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NORMAL FORMS IN THE TYPED A-CALCULUS 
WITH TUPLE TYPES 

JIRf ZLATUSKA 

A modified typed A-calculus with types containing, in addition to function types, also product 
types is studied. A notion of reduction, including bijective tuple and projection operations, is 
introduced and it is shown that it is both strongly normalizing and Church-Rosser. 

INTRODUCTION 

It is well-known that the 1-calculus has the Church-Rosser property [3] and that, 
if we restrict the terms to those of the typed A-calculus, a unique normal form exists 
to every couple of convertible terms [4]. This makes the typed A-calculus a good 
notational formalism. In order to achieve better means of expression of the typed 
1-calculus (e.g. for [10]), it is useful to generalize the types corresponding to functions 
[2] to their cartesian products as can be found e.g. in [7]. Such a generalized calculus 
has been shown to be in very close correspondence with the cartesian closed categories 
[8]. In the present paper we shall present a notion of reduction in the calculus with 
tuple types (X * -calculus) that is Church-Rosser with unique normal forms and 
contains bijective pairing. 

TYPES AND TERMS 

First, let us introduce our type structure. By a base we shall mean a set of pairwise 
different symbols. 

Let B be a base. The set Typ(B) of the types over the base B is inductively defined 
as follows: 

(1) B <z Typ(B) 
(2) if £, n 6 Typ(B), then (itf) e Typ(B) 
(3) if Zu ..., £, e Typ(B), then (£ l 5 . . . , Q e Typ(B) 
The semantics of the type symbols from Typ(B) is given by the values (some sets 

or, according to [7], some domains) of an interpretation J at the types from the 
base B (the so-called base types). We inductively define the interpretation J(n£) 
of the function types of the form (>7£) as a set of functions from Jt, to Jq (e.g. 
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= J(n)f[i>) and the interpretation J(£,U...,Q of the tuple types as the 
cartesian product of J^, ..., •/<_„ (i.e. J{£,u ..., Q = J£t x ... x JQ. To avoid 
tiresome conversions in the notation, with respect to the defined semantics of the 
tuple types we shall assume the associativity of the cartesian product and, therefore, 
identify, at the level of type symbols, any type <J e Typ(B) with the corresponding 
one-tuple (£). The inner parentheses in the tuple types are of no importance, e.g. if 
we take £f = (£x , . . . , Q, then (<!;,, ..., {,,..., Q is considered to be identical with 

(fi _.-_, Ci,...,C*. _i + i, .... _„). 
The identification of certain tuple types can be made formally correct in the fol

lowing way: We can define a reduction ++* of type symbols as a transitive closure of 
relation +-> defined by: 

if { = ({., ..., Q and & = (Cl5 ..., C„), then £ +* if, 
where t\ - ( { . , . . . , £,_., Ci, •••, C„, _.+_, •••, <_„); 

if { « (£ . , . . . , <_„) and £, -t+ £ then £ ++ if, 
where q = (__,...,._,-,.,£, _i+i,...» <_„)• 

Clearly, ++* is Church-Rosser and every reduction sequence has only a finite number 
of steps; consequently, there exists a unique normal form for every (tuple) type 
symbol. Factorizing the type symbols using the equivalence relation induced by ++*, 
we can use unique representations for every type symbol — we call them normal 
type symbols (or normal types for short). 

The X * -terms of the calculus are defined as words over the alphabet of variables 
(where we assume infinite number of variables for every type) and auxiliary symbols 
(), ^ (i) (2) o) • • • (n) • • • (subscripts for every integer number) as follows: 
(i) The set of X * -terms (over the base B) of the type £ is inductively defined as the 
least set AB satisfying: 

(a) if vs is a variable of a type £ e Typ(B), then u? e AB; 
(b) if X e Aa, Ye AB

{) then (___) e AB; 
(c) if xf1,..., xf" are mutually different variables of respective types {_.,..., <_„ 

from Typ(B) and YeAB, then Axj ... x„(Y)eAB
({i„..,{n)); 

(d) if X1BAB
i {„6AB„, then (X1; . . . ,X„)eAf{ l {n);"" 

(e) if X e AB
t {n), where (£1( ..., <_„) is a normal type, then X0) e AB., for every i, 

1 g i g n. 

