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INTERNAL PROPERNESS AND STABILITY 
IN LINEAR SYSTEMS* 

VLADIMÍR KUČERA 

tш í? / uf 

The concept of internal properness is introduced for systems Ex = Fx + Gu, y = Hx so 
as to parallel the concept of internal stability. The system is internally proper if its free response 
is devoid of impulsive modes. The use of internal properness and stability in the design of control 
systems is demonstrated. The examples include disturbance rejection, model matching, output 
regulation and block decoupling problems. 

1. SINGULAR SYSTEMS 

Consider the linear system 

(IT) E k(t) = E x't) + G u't) , r ^ 0 

y(*) = Hx(t) Hif//$ 
where E and E are n x n real matrices, G is n x q and His p x n. Taking the Laplace 
transform, / 

(1.2) x(s) = (sE - ET1 [E x , 0 - ) + G u(s)] 

y(s) = Hx(s). 

It is assumed that sE — E is nonsingular so that unique solutions of (IT) are obtained 
for all E x(O-) and u(s). 

When E is nonsingular, (IT) is a standard (or regular) linear system. In the case 
of arbitrary E we speak of generalized (or singular) systems. The free response 
x(t), t 2: 0 of such a system may exhibit not only exponential modes associated with 
finite zeros of sE — E but also impulsive modes (i.e. Dirac distributions and their 

* The original version of this paper was presented at the 9th IFAC Triennial World Congress 
on "A Bridge between Control Science and Technology" which was held in Budapest, Hungary, 
during July 1984. 
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derivatives) associated with infinite zeros of sE — E. The transfer matrix of (1.1), 

(1.3) T(s) = H(sE - E)"1 G 

may be any, possibly improper and unstable, rational matrix. 
From the modelling point of view, the systems described by (1.1) coincide with 

the set of linear systems generated by various interconnections of integrators, 
differentiators and scalors. The state of the system (1.1) at time t is E x(t—); this 
vector embodies all information on the integrators and differentiators that is necessary 
to solve (1.1). The order of (IT) thus equals rank E(gn). 

As an example, the pure integrator / can be described by (IT) with 

Jg - 1 , E = 0 , G = l , ff = 1 

the pure differentiator D by 

--"[Si]. '-[;-!].'•«-[!]•---™ ' 
and the scalor k by 

E = 0 , E = - l , G = l , H = k. 

2. CONTROLLABILITY AND OBSERVABILITY 

The fundamental theory of singular or generalized systems was pioneered by 
Rosenbrock [30] and developed by Verghese, Levy and Kailath [32]. Further 
insight is given in Callier and Desoer [5]. 

By definition, a free-response mode of (1.1) that can be alternatively excited from 
zero initial conditions by means of an input that contains no component at the modal 
(finite or infinite) frequency is termed a controllable mode. The system is completely 
controllable if all its modes are controllable. The controllability of exponential 
modes is characterized by a matrix 

(2.1) [sE - E G ] 

that has no finite zeros, i.e. has full row rank for all finite s. The controllability 
of impulsive modes is equivalent to (2.1) having no zero at s = oo, i.e. to (2.1) having 
a proper right inverse. 

Dually, a free-response mode of the system (1.1) that gives rise to a zero output 
is said to be an unobservable mode. The system is completely observable if it has no 
unobservable mode. The observability of exponential modes is characterized by 
a matrix 

<") [SV] 
that has no finite zeros, i.e. has full column rank for all finite 5. The observability 



of impulsive modes is equivalent to (2.2) having no zeros at s = oo, i.e. to (2.2) 
having a proper left inverse. 

One can bring the generalized system (1.1) by allowed transformations (Verghese, 
Levy and Kailath [32]) into a form that displays l) the controllable and observable 
part, 2) the controllable but unobservable part, 3) the observable but uncontrollable 
part, and 4) the uncontrollable and unobservable part. Clearly, the transfer matrix 
of (1.1) depends only on part l). Systems that are completely controllable and 
completely observable will be termed irreducible. 

3. PROPERNESS AND STABILITY 

The behaviour of the system (1.1) at t = 0 and t -» oo is of considerable importance, 
see Callier and Desoer [5] or Kucera [20]. The limiting behaviour as t -* oo is studied 
by means of stability. The aim of this paper is to make explicit the notion of properness 
reflecting the behaviour at t = 0 in a manner which would let appear the conceptual 
similarity of the two notions. 

