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ON THE UNIQUENESS OF THE M. L. ESTIMATES
IN CURVED EXPONENTIAL FAMILIES

ANDREJ PAZMAN

Curved families (cf. Efron [3]) imbedded in exponential families having full rank differentiable
sufficient statistics are considered. It is proved that if the rank is less or equal to the dimension
of the sample space, then the maximum likelihood estimate is unique. Examples: the gaussian
nonlinear regression, the gaussian family with unknown mean and variance, the f-distribution.
Generalized curved exponential families are considered as well.

1. INTRODUCTION AND EXAMPLE

Curved exponential families, i.e. statistical models which can be imbedded in the
well known exponential families of probability distributions, have been extensively
studied recently in several papers; probably the best known are [3] and [1]. The
importance of such families is in the possibility to obtain very general results for
a large class of different statistical problems with the aid of geometrical considerations
(see the examples given below for some special cases). In the curved exponential
families the importance of the maximum likelihood estimates is emphasized once
more, however the question of the uniqueness of such estimates seems to be still
open.

Let 2 = {P;: 0 € ©} be an exponential family of probability distributions given
by the densities

" %vf") = exp (0 t(x) — %0)} ; (0 )

with respect to a carrier measure v on the sample space 4. Denote by k the dimension
of the vector 0, and suppose that @ has a nonvoid interior in ¥, int @ = ¢.
The function %(8) = In [, exp {0’ t(x)} v(dx) is differentiable on int @ and the
mean and the covariance of the statistic t(x) defined by Eq. (]) are equal to
o\

Eoft) = V,x(0) := (% 4)

a0, " a0,
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A2 k

by = v 5]

00,00, ; ;=1

(cf. [2], Chapter 8). In the case that Dy(t) is nonsingular, from V,E,(t') = Dy(t')

we obtain by the inverse function theorem that the mapping 0 > E,(t) is one-to-
-one on int .

Let I' be an open subset of R™ (with m < k) and let g: ye I' — y(y) eint © be

a mapping with continuous second order derivatives 82y/dy; dy; and with linearly

independent vectors of first order derivatives r?r]/@yl, .., 0/8p,,. The family

@) Pam: 7 €T}
is called a curved exponential family of dimension m (cf. [3] and [1]).
The log-likelihood function of the family (2) is equal to

L(®) = n'(y) t = #[n(x)] .
Given the data point x € &, the M. L. estimate (if it exists) is defined by
y 1= y(x) 1= Arg max ,[¢(X)],
yel'

and it is a solution of the normal equations:

® 0= LI’% = [tlx) - )T ? (i=1,..,m)
where we denoted B(y) 1= E,(t) .

Let
(4) . {{Pn‘w): 7"5Fi} 5 (iEJ)}

be a finite or countable set of curved exponential families of (generally diﬂ'erent)
dimensions m(i); (i e J) which are imbedded in the same exponential family &.
The union of these familics will be called the generalized curved exponential family
(briefly: GCEF).

That means, it is the family

Py = {Py: Ppe?,0e 8}
where
®) £=U¢,;
ied

and where &, = {#'(y"):v'eI'}; (ieJ).

The M. L. estimate in this family is

(6) 0 = B(x) = Arg max [§ t(x) — »{0)] .
0es
In contrast to the family (2), in a GCEF we can ensure the existence of the M. L.
estimate, e.g. by supposing that & is compact (i.e. closed and bounded). Examples

of compact sets given by Eq. (5) are: finite or bounded countable subsets of int O,
closed intervals, closed spheres contained in int O, etc.
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Example 1. Take % = {x,, x;, x,} and let 2 be the set of all strictly positive
probability measures on Z'. 2 is an exponential family, which can be verified by
setting

Wx) =1,
0; = In [Pe(x)[Po(x0)] »
tx) =645 (i=1,2 j=012),
x0) =1 + " +e],
0 = R?
into Eq. (1). Obviously, dPy(x)/dv = Po(x;) and Eq(t}) = Py(x,).

Consider the curve
B:ye(0,% |—><3)

If the data point is equal to x;, then every y (0, §) is a M. L. estimate. Indeed,
we have
lv[t(xl)] =1In P'I(}')(xl) =1In ﬁl('Y) =In(})=h [t(xj)]; U#1).
Hence
Poeny{x: (x) is not unique} = P, (%) = %.

Example 2. (The nonlinear regression.) Take in Eq.(1): & = RY, 0 = R, t(x) =
= K™ 'x, where K is a positive definite N x N matrix, v(dx) = (2r)"¥2 det™1/? (K) x
x exp {(—%) x'K~"x} 4(dx), »(0) = (3) 0'K™*0. Then the curved family given by
Eq. (2) has the density

dPy (%) 1 -
= - eXp | —Hx — KT (x — g
n G e & P Yx — n(r)y K™ (x — n{y)}

with respect to the Lebesgue measure 4. The M. L. estimate coincides here with the
least-squares estimate

5 = Arg min (x = n(x)) K (x — 4(z)) .

The uniqueness of this estimate (with probability one) has been proved by the author
in {5].

