On the other hand, the operon which contains
a positive regulatory site may be active only if regulatory protein binds to this site.
The question is which operons will be induced and which will be repressed.

The state of such a system may be described by four boolean variables A, B, C, D,
which assume value 1 when operon is induced, i.e. its proteins are synthesized,
and 0 otherwise. The transition rules for this system are given in the table in Fig. 3.
For example if B = 0 then the protein 2 is not synthesized, so the operon A may be
activated to A = 1. Thus we have the first transition rule x O x x -> 1 x x x (in the
printout the crosses are replaced by spaces). Since the scheme in Fig. 2 does not
specify the concurrence of events, there are several possibilities how to express it with
a set of transition rules. For example the second rule may be split into two independent
rules B = 1 => A = 0 and B = 1 => D = 0 (x l x x - » O x x x and x l x x ^

196

-* x x xO) and the order of the changes (A = 0, D = 0) would be indeterminate.

Conversely, rules 1 and 7 may be combined into two other rules B = 0, C = 0 =>

=> A = 1 and 5 = 0, C = 1 = > A = 1 , D = 1 and the indeterminacy of the system

would be reduced.

EEEEE QQQ U U I ["ITTT RRRR A N N
E Q Q U U if I R R A A NN N

P Q Q U U 1 •' 1 RRRR A AAA A N NN
EEEEE QQQ Q UUU I 'J V R R A A N N

INPUT DATA:
11T L E ; Q E N E 1 IC R E G UI... A f 0 R Y SYS T E M

NUMBER OF VARIABLES 4
FORMAT Of PRINTED PAGE: 00 001,. 1.1 UN;: X oO ROWS

'.'ЛRÏЛĎI I , ;.,•:;'.

A = "'B

B = "'ň

THE TRANSITION t
NUMBER OF STATE;
NUMBER OF EDGES:

: I I ! ;)fl G R A P i l

0 1 1 1 0 1 0 1 0 1 1 0
1 0 0 0 1 0 1 0
1 0 0 1 1 0 0 0
1 0 1 0 101 1
1 01 І 1 0 0 1

THE T R A N S I T I O N GR,
Fig. 3.

RAP! I HAS BEEN PRINTED

The table of transition rules is the main part of the input of the program. Other neces

sary data are number of variables (in our case NVAR = 4), number of values of each

variable (here 2 — binary variables), initial value of each variable (here A = x,

which means indeterminacy and B, C, D = 0), and which variables are to be used

(here all variables are used).

The input data together with default values are summarized on the first page

197

of the computer printout (Fig. 3), which also gives all possible transitions between
states accessible frim the initial ones. On the next page (Fig. 4) the transition graph
of communication sets is printed. A set is displayed by its reference number and by
its summary state. In a summary state there are values of variables which do not

i.LUETIC REGULATORY SYSTEM ':!.;•,'!,": ; .! ! :i GRAPH OF COMMUNICATION SET
SET DESCENDANTS

I.OOXX 4:0100 6:0110 2:0111 5:10XX 3:0101
2:0111 6:0110 3:0101
3:0101 4:0100
4:0100 6:0ii0
5:1OXX
6:0110

THE TRANSITION GRAPH OF COMMUNICATION SETS HAS BEEN PRINTED

GENETIC REGULATORY SYSTEM COMMUNICATION SETS

1 •

oeoo *
001 o
001 i
0001

0100

::> 6

1000 0110
1010
1011
1001

COMMUNICATION SETS HAVE BEEN PRINTEI

GENEIIC REGULATORY SYSTEM CYCLES OF SET 5

1 000- > 1 01 0- > 1 01 1 •-> 1 001 - > 1 OOO

THE CYCLES OF COMMUNICATION SETS HAVE BEEN PRINTED

PROGRAM EQUITRAN TERMINATED NORMALLY Fig. 4.

vary throughout the set and x 's for variables which vary throughout the set. Next,
all communication sets are listed. This print is organized so that the possible transi
tions lead only downwards. In the last row there are ergodic sets 5, 6, from which
no exist is possible. Finally all cycles of states are printed. Here both sets 1 and 5
are formed by one cycle.

We see from this analysis that the system may proceed through the cycle of states

198

0000 -> 0010 -> 0011 -> 0001 -> 0000. This cycle is, however, unstable. Once the

system leaves it, it enters after some delay either a stable state 0110 or a stable cycle

1000 -> 1010 -* 1011 -> 1001 -> 1000.

GENETIC REGULATORY SYSTEM TRANSITION GRAPH OF REDUCED SET
SET DESCENDANTS

1 :00XX 3:10XX 2:01XX
2:01XX
3:iexx

THE TRANSITION GRAPH OF REDUCED SETS HAS BEEN PRINTED

GENETIC REGULATORY SYSTEM REDUCED SETS

SETS HAVE BEEN PRINTED

0001 0101 1001
0011 0111 1011
0010 0110 1010
O O 0100 1000

REDUCED SE

ri.i!l..r 1.1. RF.UJLfi roRY SYSl EM

ERGODIC SETS HAVE BEEN PRINTED F i 5>

PROGRAM EBUITRAN TERMINATED NORMALLY

Suppose now that we are interested only in behaviour of variables A and B, so the

vector of used variables would be YYNN. The results of this run ate in Fig. 5 (first

part of the printout has been omitted). The states are now grouped into reduced

sets consisting of states, which agree in the values of used variables. The printout

consists of transition graph of reduced sets, list of reduced sets and list of ergodic

sets. We see that as long as only A and B variables are considered, the system has two

possible stable states 01 and 10.

(Received July 4, 1984.)
R E F E R E N C E S

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman: The Design and Analysis of Computer Algo
rithms. Addison-Wesley, Massachusetts, 1976.

[2] A. T. Berztiss: Data Structures — Theory and Practice. Academic Press, New York 1975.
[3] P. Kurka: Ergodic languages. Theoret. Comput. Sci. 21 (1982), 351-355.
[4] A. Lindenmayer and G. Rozenberg (eds.): Automata, Languages, Development. North

Holland, Amsterdam 1976.
[5] R. Thomas (ed.): Kinetic Logic, a Boolean Approach to the Analysis of Complex Regulatory

Systems. (Lecture Notes in Biomathematics 29.) Springer-Verlag, Berlin 1979.
[6] R. Thomas: Logical description, analysis and synthesis of biological and other networks

comprising feedback loops. Adv. Chem. Phys. 55 (1983), 247-282.

RNDr. Petr Kurka, CSc, Oddeleni biomatematiky Fyziologickeho ustavu (5SA V (Center of
Biomathematics — Czechoslovak Academy of Sciences), Videhskd 1083, 142 20 Praha 4.
Czechoslovakia.

199

