
K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 5

NORMAL FORMS IN THE TYPED A-CALCULUS
WITH TUPLE TYPES

JIRf ZLATUSKA

A modified typed A-calculus with types containing, in addition to function types, also product
types is studied. A notion of reduction, including bijective tuple and projection operations, is
introduced and it is shown that it is both strongly normalizing and Church-Rosser.

INTRODUCTION

It is well-known that the 1-calculus has the Church-Rosser property [3] and that,
if we restrict the terms to those of the typed A-calculus, a unique normal form exists
to every couple of convertible terms [4]. This makes the typed A-calculus a good
notational formalism. In order to achieve better means of expression of the typed
1-calculus (e.g. for [10]), it is useful to generalize the types corresponding to functions
[2] to their cartesian products as can be found e.g. in [7]. Such a generalized calculus
has been shown to be in very close correspondence with the cartesian closed categories
[8]. In the present paper we shall present a notion of reduction in the calculus with
tuple types (X * -calculus) that is Church-Rosser with unique normal forms and
contains bijective pairing.

TYPES AND TERMS

First, let us introduce our type structure. By a base we shall mean a set of pairwise
different symbols.

Let B be a base. The set Typ(B) of the types over the base B is inductively defined
as follows:

(1) B <z Typ(B)
(2) if £, n 6 Typ(B), then (itf) e Typ(B)
(3) if Zu ..., £, e Typ(B), then (£ l 5 . . . , Q e Typ(B)
The semantics of the type symbols from Typ(B) is given by the values (some sets

or, according to [7], some domains) of an interpretation J at the types from the
base B (the so-called base types). We inductively define the interpretation J(n£)
of the function types of the form (>7£) as a set of functions from Jt, to Jq (e.g.

366 •

= J(n)f[i>) and the interpretation J(£,U...,Q of the tuple types as the
cartesian product of J^, ..., •/<_„ (i.e. J{£,u ..., Q = J£t x ... x JQ. To avoid
tiresome conversions in the notation, with respect to the defined semantics of the
tuple types we shall assume the associativity of the cartesian product and, therefore,
identify, at the level of type symbols, any type <J e Typ(B) with the corresponding
one-tuple (£). The inner parentheses in the tuple types are of no importance, e.g. if
we take £f = (£x , . . . , Q, then (<!;,, ..., {,,..., Q is considered to be identical with

(fi _.-_, Ci,...,C*. _i + i, _„).
The identification of certain tuple types can be made formally correct in the fol

lowing way: We can define a reduction ++* of type symbols as a transitive closure of
relation +-> defined by:

if { = ({., ..., Q and & = (Cl5 ..., C„), then £ +* if,
where t\ - ({ . , . . . , £,_., Ci, •••, C„, _.+_, •••, <_„);

if { « (£ . , . . . , <_„) and £, -t+ £ then £ ++ if,
where q = (__,...,._,-,.,£, _i+i,...» <_„)•

Clearly, ++* is Church-Rosser and every reduction sequence has only a finite number
of steps; consequently, there exists a unique normal form for every (tuple) type
symbol. Factorizing the type symbols using the equivalence relation induced by ++*,
we can use unique representations for every type symbol — we call them normal
type symbols (or normal types for short).

The X * -terms of the calculus are defined as words over the alphabet of variables
(where we assume infinite number of variables for every type) and auxiliary symbols
(), ^ (i) (2) o) • • • (n) • • • (subscripts for every integer number) as follows:
(i) The set of X * -terms (over the base B) of the type £ is inductively defined as the
least set AB satisfying:

(a) if vs is a variable of a type £ e Typ(B), then u? e AB;
(b) if X e Aa, Ye AB

{) then (___) e AB;
(c) if xf1,..., xf" are mutually different variables of respective types {_.,..., <_„

from Typ(B) and YeAB, then Axj ... x„(Y)eAB
({i„..,{n));

(d) if X1BAB
i {„6AB„, then (X1; . . . ,X„)eAf{ l {n);""

(e) if X e AB
t {n), where (£1(..., <_„) is a normal type, then X0) e AB., for every i,

1 g i g n.

(ii) The set AB of all typed terms (over the base B) is AB = (J AB.
SETyp(B)

In the definition above, (a)—(c) correspond to the common notation of typed
A-terms, (d) represents the "tuple-forming" operation which is a generalization of the
sometimes used pairing symbol (note that we do not introduce special symbols for
the operation; instead we use it in the same way as it is usual to use the abstraction
(c)), and (e) represents the "projections" from tuples (the condition (£_, ..., Q being
normal makes the projection unambiguous because no £,t is a tuple type) into their
components.

367

Remark. The pairing symbol, P, of type (au a2) a2ax can be expressed by

P = Ax" ' / 2 . (x, y)

The corresponding projection symbols, kJJ, of type ak(au a2), 1 = /c = 2, can be

expressed by

provided that (ax, a2) is normal. If (ax, a2) is not normal, say at = (fiu (S2), then
similarly, without great difficulties,

_7 = Ax<»'^ . (x(1), x(2)) ; 2i7 = I x " * " ^) . „ ,„ ,
etc.