(ii) The set AB of all typed terms (over the base B) is AB = (J AB. 
SETyp(B) 

In the definition above, (a)—(c) correspond to the common notation of typed 
A-terms, (d) represents the "tuple-forming" operation which is a generalization of the 
sometimes used pairing symbol (note that we do not introduce special symbols for 
the operation; instead we use it in the same way as it is usual to use the abstraction 
(c)), and (e) represents the "projections" from tuples (the condition (£_, ..., Q being 
normal makes the projection unambiguous because no £,t is a tuple type) into their 
components. 
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Remark. The pairing symbol, P, of type (au a2) a2ax can be expressed by 

P = Ax" ' / 2 . (x, y) 

The corresponding projection symbols, kJJ, of type ak(au a2), 1 = /c = 2, can be 

expressed by 

provided that (ax, a2) is normal. If (ax, a2) is not normal, say at = (fiu (S2), then 
similarly, without great difficulties, 

_7 = Ax<»'^ . (x(1), x(2)) ; 2i7 = I x " * " ^ ) . „ ,„ , 
etc. 

Note, moreover, that the subscripts for the projections contain only fixed numbers 
they are, in fact, improper symbols) and, therefore, it is clearly impossible to "com
pute" their values in Xx -terms — they must be given when one writes X x -term. 

For the sake of notational convenience, we shall omit tiresome parenthesing 
whenever it is possible to do so without confusion. Particularly, we shall omit 
outermost parentheses in applications and we shall, moreover, assume implicit paren
thesing with association to the left if no other parenthesing is implied from the type 
context. 

The notions of free and bound variables as well as the standard conventions 
avoiding confusions of free and bound variables (especially in abstractions) are 
supposed. To avoid unnecessary troubles with renaming of variables, we assume 
Xx -terms modulo a-conversion (renaming of bound variables) — cf. [1], App. C. 

Convention. Whenever it is possible, without causing any confusion or misunder
standing, we shall omit the corresponding type symbols (then we assume any admis
sible typing), or we shall indicate types only in the defining occurrences of Xx -terms 
or variables. 

REDUCTIONS 

We define the following notio.ns of reduction expressing natural transformations 
of X x -terms: 

ft: (Axl< ... xf". A) B«"~.W _> A[xx\Bw, ..., *./_.<„>], 
provided that (£u ..., £„) is normal type; 

r\: Xxx ... x„ . A(xu ..., xn) -> A, 
provided that x,-, 1 g i :§ n, do not occur free in A; 

n: ( A f ' , . . . , A « " ) ( i ) - A „ 
provided that (<£u ..., £„) is normal type; 

T: AXJ ... xf
u-,s-k) ... x„. A -* Xxx ... Xi_xy\[ ... y%xiJrl ... x„. 

provided that yt, 1 = j = k, do not occur in A; 
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a: (Au ..., A\*l""A\ .... A„) -> (A1; ..., A^, A,,,,, ..., Aw, Ai+1, ..., A„), 
provided that (£x, ..., Q is normal type; 

:̂ (A ( 1 ) , . . . ,A ( ,0)^A«'--H 
provided that (£ 1 ; . . . , £„) is normal type. 

Remark. The notation N[x^Lu ..., xkjLk] represents simultaneuous substitution 
of Lu ..., Lk for the (pairwise different) variables xu ..., xk, respectively. To be exact: 

y[xjL] = y iff y is a variable, y =JE X 
J [ X / L ] = L iff >> = x 

(M/V)[x/L]^(M[x/L])(JV[x/L]) 
(A^j . . . y„ . M) [xJL] 55 kyt... y„ . M[x/L] (here we assume, according to the 

standard conventions, the variable x being different from each of yu ...,}'„) 
(Nu..., N„) [xjL] = (Nl[xlL], ..., JV„[x/L]) 
(JV(0) [x/L] = (JV[x/L])(0. 

By an easy induction the substitution lemma holds: 

M[xJN] [j'/L] = M[>'/L] [x/iVfj/L]], provided that x ={= y and x does not occur 
free in L. 