Definition 1. The system (1.1) is internally proper if the matrix sE — E has no 
infinite zeros, i.e. (sE - E)"1 is proper. 

Definition 2. The system (1.1) is internally stable if the matrix sE — E is devoid 
of finite zeros in the closed right half-plane Re s __ 0, i.e. if (sE — E)"1 is stable. 

Thus, in the light of (1.2), the internal properness of (1.1) means that the free 
motion x(t), t __ 0 of the system comprises no impulsive modes at t = 0 for every 
initial condition Ex(0—). On the other hand, the internal stability of (1.1) means 
that x(t) tends to the origin as t -* oo irrespective of Ex(O-), i.e. the system is 
asymptotically stable in the sense of Lyapunov. 

It is to be noted that regular systems, made up of integrators and scalors, are 
internally proper. On the other hand, an internally proper system may well consist of 
differentiators and scalors only, e.g. 

- - [ _ _ ] . ' - [ . . _ ; ] . « - [ . ] . --[><*• 
The system is shown in Fig. 1. 

Fig. 1. An internally proper system. 



The above notions of properness and stability reflect the internal properties 

of the system and are to be strictly distinguished from the properness and stability 

as viewed by an external observer. The latter simply amounts to the properness and 

stability of the system transfer matrix (1.3). Evidently, the internal properness (or 

stability) implies the external one and the two are equivalent if and only if the system 

is irreducible. The example of a system which is externally but not internally proper 

is given by 

E = 

see Fig. 2. 

"l 0 0" "0 L 0 "o" 
0 0 1 , E = 0 1 0 , G = 0 

0 0 0 0 0 - 1 Л 
Я = [1 0 0] 

Fig. 2. An externally but not internally proper system. 

4. FЕЕDBACK SYSTЕMS 

Consider two irreducible systems 

(4.1) E1x1(t) = F1x1(t) + G1u1(t), f f c 0 

yi(t) = Hx Xl(t) 

where Et and F1 are n1 x nu Gj i sn . x q,H1isp x nt and 

(4.2) E2 x2(t) = F2 x2(t) + G2 u2(t), t = 0 

y2(t) = H2 x2(t) 

where E2 and E2 are n2 x n2, G2 is n2 x p and H2 is q x n2. Connect them accord­

ing to 

(4.3) ut(t) = v2(t) - y2(t) 

u2(t) = v,(t) + y,(t) 

where v± and v2 are external inputs. 

The special structure of the composite system implied by (4.3) together with 

irreducibility of (4.1) and (4.2) implies that the internal properness and stability 

of the feedback system is equivalent to the properness and stability of the transfer 

matrix relating inputs «., v2 and outputs ut, u2. 

The internal properties of the feedback system can thus be studied by means 

of transfer matrices of the individual components. In order to achieve this goal, 

it is covenient to factorize the component transfer matrices in terms of proper, 

stable, rational matrices (i.e. those having neither finite nor infinite poles in Re s = 0). 



To be specific, let Bps(s) denote the set of proper stable rational functions and Rps
x" 

the set o f m x n matrices with entries from Rps(s). Write the transfer matrix of (4A) 
in the form 

(4.4) T1(s) = A-\s)B(s) = B1(s)A;\s) 

and the transfer matrix of (4.2) as 

(4.5) T2(s)^P~\s)Q(s) = Ql(s)P;l(s). 

Here A e Rp*"(s), B e Rp*q(s) as well as P e ff£x "(s), Q e Rq
p*"(s) are relatively left 

prime and Bxe Rp
ps"(s), A1eRl*q(s) as well as Q^ e Rq

v*
p(s), P, e»p

s
xp(s) are 

relatively right prime. 
The issue of internal properness and stability of the composite system is then 

settled by the following result, adapted from Desoer and co-workers [10]. 

Lemma 1. Let both (4A) and (4.2) be irreducible systems. Then, the composite 
system (4.1) —(4.3) is internally proper and stable if and only if APj, + BQX = Ut 

is a unit of Rpx p(s) or equivalently, P A t + QBX = U is a unit of ««xq(s). • 

To recall, the units of SpX" are the rational matrices having neither pole nor zero, 
be it finite or infinite, in Re s 2; 0. 

To illustrate Lemma 1, check the internal properness and stability of the feedback 
system shown in Fig. 1. The first system is a scalor given by 

£ . = 0 , Ft = - 1 , Gi = 1, Hx = 1 

and the second one is a pure differentiator given by 

-M - í - ï . «-lì Я 2 = [ 1 0 ] . 