Note, moreover, that the subscripts for the projections contain only fixed numbers
they are, in fact, improper symbols) and, therefore, it is clearly impossible to "com
pute" their values in Xx -terms — they must be given when one writes X x -term.

For the sake of notational convenience, we shall omit tiresome parenthesing
whenever it is possible to do so without confusion. Particularly, we shall omit
outermost parentheses in applications and we shall, moreover, assume implicit paren
thesing with association to the left if no other parenthesing is implied from the type
context.

The notions of free and bound variables as well as the standard conventions
avoiding confusions of free and bound variables (especially in abstractions) are
supposed. To avoid unnecessary troubles with renaming of variables, we assume
Xx -terms modulo a-conversion (renaming of bound variables) — cf. [1], App. C.

Convention. Whenever it is possible, without causing any confusion or misunder
standing, we shall omit the corresponding type symbols (then we assume any admis
sible typing), or we shall indicate types only in the defining occurrences of Xx -terms
or variables.

REDUCTIONS

We define the following notio.ns of reduction expressing natural transformations
of X x -terms:

ft: (Axl< ... xf". A) B«"~.W _> A[xx\Bw, ..., *./_.<„>],
provided that (£u ..., £„) is normal type;

r\: Xxx ... x„ . A(xu ..., xn) -> A,
provided that x,-, 1 g i :§ n, do not occur free in A;

n: (A f ' , . . . , A « ") (i) - A „
provided that (<£u ..., £„) is normal type;

T: AXJ ... xf
u-,s-k) ... x„. A -* Xxx ... Xi_xy\[... y%xiJrl ... x„.

provided that yt, 1 = j = k, do not occur in A;

368

a: (Au ..., A*l""A\ A„) -> (A1; ..., A^, A,,,,, ..., Aw, Ai+1, ..., A„),
provided that (£x, ..., Q is normal type;

:̂ (A (1) , . . . ,A (,0)^A«'--H
provided that (£ 1 ; . . . , £„) is normal type.

Remark. The notation N[x^Lu ..., xkjLk] represents simultaneuous substitution
of Lu ..., Lk for the (pairwise different) variables xu ..., xk, respectively. To be exact:

y[xjL] = y iff y is a variable, y =JE X
J [X / L] = L iff >> = x

(M/V)[x/L]^(M[x/L])(JV[x/L])
(A^j . . . y„ . M) [xJL] 55 kyt... y„ . M[x/L] (here we assume, according to the

standard conventions, the variable x being different from each of yu ...,}'„)
(Nu..., N„) [xjL] = (Nl[xlL], ..., JV„[x/L])
(JV(0) [x/L] = (JV[x/L])(0.

By an easy induction the substitution lemma holds:

M[xJN] [j'/L] = M[>'/L] [x/iVfj/L]], provided that x ={= y and x does not occur
free in L.

According to the substitution lemma it follows:
M[xJN] [y/L] = M[yjL] [x]N], provided that x =j= y and neither x occurs free

in Lnor y occurs free in N;
therefore we can write in such a case M[xJN, yJL] instead of M[xJN] [yJL] and,
straight away, we have the notation M[xx\Nu ..., xkjNk], or, for short, only M[xjN]
(if the number of the components is clear), provided that xt =£ Xj, i =£ j , and x ; does
not occur free in any Nj, i 4= j .

One step reductions are formed from ^ U I J U K U T U I T U / I (we shall abbreviate
this notion of reduction by T) as the compatible closure, i.e.

M -> M' = ZM -> ZM'
M -> M' = MZ -> M'Z
M -* M' = Ax . M -> Ax . M'
Mi-> M't = (Mu...,Mi,...,M,)^(Mu...,M'i,...,M„)
M-+M' = M (0 -^ M (i)

General reductions, ->*, are generated as the reflexive and transitive closure
of ->[!] .

For the study of the equality of A * -terms constructed as the equivalence relation
generated by ->*, the reduction relation ->* should have certain good properties,
especially to be Church-Rosser and (as we have our calculus typed) strongly nor
malising:

A notion of reduction is said to be Church-Rosser (CR) iff whenever A ->* B and
A -+* C then there exists D such that B ->* D and C ->* D.

A notion of reduction is strongly normalizing (SN) iff for any A * -term A there is
no infinite reduction sequence A -> Ax -> ,.. .

369

An important property is the existence of normal forms with respect to a notion
of reduction which is both CR and SN: Term A is said to be in normal form iff
B = A follows from A ->* B. Moreover, if two terms A, B are equivalent in the
equivalence relation generated by ->* and ->* is CR and SN, then there exists a unique
term C in the normal form such that A ->* C and B ->* C. Any reduction sequence
starting with A or B terminates in this term C.

Remark. The following lemma is useful for work with reductions.