In this paper we shall prove that the M. L. estimate in a GCEF is unique with
probability one, provided that the embedding family 2 has the properties:

A) & is an open subset on RY, N = k. :

B) The statistic t: ' — R* defined by Eq. (1) has continuous first order derivatives
and the rank of the matrix V,¢(x) (with entries at(x)[ox;; (i = 1, ..., k,j = 1, ..., N))
is equal to k.

C) The family 2 is dominated by the Lebesgue measure A (i.e. we can suppose
that v < 2).
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We note that B) implies that #,(x) — Eo[t;(x)], ..., t(X) — B[ #(x)] are linearly
independent functions on %, hence D,(t) is a nonsingular matrix.
The family in Example 2 has the properties A)-—C). Other examples are

Example 3. (The gaussian family with unknown mean and variance.) Take 2 =
=R"N220=(-w, oo) X (—~oo 0),

t(x) = (Zx”; *7), v(dx) = (2m)"N* 2(dx),

#(0y, 0,) = —(N[2) In (—20,) + N(6}/26,). Then the density (1), but with respect
to 4, is equal to
(xi—m?
N T

——e
.‘1;[1 J@n) o
ie. 0; = ple®, 8, = —1](26%). Evidently

el = (5, )

Hence rank [V, t(x)] = k = 2 if we modify % taking for & the set B — {x e R",

3 x; = x;} which is evidently open, and has probability one for every P e 2.
i*j

Example 4. (The beta-distribution.) Take Nz2 Z={xxe(0, )" x +x;
(i #1)}, © =(—1, 0) x (—1, ), t(x) —(Zln Xi, Zln (1 = x7)), v(dx) = Adx),

#(0y, 6,) = N{ln I, + 1) + InI(6, + 1) — ]n I"(G1 + 0, + 2)}, where I'( ) is the
gamma function. Then the density (1) corresponds to the product of beta-densities

N Tpy + 1) XT(] = x )
i=1 I{py) F(ﬂz)
(uy = 0y + 1, py = 0, + 1). Obviously,

Xy, v Lxy
[Vt Gl = ( . 15(1—&))’

and rank [V, ¥(x)] = 2 on 2.

2. THE UNIQUENESS
Let us denote
T = {t(x): xeZ}.

Proposition 1. Under the assumptions A) and B) the set J is an open subset
of B* and
Fcg, AF)=0= [t {(F)]=

The proof follows from Proposition A 3. O
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Denote by P* the measure induced from the measure P by the mapping t.

Corollary. Under the assumptions A)—C) we have
Pt<
for every Pe 2.

Denote the vector of first order derivatives and the matrix of second order deriv-
atives of the log-likelihood function [(t) by V,L(t), resp. by V,V,L(¢). If 0 €&,
i.e. 0 €&, for some i, then by I,(t)|s resp. by V,I,()|; we denote the log-likelihood
function at @ = ni(y'), y' =y, resp. the vector of the first order derivatives with
respect to yi, ..., Vi (i.e. we omit the superseript i).

Proposition 2. Under the assumption A) and B) we have that
Mtteg, AVL(Hl, =0, det[V,VL(0], =0} =0.
- 0eé

Proof. From the second equality in Eq. (3) we obtain
@) det [V, VI(0)] =

TrY

- au[fi - oy 22D D oy ]

dy; a)’j ay; 5’/;‘

hj=1
Denote
.
L, =z zeR", Z’Lﬁ') =0; (i=1,...mi.
9y;
Any orthonormal basis W,(y), ..., W,_,.(¥) of #, is defined by the equations

w'('y) 5:1(7) -0,

I

/’yj
wiwiy) =6y (Li=1,..,k—m, j=1..,m).
Let Uy, ..., Ug be the subsets of I' such that on each U, a fixed m x m submatrix

of V,i'(y) is nonsingular. Evidently, the vectors w,(y), ..., w,_,(y) can be chosen as
differentiable functions of y on each U,. By differentiation with respect to y; we obtain

52 '
(8) wi(y) 1(y) - _ owi(y) on(y)
9y: 9; a0
Takete .7,y eI so that
[e = BO] 2a()ov; =05 (G =1,...,m).
Then

k—=m
t—B(y) =Y c;w(y) forsomee;.
=1
Fix ¢1s.+., ¢, and define ¢(5) by
t(j) 1= Zlq wi(§) + B(F) .
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For [|§ — ] sufficiently small, we have (7)€ 7. From Eq. (8) we obtain:

" o °ntF) aw(7) on(5)
(5 - B = = - Y :
R
hence from (7) it follows that

det [V, V;L(t)] =
~ IS awi(y) _ aBr)\ anoN™
= det [{( ?;101 P 7; ) 0y, }i,i:‘].
Denote
W= (Wi(®), s Wi (7)),
D:=Vy(y),
G:= V,[Yerwil) + B
We have

et [V,V, 1,{t)] = det (—GD)
_ g ~GP, —GW
= wo, ww
-G !
= det ( W') (D', W)

since W'W = I, W'D’ = 0. Since the matrix (D’,W) has a full rank, we have that,
under the assumption V,[{t) = 0,
det [V,V,1(t)] = 0« det (-G, W) =0.
Consider the mappings

k=m

B (s oeor Vs €1 v G €U X BT Y 0 wi(y) + Bly) .
=1

S
We have 7 < {J h{U; x R*™™), since to every te 7 there are yeT, ie{l,..,S}
i=1

and ¢ e R*™" such that t = Y ¢, wy(y) + B(y). The set hj () is open since J is
open and h; is continuous. Denote by h;: hy '(7) > 7 the restriction of h; to the
set h; '(77) .We have
V(}'.=)f’i(7’ c) = V(v.:)h i(7’ C) = (G’ W) y
Hence det [V, oy, €)] = 0 det [V,V,1(t)] = 0. Thus the needed statement
follows from Proposition A 4. O
Proposition 3. Under the assumptions A) and B) we obtain
MxixeZ, AV,L[tx)]l; =0, V,L[tx)] =0,
8,0e8 .

L5 = L[x)]s} = 0.
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Proof. Denote
g:={titeg, 3IVI{H),=0, det[V,VI(t)], = 0}.
Further denote o
Ti={F9):7elL7elo (@) + r'({)) .
According to Propositions 1 and 2, it is sufficient to prove that for every r, s e J
MetegT — 9 . 3 Vvl;(t) =0,
Gerrs
V(8 =0, (1) = ()} = 0.
Denote by m, n the dimensions of I'y and I',. Define a mapping
0: Ty x (T — G) s RmHH+E
by
o7, 7 1) 1= (V,15(2), V() . 1;(0) — Bi(2), ¢)
where 7" 1= (1, ..., t;_q, t;4(, ..., ;) and where i is choosen so that {y'(§)}; *

+ {n°(¥)}: (There is such a subscript i since (5) + #'(¥)).
The Jacobian of g is

V.V, I=(t), 0, VI® ,0
V(;vi,t)g(i ¥ t) = 0 » V'/V;l?(t)’ _Vi'lf’(t) > 0

VY E(®, VY, o) - 2'(), 1)
where I(i) is the k x (k — 1) matrix obtained from the identity matrix by removing
the ith column.

On the set

Z:={{#79: 0571 =(0,0,0t"),te T — %
det [V;; 003, 7, 0] =
= det [V,V,;1-(¢)] det [V,V,1(t)] det [#'(F) — #°(3), X(i)] + O

since det ['(5) — #°(), Ii)] = {w(®)}; — 0’®)}: + 0.

Thus ¢ is a diffcomorphism on Z, and

dim Z = dim {y e By = (0,0,0,t9); te 7 — G} <k~ 1.

1t follows that

we have

dim {t: t e B, 3 ().5.9)eZ} k-1,
[¢2 T
Mt 3 (1.5.9ez)=0. O

[¢230 2

hence

A direct consequence of Proposition 3 is the following theorem.

Theorem. Under the assumptions A)—C), for any GCEF imbedded in £ and for
any Pe 2 we have

P{x: the M. L. estimate §(x) is not unique} = 0.
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APPENDIX

Let VX o R

be a mapping defined on an open set X < R* (r = s). Suppose that ¥ has continuous
first order derivatives (the elements of the r x s matrix V,4'(x)).

Proposition Al. (The inverse function theorem.) If r = s and det [V, ¥'(x)] + 0
on X, then ¥ is a diffeomorphism (i.e. it is one-to-one and ¥~ *: ¢(X)— R" is conti-
nuously differentiable).

For the proof cf. [4] or [7].
Proposition A2. If y is a diffeomorphism, then
FcX, MF)=0=i[y(F)]=0.

Proof. F is either bounded, or it is a countable union of bounded sets. For F
bounded we have

e = [ ey = | oot 9909l 20 <. o
w(F) F
Proposition A3. If r 2 s and rank [V,'(x)] = s then the set ¥(X) is an open
subset of R*, and Feu[z(X), i.(F) . A[t"(F)] -0,

Proof. The set X is a finite union of sets Uy, ..., Ug such that on each U a fixed
s x s submatrix of V,¥’(x) is nonsingular (i.e. its determinant is nonzero). Denote
by p: B — R and by q: "~ R"™° the projections p(x):= (x, ..., X;), §(X) :=
1= (X;415 ---» X,). Suppose that V,,¥'(x) is nonsingular. Define ¥: U, — R" by

P(x) = (¥(x), q(x)) -

¥ is a diffeomorphism on U since the matrix
: VoW (X), Vaeo¥'(%)
4 . p(x) q0x)
v = (Vo e
is nonsingular (Proposition A 1). Denote ¥, = 3(U,). Obviously, ¥(x) = p - ¥(x),
hence V; 1= p o W(U,) is an open set, and ¥(X) = UV; is open as well.
Further 1 L
Ap  FaV)]=FnaV) xR =0,
hernce, according to Proposition A 2,
W Fav)] =¥ ep {FnV)]=0.
S
Consequently, Ly " (F)] =Y ¥ " (Fn V)] =0. |
i=1
Proposition Ad. If r = s and X is bounded, then
A{W(x): det [Vap'(x)] = 0} = 0.

The proofis given in [ 7], Lemma 3. 2. (Received January 24, 1985.)
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