Hence 

A= 1, B = 1, P. - - L - , Q. - _ L _ 
s + a s + a 

for an arbitrary positive real constant a, and 

s + 1 
AP, + P ß x = 

s + a 
is indeed a unit of Rps(s). 

5. SYNTHESIS OF FEEDBACK SYSTEMS 

The synthesis of feedback systems plays a crucial role in the theory of control. 
The first subsystem (4.1) can be interpreted as a plant while the second one (4.2) 
as a compensator or a controller. The free response of a practical control system 
should contain just desired modes. One usually requires that the control system be 



internally proper and stable, thus avoiding impulsive and unstable exponential modes. 
Given the plant, any compensator that renders the resulting control system intern­

ally proper and stable will be called admissible. Lemma 1 provides a criterion 
for a compensator (4.2) to be admissible. However, for the construction of admis­
sible compensators it is useful to note that if Pt, Qx and U4 are as in Lemma 1 then 
(QiUi1) (P iU r 1 ) " 1 is another factorization of T2 (similarly for P, Q and U). 
Hence, following Kucera [17] and Desoer and coworkers [10], we now characterize 
the class of admissible compensators. 

Theorem 1. Let (4.1) be an irreducible plant giving rise to the transfer matrix 
(4.4). Then, (4.2) is an admissible compensator if and only if its transfer matrix can 
be expressed by (4.5), where P, Q is any (proper, stable, rational) solution of the 
equation 

(5.1) PA, + QB, = Iq 

such that P is nonsingular and P . , Qx is any (proper, stable, rational) solution 
of the equation 

(5.2) APX + BQX = Ip 

such that Pj is nonsingular. Here Ip and Iq are the p x p and q x q identity matrices, 
respectively. • 

If P, Q is a particular solution of (5.1) and Px, Qx is a particular solution of (5.2), 
then the general solutions of these equations (Kucera [17]) read 

(5.3) P(s) = P(s) + V(s) B(s) 

Q(s) = Q(s) - V(s) A(s) 
and 

P,(s) = Pt(s) + Bt(s) V,(s) 

(5.4) Qt(s) = Q,(s) - A,(s) V±(s) 

where Vranges over ftfp*p(s) and Vt ranges over #?£s
xg(s). 

The significance of this result consists in identifying all (irreducible) admissible 
compensators for a given plant in the parametric form (5.3) or (5.4), in terms of one 
free (proper, stable, rational) parameter V or Vt. More specific compensators can 
then be singled out simply by specifying the parameter appropriately, according 
to the additional requirements the control system is to meet. 

6. VARIOUS CONTROL PROBLEMS 

The implications of Theorem 1 for the solution of control problems will now be 
given. In particular, the requirement of internal properness and stability will be 
combined with various control strategies to illustrate the use of proper stable factoriza­
tions. 



6.1. Disturbance Rejection 

Consider an irreducible plant 

(6.1) EIx1(f) = F 1 x 1 ( 0 + G 1 « ( 0 + G i t < 0 ' f = ° 

y(t) = H 1 x 1 ( f ) 

z(t) =H'tXl(t) 

where Et and Et are n! x nu G± and G'j are n± x 1, andHx and # i are 1 x ».. Here 

M is the control, v is an arbitrary unmeasurable disturbance, y is the measurement 

and z is the output. 

The disturbance rejection problem with internal properness and stability consists 

in finding an admissible compensator of the form 

(6.2) E2 x2(t) = F2 x2(t) + G2 y(t) , t^O 

u(t) =H2x2(t) 

where E2 and E2 are n2 x n2, G2 is n 2 x 1, and H2 is 1 x n2 such that the transfer 

function from v to z in the composite system (6.1)-(6.2) shown in Fig. 3 be zero. 

V 

PtQПt PtQПt PtQПt 

u У 

Compensatoг Compensatoг 

Fig. 3. Disturbance rejection. 

To solve the problem, define the factorizations 

(6.3) H,(sEx - EO"1 G, = M H 1(sE 1 - E,)"1 GJ = - ® 
a(s) a(s) 

H'^sE, - F . ) " - G. = - ^ H i ( ^ i - F . Y 1 G'x = - & 
a(s) a(s) 

where a, fr, c, d and e is a quintuple of relatively prime elements of Rps(s). 