M ->* N => M[xj/L l5 ..., ^ / L j ->* Af[xj/Lj,..., xfc/Ls] (i.e. L is substitutive).

It is quite sufficient to check the substitutivity for the relation ->; the substitutivity
of ->* follows by simple induction on the definition of ->* (Cf. [1], Prop. 3.1.15).
The proof of the substitutivity of -» follows by simple induction on the definition
of ->.

In the following we shall prove the Church-Rosser property and the strong nor
malization of r in our calculus.

First, we shall prove the weak Church-Rosser property (WCR) (i.e. whenever
A -* B, A -> C, then there exists D such that B ->* D and C ->* D). Then, the strong
normalization will be proved using the method shown in [5] (in which a strongly
normalizing notion of reduction is studied; however, it does not contain the bijective
pairing rule j.i — it contains only the rules analogous to our rules /? and K). SN
together with WCR suffices for the validation of CR (Cf. [6]).

(WEAK) CHURCH-ROSSER PROPERTY

Lemma. T is WCR.

Proof. In order to prove that T is WCR it suffices to chase the diagram

M-

M

• M -

*

Suppose M -> Mj and M -> M2 to be direct consequences (through the com
patible closure) of Al -» A\ and A2 -» A'2 (A{ are redex occurrences and A\ contractum
occurrences in the considered X* -terms). The possible relationships between the

370

occurrences A1 and A2 are listed in the following table:

(1) A1cA2 = 0
(2) A1 = A2

(3) A, cz A2

(4) A, => A2

In the case (1), the diagram is clearly satisfied for every couple of reductions />, r\, n,
T, a, \i, because if we have

M = .. .zli ...A2 ...
M1 = ... A\ ... A2 ...

M2 = ...Ax ...A'2 ... ,

we can take

M 3 = ...A\ ...A2... .

In the remaining situations (2)-(4) we must tediously try the possible cases for the
of reductions A1 -* A\ and A2 -» A'2:

Take ^-reduction: A1 a (Ax, ... x„. P1) Q1,

Case/J/3: A2 = (Xyi ... y „ , . P2) Q2,

*2^P2[y1lQtt),-,yn,lQl)l
Subcase (2): Then M1 = M2 and therefore we can take M3 = M±.
Subcase (3): (a) A1 c P2, then

M = ...(Ay, ...ym(...At ...))Q2 ..., where . . . J , ... = P2 ,
M, 5 S . . . (A y 1 . . . y m (. . . z l ' 1 . . .)) e 2 . . . ,
M2 = ...(...Al...)[y1jQ

2
il),...,ymlQl)-]...;

take

M 3 = . . . (. . . J ' 1 . . .) [j 1 /<2 2 ,) , . . . , j ; m / e (
2

m)] . . .

and the result follows from the substitutivity of J\
(b) Ax c 6 2 , then
M = ...(A>, ...>•„,. P 2) (. . . / l i ...) ... , where ... J , . . . = Q2,
M, = . . . (A > i . . . > - m . P 2) (. . . / l ' i . . .) . . . ,
M2 = ... P\yi\(... Ax..) (1) , . ..,>.,„/(.•• -1i ..•)(»)]•••;

take

M 3 = . . . P 2 b , / (. . . ^ ' , . . .) (1) , . . . , y m / (. . . / l i . . .) m)] . . .
and the result follows from the compatibility of T.

Subcase (4) is analogous to (3).

Case prj: A2 = Ay, ...yn. P2(yu ..., ym); J 2 = P2 .
Subcase (2): impossible
Subcase (3): then A t <= P 2 :

M = . . . A y , . . . > m . (. . . z l i . . .) (y „ . . . , > m)) . . . , where ...A,... = P2 ,
M, = ...(kyi...ym.(...A\..)(yi,...,ym))...,
M2 = ...(...A,...)...;

371

take

M 3 = . . . (. . . / . ; . . .) . . .
and the result is clear.

Subcase (4): (a) A2 c P 1 :
M - = . . . I x j . . . x s . (. . J 2 . . .)) 6 ' . . . , where ...A2... = P1,
M . = . . . (. . . ^I2 . . .)[x1 /Q (

1
1) ! . . . ,x„/Q (

1„)]. . .)

M2 = . . . (A x 1 . . . x „ . (. . . . d 2 . . .)) Q 1 . . . ;

M 3 = . . . (. . . / l 2 . . .) [x 1 /Q (
1

1) , . . . ! x„/Q 1 „)] . . .

and the result follows from the substitutivity of P.

(b) A2 = Ax1 ... x„. P 1(x 1 , . . . , x„), then

M = ...-(-.x, . . . x„ .P 1 (x 1 , ..., x„)) Q1 ... ,
M, = ... (P^x , , ..., x,,)) [xjQ 1 , , , ..., xjQ1,/] ... ,
M2 = ... P ^ 1 ... ;

take
M 3 = M2

and the result follows from My = ... Pl(Q{i),..., Q(B)) ••• (because P1 does not
contain any free occurrence of xu ..., x„) using yu-reduction.