Similarly we define 

q(s) 
(6.4) - Я 2 ( s Е 2 - F2ү

l G2 = 
ŕ(-) 

for some p, a e Kps(s). We shall also need the relatively prime elements g, f of Rps(s) 
defined by 

be - cd __ g 

« "/' 
(6.5) 



Theorem 2. The disturbance rejection problem with internal properness and 

stability is solvable if and only if the following four conditions all hold: 

(ax) a and b are relatively prime, 

(a2) a is a divisor of be — cd, 

(bj) cd is a divisor of both e and g, 

(b2) a 4= 0. 

Proof. The conditions (a,), (a2) guarantee the internal properness and stability. 

Indeed, let h be the greatest common divisor of a and be — cd. Write h = huh2, 

where hl is the greatest common divisor of a, b and c. Thus 

a = h1a1 , a1 = /i2j 

b = hxbx 

c = hlCl 

for some au bt and c t of Wps(s). Further let x, y and z be any elements of ffps(s) 

that satisfy the equations 

bxx + h2y = d 

c t x + h2z = e . 

Then 

and hence 

Гa 01 Гft. O І Г ß l 0 1 
[OaJ L* Һjl-fxfhi 

[iЗ-frУřřl 
Ч-Ä5J--[>ř] 

is a relatively left prime factorization of the plant transfer matrix 

rl> 

d e 

la a j L J 
As. 

«~-[íJl-'-[!.l 
the com 

_ \aú 
1 ~ \jq 

AP, + BQ 

is the corresponding factorization for the compensator, it is seen that the matrix 

lJ? + M 0 
_ya - j x p hj_ 

is a unit of ff2
s
x 2(s) if and only if 

(atp + bxq) hj = (ap + bq)f 

is a unit of Mps(s). Therefore, applying Lemma 1, the overall system is internally 



proper and stable if and only if both ap + bq and /a re units of Wp,(s). Now, ap + bq 
is a unit for some p, q e Rps(s) if and only if (ax) is verified; and / is a unit if and only 
if (a2) is verified. 

The conditions ( b j , (b2) guarantee the disturbance rejection in an internally 
proper and stable system. For that, the transfer function relating v to z is to be zero, 

e cq d = Q 

a ap + bq a 

where (a^ allows one to set 

(6.6) ap + bq = 1 . 

Hence q must satisfy the equation e = cqd and this is the case if and only if cd 
divides e. The associated p is related with q by (6.6); on substituting one has g = 
= — cpdf. Since/ divides g by (a2) the equation is solvable if and only if cd divides g. 
Hence (b t) follows. The condition p + 0 then necessitates (b2). • 

The compensator in question has the transfer function 

-«=eL 
P 9 

It can be realized arbitrarily, except that its uncontrollable and unobservable modes 
must be internally proper and stable. 

The conditions of Theorem 2 admit the following interpretation: 
(ax) means that the uncontrollable and unobservable modes of the control-to-

measurement subsystem are internally proper and stable; 
(a2) means that the non-cyclic modes of the plant are internally proper and stable; 
(bj) means that the zeros in Re s 2: 0 of the disturbance-to-measurement and 

control-to-output subsystems are contained in the zeros of the disturbance-to-
output subsystem as well as in the zeros of the entire plant: 

(b2) means that the plant transfer matrix has full rank. 

In particular, the disturbance cannot be rejected in the absence of cross-coupling 
(i.e. when cd = 0), if the measurement coincides with the output (i.e. when b = d, 
c = e) or if the disturbance contaminates only the control (i.e. when b = c, d = e). 

Theorem 2 generalizes the results reported by Kulebakin [21], Basile and Marro [ l ] , 
Wonham [38], Willems and Commault [34], Bhattacharyya [4], Kucera [18] and 
Commault, Dion and Perez [7] for single-input single-output singular systems. 

6.2. Exact Model Matching 

Consider an irreducible plant 

(6.7) Et Xl(t) = F, Xl(t) + G, u(t), t^O 

y(t) =HlXl(t) 

z(t) =H'lXl(t) 



where E1 and Fi are nt x nu G1 is nl x q, H. is p x n1 and H2 is m x n1. Here 
u is the control, y is the measurement and z is the output. 