(c) A2 c Q\ then

M = ... (Xxt ... x„. P1) (... J 2 . . .) . . . , where ... A2 ... = Q1,
M 1 = . . . p i [x 1 / 1 ; . . . j 2 . . .) (1) , . . . , x n / (. . . 2 i 2 . . .) („)] . . . ,
M2 = (l x 1 . . . x „ . P >) (. . . z l 2 . . .) . . . ;

take
M 3 = P 1 [x 1 / l . . . z l 2 . . .) (1) , . . . , x„ / (. . .^ i . . .) („)] . . .

and the result is clear from the compatibility of T.

Case /S?r: A2 = (P2
X, ..., P2) (;) , A'2 = P2 .

Subcase (2): impossible-

Subcase (3): (a) Ay <= P 2 , j* #= i, then

M = . . . (P 2 , . . . , (. . .Ay ...),..., P 2) (0 . . . , where. ..Ay ... = P2

M1 = . . . (P 2 , . . . , (. . .z l ' 1 . . .) , . . . ,P , 2) (;) . . . ,

M2 = = ... P2 ... ;

take

M3 = M2

and the result is clear.
(b) Ay c P2, then

M = . . . (P 2 , . . . , (. . . d) , . . . , P 2) (i) . . . , where ... zlx ... = P 2 ,
M 1 = ...(P2,...,(...^'1...),...,P

2)(I,...,
M2 = ...(.../(,...)...;

372

take
M 3 = ...(...A\...)...

and the result is clear (from the compatibility of T).

Subcase (4): similarly to flfi (4).

Case fix: A2 = Xyx... ,f'••-**> ... ym . P2,

A'2 = >•>... .vf*... J 4 ; . • • ym• P 2 1>I /0 '« 1 , • •., J O I
Subcase (2): impossible.
Subcase (3): M = ...Xy1 ... yt... ym(... A1 . . .) . . . , where ... A1 ... = P1.

M. -= . . .A^ 1 . . .y lv. (. . . .4 ' 1 . . .) . . . ,
M2 = ... A^,.... yh ... yik..- y,„(... 4 X . . .) [>-,/(.?..,..., j>;J] . . . ;

take

M 3 B ... Xyi... y,. ... yfc ... j ,„(.. . zl l . . .) [>;/(>.„..-, yik).• •

and the result is clear (from compatibility of T).

Subcase (4): similarly to J?/?(4).

Casej3<r: J 2 = (P 2 , . . . , P2 , ..., P2) ,

A'2=(P\,...,P2
(l),...,P

2
(k),...,Pf„).

Subcase (2): impossible.
Subcase (3): A1 c P 2 , / 4= i (j = i is clearly impossible!),

then
M = . . . (P 2 , . . . , (. . . 4 j . . .) , ...,P2, . . . , P 2) . . . , where ... Ax ... = P2 ,
Mx =...(P\,...,(...A\...),..., P 2 , . . . , P 2) . . . ,
M2 = ...(P\, ...,(... A, ...),..., P2

0), ..., Pf(k), ..., P2)... ;
take

M3 = ...(P\,...,(...A\...),...,P2
(V),...,P

2
(k),...,P

2
m)...

and the result is clear from the compatibility.
Subcase (4): similarly to fifi{4).

C a s e ^ : A2 = (P2
(X), ...,P

l
(k), A'2 = P2 .

Subcase (2): impossible.

Subcase (3): ^ c P2
;) (remember that <d's are particular occurrences of redexesf),

then
M s S . . . (P f 1) , . . . , (. . . J 1 . . .) (0 , . . . , P »)) . . . f where ... Ax ... m P2,
M1 = ...(Pfl),...,(...A\...)(i),...,P

2
k))...,

M2 = . . . P 2 ... ;
take

M3 = ...(...A\...)...

and the result is clear from ... A x ... = P2 using compatibility of T.
Subcase (4): similarly to j?j3(4).

Take ^-reduction: A1 = Ax. ... x„. P^Xj, ..., x„),
•41-P-.

373

Case rpi: A2 = Xyi... ym . P2(yu ..., ym), A'2 = P2 .
Subcase (2): At = A2, i.e.

M = ... kx1 ... x„(P\x1,..., x, ,)) . . . ,
M1 = ...P1...,
M2 = ...P1 ...;

trivially M 3 = Mt= M2.
Subcase (3): A± c P2, then

M = ...Xy1...ym((...A1...)(y1,...,ym))..., where ... Ax ... = P2 ,
M t = . . . A j ^ . . . Jm((... ^ i ...)(>'1, ...,ym))...,
M2 = ...(...A,...)...,

take
M 3 = . . . (. . . / i ; . . .) . . .

and the result is clear.
Subcase (4): similarly to (3).

Case nn: A2 = (P\,..., P 2) (0 , A'2 = P2.
Subcase (2): impossible.
Subcase (4): similarly to (in(3).
Subcase (4): similarly to ^^(4).

C&ssw.A2 = Xy1...yi...ym.P2,

A'2 = XVl ... yh ...yik...ym. P2_yij(yh,..., yik)~].

Subcase (2): M = ... Xyx ... yt... ym(P\y1, ..., yb ..., ym)) ... ,
Mt = . . . P 1 ... ,

M2 = ...Xyi...yh... yik... ym(P\yi,... (yh, ..., yik),..., ym))...;

take
M 3 = . . . P 1 ...

and the result follows using cr, n and ^ reductions to the k * -term M2.

Subcase (3): similarly to J?T(3).
Subcase (4): similarly to ^^(4).

Case w. A2 = (P\,..., P2,..., P2) ,
A'2=(Pl,...,P2

Ki),...,P
2

m,...,P2
n).

Subcase (2): impossible.
Subcase (3): similarly to /to(3).
Subcase (4): similarly to w(4).

Case mi: A2 = (P(
2

1},..., P(
2
ft)), A'2 = P2 .

Subcase (2): impossible.
Subcase (3): similarly to /fyj(3).

Subcase (4): similarly to w(4).

Take Tt-reduction: Ax = (P\,..., PJ,)U), A\ = P).

374

where ... At ... = P2,

where ... A 2 ... = Pi

Case TTTT: A2 = (P\, ..., P2„\k), A'2 = P 2 .

Subcase (2): then M (= M 2 and so we can take M 3 = Mx.

Subcase (3): (a) A{ c P2, i 4= k, then

M =...(Pi,...,(... A,...),...,P2,\k)

M1 = ...(P2,...,(...A'i...),...,P2„\k)

M2 = ...Pt...;

take

M 3 = M 2

and the result is clear.

(b) z)x c P 2 , then

M = . . . (P2

U...,(... J , . . .) , . . . , P 2) W

M x = ... (P 2 , . . . , (. . . / I ' , . . .) , . . . , P 2 \ k) . . . ,

M2 = ...(...A1..)...;

take

M 3 - " . (. . ^ i •••)•••
and the result follows using one reduction.

Subcase (4): similarly to (3).

Case ni: A2 = Xyi ... y,... y,„. P2,

A'2 = Xyi...yh... yik...y,„. P2 |>./(.v....... yj]
Subcase (3): impossible.
Subcase (3): similarly to y5r(3).
Subcase (4): similarly to 7T7t(4).

Case na: A2 a (P\, ..., P 2 , ..., P 2) ,

^ 2 — (I"l> •••> " 1 (1) ' •••> Pi(k)

Subcase (2): impossible.

Subcase (3): similarly to /Jer(3).

Subcase (4): similarly to nn{4).

Case-;,.: A2 = (P 2 , , , . . . , P2

k)), A'2 = P2.

Subcase (2): impossible.

Subcase (3): similarly to /fy<(3).

Subcase (4): (a) A2 <= Pi similarly to 7i7r(4).

(b) A, = A2U), then

M a . . . (P (

2

1)) . . . , P f „)) 0 , . . . ,

M 2 S . . . P (

2

y) . . . ;

take M 3 = M 2 = M t and the result is clear.

Take T-reduction: Ax = xt... Xj . . . x„ . Pu

A\ =xx...xix... xJk ...x„. P^XJKXJ,, .

Case TT: A2 = ?.yi ... yt... y,„. P 2 ,

A'2 = Xy% ...yh... yh ... y,„. P2[yij(yh,...,)>..)].

PІ).

01

375

Subcase (2): A± = A2:

M = ... Xxx... xt... Xj ... xJP1) ...,

M. = ... Xxx ... x ; . . . xjl ... xJk... xJP^Xjfcxj^ ..., XjJ] ...,

M2 = ... Xxy... xh ... xit... Xj ... xJP^Xifcx^ ..., x ; ,)]) . . . ;
take

M 3 s . . . Ax t . . . xh . . . xh ... xJt ...Xjk... xJP^Xifcx^,..., x;,),

xJl(xji,...,xik)'])...

and the result follows using substitution lemma (or, in case of i = j , as a trivial
M3 = M,= M2).

Subcase (3): similarly to r\t](3) using substitutivity of T.
Subcase (4): similarly to (3).

Case xa: A2 = (P2
X, ...,P2,..., Pm),

A'2=(P2,...,P2
0),...,P

2
{k),...,P

2
m).

Subcase (2): impossible.
Subcase (3): similarly to pa(3).
Subcase (4): similarly to TT(4).

CaseT/x: A2 = (P2
0), ..., Pfm)), A'2 = P2.

Subcase (2): impossible.
Subcase (3): similarly to fl[x(3).

Subcase (4): similarly to TT(4).

Take cr-reduction: A1 = (P\, ..., P), ..., P\),
A'1=(P\,...,P)0),...,P)(k),...,P!l).

Case aa: A2 = (P\,..., P2, ..., Pm),
A'2=(Pl,...,P2

iO),...,P
2
0),...,P

2
m).