The exact model matching problem with internal properness and stability consists 
in finding an admissible compensator of the form 

(6.8) E2 x2(t) = E2 x2(t) + G2 y(t) + G'2 v(t) , f £ 0 

u(t) =H2x2(t) 

where E2 and E2 are n2 x n2, G2 is n2 x p, G2 is n2 x r and H2 is q x n2, such 
that the transfer matrix from v to z in the composite system (6.7) —(6.8) shown 
in Fig. 4 coincide with a given (proper, stable, rational) model matrix T(s). 

V 

Compensator 
u 

Plant 
z 

Compensator 

У 

Plant Compensator 

У 

Plant 

У 

Fig. 4. Exact model matching. 

To solve the problem, define the factorizations 

(6.9) # , (*£ . - FJ-- G. = 5,(5) Ar J(s) 

H j ( a B 1 - . F 1 ) " 1 G 1 - - C 1 ( 5 ) A r 1 ( 5 ) 

where Al5 Px and C t are proper stable rational matrices of compatible sizes. We 
assume that 

Лi • m 
are relatively right prime. Similarly we define 

(610) - H 2 ( 5 E 2 - E.)"1 G2 = P-\S) Q(s) 

H 2 ( s E 2 - E 2 ) - 1 G 2 = p - 1 ( 5 ) R ( s ) 

for some proper stable rational matrices P, Q and R. 

Theorem 3. The exact model matching problem with properness and stability 
is solvable if and only if the following two conditions both hold: 
(a) A! and P x are relatively right prime, 
(b) Ct is a left divisor of T. 

Proof. Let the composite (6.1) —(6.2) be proper and stable. By Lemma 1, the 
matrix PAt + QBt is a unit of Mg

p*
q(s). Hence (a) follows. Moreover, let the transfer 

matrix relating v and z equal T(s). Then 

T= C!(pA! + a E i ) _ 1 R 

and (EA! + S E i ) - 1 R is proper and stable. This implies (b). 
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Conversely let (a) hold. Then there exist proper stable rational matrices P(s), 
Q(s) with P(s) nonsingular such that 

(6.11) P A ! + QBX = Iq. 

Condition (b) then entails the existence of a proper stable rational matrix R(s) 
such that 

(6.12) CXR = T. 

Any triple P, Q, and R satisfying (6.H) and (6.12) defines a compensator, via (6.10), 
that effects the exact model matching. If it is appropriately realized (e.g. is irreducible) 
it ensures the properness and stability of the overall system. • 

The conditions of Theorem 3 admit a simple intuitive interpretation. Condition 
(a) means certain disjointness of poles and zeros (both finite and infinite) in Re s ~ 0 
of the control-to-measurement subsystem. Condition (b) then requires that the (finite 
and infinite) zeros in Re s ^ 0 of the control-to-output subsystem be in a sense 
contained in the zeros of the model. 

Theorem 3 generalizes for singular systems the plethora of results available in the 
literature on exact model matching of regular or special singular systems (such as 
regular systems with a direct feedthrough). Among others, see Morse [25], [26], 
Wolovich [35], Verghese [31], Pernebo [29], Malabre [22] and Malabre and 
Kucera [23]. 

6.3. Output Regulation 

Consider an irreducible plant 

(6.13) £ . xx(t) = Fx Xi(t) + Gt u(t), t^O 

y(t) =HlXl(t) 

z(t) =H'lXl(t) 

where Et and Ft are n1 x nx, Gt is nt x q, Hx is p x n1 and H[ is m x nx. Here u 
is the control, y is the measurement and z is the output. Consider also a reference 
generator 

(6A4) E3 x3(t) = F3 x3(t) + G3 v(t) , t£0 

w(t) = H3x3(t) 

where £ 3 and £ 3 are n3 x n3, G3 is n3 x r and H3 is m x n3. Here v is an exciting 
input and w is the reference output. 

The output regulation problem with internal properness and stability consists 
in finding an admissible compensator of the form 

(6.15) E2 x2(t) = F2 x2(t) + G2 y(t) + G'2 w(t) , t = 0 

u(t) =H2x2(t) 
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where E2 and F2 are n2 x n2, G2 is n2 x p, G'2 is n2 x m and H2 is q x n 2 , such 
that the transfer function u to w - 2 in the composite system (6.13) — (6.15) shown 
in Fig. 5 be proper and stable. 

Reference 

Compensator 
u 

Plant 
z 

„ Compensator 

У 

Plant Compensator 

У 

Plant 

У 

Fig. 5. Output regulation. 