Subcase (2): clear, abalogously to TT(2).
Subcase (3): similarly to pa(3).
Subcase (4): similarly to (3).

Case ft.: A2 = (P2
0),..., P2

m)), A'2 = P2.

Subcase (2): impossible (type restrictions!).
Subcase (3): similarly to fi[i(3).

Subcase (4): similarly to o-a-(4).

Take/.-reduction: At = (P0), ...,P{n)), A\ = Pl.

We have the last \i\i: A2 = (P0),..., Pfm)), A'2 = P2.

Subcase (2): then Mt = M2 and we can take M3 = Mt = M2.
Subcase (3): similarly to /?/*(3).
Subcase (4): similarly to (3). •

376

STRONG NORMALIZATION

Lemma. T is SN.

Proof. To prove the lemma, we shall use a generalization of the elegant method
shown in [5]. The method uses monotonocity of A "/-terms.

Remark. XxI-terms are defined as subset of AB satisfying:
(i) variables are Axi-terms;

(ii) if A', Yare XxI-terms, then (XY) is lx i-term;
(iii) if X is l*i-term with free occurrences of variables x 1 , . . . , x„, then Xx1 ... x„.X

is A "/-term;
(iv) if XU...,X„ are lx i-terms with the same sets of free variables, then

(Xu . . . ,X„)is2x i - term;
(v) if X is Axi-term, then X (i) is 2xi-term;

(vi) if Xu ...,X„ are Axi-terms such that Xx-term (Xu ...,X„) is of normal type
(£U...,Q and Yis Ax/-term [of type ((... (itfm) ...) {,)], then Y(XU...
..., X„)w ... (Xu ..., Z„)(m) is 2xi-term.

Suppose the base B = {ou ..., on). Let us interpret every member of the base
assigning to ot a set T0. = J(oj) ordered by orderings <„., 1 < i < n. Let us define
collections Hx (for normal types a) of hereditarily monotonic members of the type
structure in the following way:

(H0i, < J = (T.„ <0i)
Hpa = {f e Tfa: Va, a ' e H a T a e H ^ A (a <a a' =• fa < p fa')}

for f, g e H^-.f <pxg iff Va e Ha. fa <p ga

H(«,....*0 = H^ X ••• X Ha„

(au ..., a„) <(a1,...,CI„) (a'1}..., a)̂ iff a; < a . aj for all i, 1 <. i <. n .
[5] contains the proof that under any interpretation of free variables of X xi-term N
by values in H's, the value of N in the interpretation is monotonic and is contained
in H„, where r\ is the type of N (one only needs to extend the proof also to the case
(vi) of our definition of Axi-terms; however, it is sufficient to note that if the value
of (XU...,X„) is some (a l5 ..., am), then the /lx-terms (Xu ..., X„){1), ...
...,(Xu ...,X„)(m) will have their denotations au ..., am, respectively). Therefore,
we can use the orderings <x for the Axi-terms if we assume their symbols to be in
terpreted only by values from H's. Using Axi-terms, we shall not consider /x-reduction
in order to make standard arguments about the /lxi-calculus possible. Assuming that
every numerical term has a numerical value (the assumption we can take from the
ordinary typed A-calculus, cf. e.g. [9], 2.2), it is possible to introduce such a mapping
of Xx -terms into lxi-terms in which the image of a redex will be greater than that
of the corresponding contractum. Let us remark that the exclusion of the //-reduction
from the lx/-calculus makes no problems because the norms of the Xx -terms will
be constructed in such a way that they will not contain /(-redexes.

377

Choose numerical type o from the base B. Let us have symbols 0°, S0, + „ for
zero (of the type o), successor (of the type o) and addition (of the type (oo) o).

Define +I-calculus by extending our Ax/-calculus by these A "/-terms 0°, S0, + 0

and the Ax/-terms defined by
SPx = Xf* . Ax* . Sf(fx)
S(ai an) = Az'""'—""*. (S41(z (1)),..., SxJzM), where (au ..., a„) is normal type
+ „ ; = V * a A / * - A x « . (/ x) + , (a x)
+ («,,...A.) = Ax(ai «»)A/a,-"' ,!"). (x(1) + . , >•(„,, ..., x(n) + a„ j (n)) with («!, ..., a„)

being normal type.
Moreover, define AxLterms L (of normal types only) by
(i) L° = 0°

(ii) L°° = Ax". x
(hi) i***> = xf.n'.fn
(iv) LW)* = Ax*. Xyp. (n*x) +7(n

fl
y) •

(v) £-'.•••*> = Az(- - > . (L - z (1) + „ . , . + j L - z (n))
(vii) L(ai «»>' = Ay« . (L*lPy, ..., I"""v).
It is shown in [5] that all these terms belong to H's.

Now, we shall define a transformation embedding Ax -terms into +/-terms in
such a way that redexes have their images greater than those of contracta. Extending
the concepts from [5], we define

A*x°j' ... xl". M" = kxi ... xn.

. SP(M +, S„ ... S„(L^-^>->^(xu ..., x„)(1) . . . (* . , ..., x„)(m))) ,

fc-times

where k is the total number of the occurrences of embedded tuple types contained

in au ...,an and (au ..., a„) = (yu ..., ym) (where the right hand side is a normal

type). First, define the transformation * of the type symbols as follows:

£* = o iff £ is a member of the base

foO* = fa***)
(ZU...,Q* = (!;*,...,Q

and further assume that every type symbol has been transformed using such a trans
formation *.

Now define transformation * from A "-terms into +/-terms as
x* = x iff x is a variable

(MA')* = M*N*

(Axj ... x„. M)* = X*x1...x„.M*

(M(l,)* = (M*)(l,

(M*,. . . . M„*) = (S,. ...SPi((M* + . , (L«-<-'->->'«>(Afr,..., M*) (1) . . .

. (! . 7 i S " . . , M„*)(m)),..., MB* + ^(L(("(a»""')-)',1)(M*! . . . , M *) U) . . .

. . . (M*, . . . ,M*) (m))) (1)) , . . .

378

..., V ^ J M * + . , (£.<~<-"-.>->*>(Mj, ...,M„*)(1) ...

... (M*,1).".TM„*) (,„)), ..., M*„ + a „ (L«-™->^>(M*, ..., M*) (1) . . .

... (MX,..., M„*)(m)))(m))) where (at> ..., a„) = (fiu ..., /?,„) (where
the right hand side is a normal type) and k is the total number
of embedded tuple types contained in au ..., <x„.

Using 1.4 of [5], to prove strong normalization of T it is sufficient to show that
whenever

Mx -> M2,
then

M* > M*
(because then Lox(Mf) > L0X(M2) by monotonicity of L's) for each reduction of
ft, i], n, T, a, %:

/i-case: ML = (Ax, ... x„. P) Q, M2 = P[xjQ(1), ..., x„/e (,0];

M* = (2 * x 1 . . . x „ . P *) g * =

= (AXi ... x„ . S(P* +Lx1... x,,)) g* =

= s(p*[x1/e(*1),...,xn/e*)] + Lg*)...G*)

M*-p*[x1/e(*1),...,x,/e*)]
and M* > M* follows from the monotonicity of +/-terms.

»7-case: Mt = lxy ... x„ . P(xu ..., x„), M2 = P;

Mt = l*x, ... x„ . P*(Sk+1((Xl + L(Xl ... x„)(1) ...(xu ..., x„)(„0, ..., x„ +

+ L(xu ..., x„) (1) . . . (xu ..., x„)(m))(1),..., S
fc+1((xt + L(xu ..., x,X„ ...

• • • (*i, • • -, x„)(m), ..., x„ + L(x1; ..., x„) (1) . . . (xu ..., x„)(m))(m))) =

= Xxt ... x„. S(P*(S'C+J((xj + L(xu ..., x„) (1) . . . (xu ..., x„)(m), ..., x„ +

+ L(xu ..., x„) (1) . . . (x1; ..., x„)(m))(1),..., S
k + 1((xl + L(xu ..., x„) (1) . . .

• •• (*i, • • •, x„)(ra), • •., x„ + Lfxu ..., x„)(1) ... (xu ..., x„)(m))(m))) +

+ SfcL^x1,...,x„)(1)...(x1,...,x„)(m)))

M* = P*
and M* > M* because for any a1; ..., am e HPi x ... x Hp we have
Mj(a . , a,„) = S(P*(S*+1(ai + L(...)), ..., Sfc+1(am + L(...)) + S"(L(--))) >
> P*(a1 ; . . . , a,„) = M*(a1 ; . . . , a,„) from the monotonicity of P*.

7r-case: M (= ((P l5 ..., P„))(0), M2 = P ; ;

Mr = (p1,-,!
3„)r;,=

= (S(P* + LP* ... P*),..., S(P* + LP* . . . P*))(/) =

= S(P* + LP*...P„*)

M* = P*,

and Mf > M2 follows.

379

T-case: M t = Xxx ... xt... x„. P,

M2 s Xxt ...yh... yh ...x„. P[xJ(ytl,..., yt)];

M* = X*x1 ... x ; . . . x„. P* =

= Xx1 ... x ; . . . x„ . S(P* + Sk(L(Xl, ..., Xi,..., x„) (1) . . .

. . . (* . , . . . ,x ; , ...,x„)(m)))

M* = X*Xl ...yh... yh ... x„. (P[xjyh, ..., yh)])* =

= Xx1...yh...yh... x„. S(P[xJ(yh,..., yh)}* +

+ Sl(L(xu ..., yh, ..., yh,..., x„)(1) ...(xu ..., yh, ..., yh, ..., x„)(m))),

and M* > M* follows from k > I and x* > (yh,..., >';j)* according to the type
restrictions in the rule T.

tr-case: M1 = (Pu ..., P ; , ..., P„),

M2=(P1,...,Pi(1),...,PiU),..:,P„);

M* = (^((Pt + LM*H1) ... MHm),..., P* + LM*Hl) ... M* (ra)) (1)),...