Denoting e(t) = w(t) — z[t) the regulation error, the above formulation means 
that e(t), t ^ 0 is to be free of impulsive and unstable exponential modes for any 
initial conditions xt(0—), x2(0—) and x3(0—). That is to say, the plant output z 
is to asymptotically follow the reference output w. 

To solve the problem, define the factorizations 

(6.16) H^sEi - TO"1 Gi = Bi(s) A;1^) 

ffi(s£. -Fi)-
1G1 = C1(s)Al

1(s) 

Hi(sE3-F3)-
1G3 = F-l(s)G(s) 

where Au Bu Ct and F, G are proper stable rational matrices of compatible sizes. 
We assume that F, G are relatively left prime and 

• И 
are relatively right prime. Similarly we define 

(6.17) ~H2(sE2 - F2yi G2 = P-\S) Q(s) 

H ^ S E . - F J - I G ^ P - ^ R ^ ) 

for some proper stable rational matrices P, Q and R. 

Theorem 4. The output regulation problem with internal properness and stability 
is solvable if and only if the following two conditions both holds: 

(a) A! and Bi are relatively right prime, 
(b) F and Ct are internally skew prime. 

Proof. Let the composite (6.13) —(6.15) be internally proper and stable. By Lemma 
1, PAi + QBi is a unit of R^q(s) whence (a) follows. Moreover, let the transfer 
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function from v to e be proper and stable. It is given by 

<s) = [J, - C^PA, + QB.Y1 R] E-'G v(s) 

where X = (PA j + QBi) - 1 R is proper and stable. Since E and G are left coprime, 
we conclude that E is a right divisor of Ip ~ CrX, i.e. there exists a proper stable 
rational matrix Ysuch that 

C.X + YE = Ip . 

This proves (b) using the terminology of Wolovich [36]. 
Conversely let (a) hold. Then there exist proper stable rational matrices P(s) and 

Q(s) with P(s) nonsingular such that 

(6.18) PA ! + QB1 = J, . 

Condition (b) implies (Wolovich, [36]) the existence of proper stable rational matrices 
R(s) and S(s) such that 

(6.19) C,R + SF = Ip. 

Then 
e(s) = S v(s) 

in view of (6.18) —(6.19) and it is proper and stable. Hence any P, Q and R satisfying 
(6.18)—(6.19) define, via (6.17), a compensator that effects the output regulation. 
If the compensator is appropriately realized, it ensures the internal properness and 
stability. • 

It is again possible to give intuitive interpretation for conditions (a) and (b) of 
Theorem 4. They both call for certain disjointness; condition (a) for that of poles 
and zeros (both finite and infinite) in Re s 2: 0 of the control-to-measurement 
subsystem and condition (b) for that of reference poles and control-to-output zeros 
(both finite and infinite) in Re s >; 0. Each notion of disjointness is different, however, 
owing to noncommutativity of matrix multiplication. 

Theorem 4 generalizes to singular systems the results of many researchers, including 
Wonham [38], Wonham and Pearson [39], Francis [12], Bengtsson [3], Wolovich 
and Ferreira [37], Pernebo [29], Cheng and Pearson [6], Khargonekar and Ozgiiler 
[16] and Francis and Vidyasagar [13]. 

6.4. Block decoupling 

Consider an irreducible plant 

(6.20) Et xt(t) = Fy Xl(t) + G, u(t) 

y(t) =HlXl(t) 

z(t) =H\Xl(t) 

where Et and F± are n t x nu Gj is n t x q, Ht is p x nx and H\ is m x nx. Here u 
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is the control, y is the measurement and z is the output. Let mlt m2,.... mk be a set 
of positive integers satisfying 

k 

X> ; = m 
i=i 

which defines the partition of z into k blocks z ; of dimension m;, i = 1, 2,..., k. 
The block decoupling problem with internal properness and stability consists 

in finding an admissible compensator of the form 

(6.21) E2 x2(t) = F2 x2(t) + G2 y(t) + G2 v(t), t^O 

u(t) =H2x2(t) 

where E2 and F2 are n2 x n2, G2 is n2 x p, G2 is n2 x r and H2 is q x n2, along 
with positive integers r1, r2, ...,rk satisfying 

k 

E r/c = r 
1 = 1 

such that the transfer matrix from v to z in the composite system (6.20)-(6.21) 
have the same rank as the plant transfer matrix from u to z has and be block diagonal 
with diagonal blocks of dimension m, + rh i = 1, 2, ..., k. 
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Compensator 
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Plant Compensator 

У 

Plant 

У 

Fig. 6. Block decoupling. 

The condition of diagonality is equivalent to saying that the composite system 
shown in Fig. 6 is decomposed, from the input-output point of view, into a set of k 
noninteracting subsystems. The rank condition is imposed in order to avoid trivial 
solutions, such as those leading to a zero overall transfer matrix, and it is equivalent 
to the preservation of the class of controlled output trajectories. No essential loss 
of control thus occurs through the decoupling process. 

To solve the problem, define the factorizations 

(6.22) 

H^sE, - F,)-1 Gy -= C^AíXs) 

where Al5 BY and Cj are proper stable rational matrices of compatible sizes. We 
assume that 

Ai, 
C\ 
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are relatively right prime. Similarly we define 

(6.23) -H2(sE2 - E,)"1 G2 = P~\s) Q(s) 

H2(sE2 - E2)-
J G2 =P'\s)R(s) 

for some proper stable rational matrices P, Q and R. 

Conforming to the partition of outputs, write 

'Cxi 

Cx = 
C l : 

c« 
where Ci; is an m; x A submatrix. Then we have the following. 

Theorem 5. The block decoupling problem with internal properness and stability 
is solvable if and only if the following two conditions both hold: 
(a) At and Bi are relatively right prime, 

k 

(b) ~? rank C1; = rank C, . 
i= l 

Proof. The proof of (a) goes along the lines of the proof given in Theorems 3 
and 4, so we prove here only (b). 

The transfer matrix relating v to z in the composite system reads 

T= C,{PA, + QB.Y'R. 
Denote 

X = (PA + QB)'1 R . 
If Tis block diagonal, then k 

r a n k Q Z = £ rank CUX 
i = i 

and the rank condition imposed on Tgives 

rank CUX = rank C1;, i = 1, 2 , . . . , k . 
Therefore (b) holds. 

The sufficiency will again be proved by construction. Denote 

r ; = rank Ci;, i — 1, 2 , . . . . k . 

Then there exists a nonsingular matrix U; e IR'"'Xmi such that 

= - - [ ? • ] 
where C'u is of full row rank rt. If (b) holds, then 

'C'xx 

c; = C'x: 

CÎ, 

has full row rank and hence has a right inverse G. 
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If (a) holds, then there exist proper stable rational matrices P(s), Q(s) with P(s) 
nonsingular that satisfy 

P A t + QBt = / , . 

Set R = Gt, where the scalar function t e Rps(s) it chosen so as to make R a proper 
stable rational matrix. The compensator defined by P, Q and R according to (6.22) 
then gives the transfer matrix 

T= C^PA, + QBj-'R = CtGt 

which satisfies the rank condition 

rank T = rank Ct = rank CiA;/1 

and is block diagonal 

T = 

The resulting system is therefore decoupled into nii x rt non-interacting blocks 
so that the external input vector has the dimension 

'uг 
~IГІ 

0 ' 

uk 
' I , k 

0 

r = £ r ; = rank Cг . D 

The above result is adapted from Kucera [19] and generalizes the multitude of 
various results on decoupling of regular systems, to mention just Voznesenskij [33], 
Kavanagh [15], Morgan [24], Falb and Wolovich [11], Basile and Marro [2], 
Morse and Wonham [27], [28], Wonham [38], Descusse and Malabre [9], Hautus 
and Heymann [14] and Descusse, Lafay and Kucera [8]. 

7. CONCLUSION 

The concept of internal properness has been introduced for generalized linear 
systems as an analogy to the concept of internal stability: a system is internally proper 
if its free response contains no impulsive motions and it is internally stable if its 
free response contains no non-decreasing exponential motions. 

The design of feedback control systems endowed with these essential properties 
then has been discussed. The main result is in identifying all compensators that 
make the given plant internally proper and stable. 

The key role of this result has been demonstrated on several examples of control 
system design. Using the technique of proper stable factorizations, the requirement 
of internal properness can be easily accommodated in the standard transfer function 
methods. The essential point is that the requirement of internal properness (like 
that of stability) is to be imposed on the overall system, not on the plant and com­
pensator separately. Of course, it amounts to the same for regular systems, but it is 

justified in the more general context of singular systems. ._. . , „, . .„ ,„„,^ J ° o j (Received March 18, 1985.) 
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