..., Sk((P* + LM*H1) ... M*Hm),..., P„* + LM*H1) ...M*Hm)\m)))

M2* = (S\(P* + LM*H1) ... M* (m) , . . . , P*(1) + LM*(1) ... M2*(m),..., P*0, +

+ LM*2(1) ... M* (m) , . . . , P„* + LM* (1) . . . M* (m)) (1) , . . .

..., Sk((P* + LM*(1) ... M* (m) , . . . , P*(1) + LM*H1) ... M*2(m),..., P*w +

+ LM*2(l) ... M* (ra),..., P„* + LM*ni)... M*(ra))(m)))

and M* > M* follows from k > I (type restrictions!) and the comparison of
the corresponding projections M* (1) , . . . , M*(ra) and M* (1) , . . . , M*(m).

^u-case: Mx = (P (1), ...,P („}), M2 = P;

M* = (S(P*1) + LP*ly ... P(*n)),..., S(P(% + LP*, ...P*,))

M * = P * = (P*) , . . . , P*)) ,

and M* > M* follows.

Therefore, according to the properties of *, reductions from T cannot create an
infinite sequence. •

CONCLUSION

Theorem. The notion of reduction T is Church-Rosser and strongly normalizing.
The p roof follows from the lemmata above and from WCR A SN => CR (cf., e.g.,

[1], 3.1.25).

Corollary. The Xx -calculus has the well-known pleasant properties implied by CR
and SN, e.g.:

(i) to every Xx -term of the calculus with tuple types there exists a uniquely deter
mined normal form;

(ii) the normal form of any Xx-term is reached after a finite number of reductions;

380

(iii) any reduction strategy leads to the normal form;

(iv) two Xx -terms are equal in the theory induced by T iff they have identical normal

forms;

(v) the equality of Xx -terms in the theory induced by T is decidable.

Example. Suppose U, Vare terms of respective types (a1; a2, a3) and /?(a., a2, a3),

with (a l5 a2, a3) being normal. Let us show how Xx -term

T = (>«-/"••*>. V(y, x)) ((U(3), U(1)), U(2)) ,

(where, as it is easy to see, ordinary jS-reduction cannot be performed because im-

meadiate substitutions are not defined) will be transformed using our reductions:

T-+a(Xxy . V(y, x)) ((U(3), U(1))(1), (U(3), U(1))(2), U(2)) - *

- J U (XxyVy? . V((yu y2), x)) (U(3), U(1), U(2)) -»*

- » L {bcyiyi • V(yi, y2, x)) (U(3), U(1), U(2)) -

-^V((U (3) , U(1), U(2))(2), (U(3), U(1), U(2))(3), (U(3), U(1), U(2))(1)) - •

- i , V(U(1), U(2), U(3)) - „ VU.

Clearly, our reductions enable to transform the Xx -terms in the naive way, just as

one expects.

ACKNOWLEDGMENTS

This work has been supported by the Research Project 1-5-7/02.

(Received August 24, 1984.)

R E F E R E N C E S

[1] H. P. Barendregt: The Lambda Calculus. Its syntax and semantics. (Studies in Logic and the
Foundations of Mathematics 103.), North-Holland, Amsterdam 1981.

[2] A. Church: A formulation of the simple theory of types. J. Symb. Logic 5 (1948), 1, 56—68.
[3] A. Church: The Calculi of A-conversion. (Annals of Mathematics Studies No. 6.), Princeton

University Press, Princeton 1941 (1951).
[4] R. O. Gandy: An early proof of normalization by A. M. Turing. In: To H. B. Curry: Essays

on Combinatory Logic, Lambda-calculus and Formalism (J. R. Hindley, J. P. Seldin, eds.),
Academic Press, London 1980, pp. 453 — 456.

[5] R. O. Gandy: Proofs of strong normalization. In: [4], pp. 457—477.
[6] M. H. A. Newman: On theories with a combinatorial definition of "equivalence". Ann. of

Math. (2), 43 (1942), 223-243.
[7] D. S. Scott: Lectures on a Mathematical Theory of Computation. Oxford University Com

puting Laboratory, Technical Monograph PRG-19, 1981.
[8] D. S. Scott: Relating theories of the A-calculus. In: [4], pp. 403 — 450.
[9] A. S. Troelstra (ed.): Metamathematical Investigations of Intuitionistic Arithmetic and

Analysis (Lecture Notes in Mathematics 344). Springer-Verlag, Berlin 1973.
[10] J. Zlatuska: HIT data model. Data bases from the functional point of view. In: Proc. 11th

VLDB (A. Pirotte, Y. Vassiliou, eds.), Stockholm 1985, pp. 470—477.

RNDr. Jiri Zlatuska, Ustav vypocetni techniky UJEP (Computer Science Department — Uni
versity of Brno), Kotldrskd 2, 611 37 Brno. Czechoslovakia.

381