According to the substitution lemma it follows: 
M[xJN] [y/L] = M[yjL] [x]N], provided that x =j= y and neither x occurs free 

in Lnor y occurs free in N; 
therefore we can write in such a case M[xJN, yJL] instead of M[xJN] [yJL] and, 
straight away, we have the notation M[xx\Nu ..., xkjNk], or, for short, only M[xjN] 
(if the number of the components is clear), provided that xt =£ Xj, i =£ j , and x ; does 
not occur free in any Nj, i 4= j . 

One step reductions are formed from ^ U I J U K U T U I T U / I (we shall abbreviate 
this notion of reduction by T) as the compatible closure, i.e. 

M -> M' = ZM -> ZM' 
M -> M' = MZ -> M'Z 
M -* M' = Ax . M -> Ax . M' 
Mi-> M't = (Mu...,Mi,...,M,)^(Mu...,M'i,...,M„) 
M-+M' = M ( 0 -^ M ( i ) 

General reductions, ->*, are generated as the reflexive and transitive closure 
of ->[!] . 

For the study of the equality of A * -terms constructed as the equivalence relation 
generated by ->*, the reduction relation ->* should have certain good properties, 
especially to be Church-Rosser and (as we have our calculus typed) strongly nor
malising: 

A notion of reduction is said to be Church-Rosser (CR) iff whenever A ->* B and 
A -+* C then there exists D such that B ->* D and C ->* D. 

A notion of reduction is strongly normalizing (SN) iff for any A * -term A there is 
no infinite reduction sequence A -> Ax -> ,.. . 
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An important property is the existence of normal forms with respect to a notion 
of reduction which is both CR and SN: Term A is said to be in normal form iff 
B = A follows from A ->* B. Moreover, if two terms A, B are equivalent in the 
equivalence relation generated by ->* and ->* is CR and SN, then there exists a unique 
term C in the normal form such that A ->* C and B ->* C. Any reduction sequence 
starting with A or B terminates in this term C. 

Remark. The following lemma is useful for work with reductions. 

M ->* N => M[xj/L l5 ..., ^ / L j ->* Af[xj/Lj,..., xfc/Ls] (i.e. L is substitutive). 

It is quite sufficient to check the substitutivity for the relation ->; the substitutivity 
of ->* follows by simple induction on the definition of ->* (Cf. [1], Prop. 3.1.15). 
The proof of the substitutivity of -» follows by simple induction on the definition 
of ->. 

In the following we shall prove the Church-Rosser property and the strong nor
malization of r in our calculus. 

First, we shall prove the weak Church-Rosser property (WCR) (i.e. whenever 
A -* B, A -> C, then there exists D such that B ->* D and C ->* D). Then, the strong 
normalization will be proved using the method shown in [5] (in which a strongly 
normalizing notion of reduction is studied; however, it does not contain the bijective 
pairing rule j.i — it contains only the rules analogous to our rules /? and K). SN 
together with WCR suffices for the validation of CR (Cf. [6]). 

(WEAK) CHURCH-ROSSER PROPERTY 

Lemma. T is WCR. 

Proof. In order to prove that T is WCR it suffices to chase the diagram 

M-

M 

• M -

* 

Suppose M -> Mj and M -> M2 to be direct consequences (through the com
patible closure) of Al -» A\ and A2 -» A'2 (A{ are redex occurrences and A\ contractum 
occurrences in the considered X* -terms). The possible relationships between the 
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occurrences A1 and A2 are listed in the following table: 

(1) A1cA2 = 0 
(2) A1 = A2 

(3) A, cz A2 

(4) A, => A2 

In the case (1), the diagram is clearly satisfied for every couple of reductions />, r\, n, 
T, a, \i, because if we have 

M = .. .zli ...A2 ... 
M1 = ... A\ ... A2 ... 

M2 = ...Ax ...A'2 ... , 

we can take 

M 3 = ...A\ ...A2... . 

In the remaining situations (2)-(4) we must tediously try the possible cases for the 
of reductions A1 -* A\ and A2 -» A'2: 

Take ^-reduction: A1 a (Ax, ... x„. P1) Q1, 

Case/J/3: A2 = (Xyi ... y „ , . P2) Q2, 

*2^P2[y1lQtt),-,yn,lQl)l 
Subcase (2): Then M1 = M2 and therefore we can take M3 = M±. 
Subcase (3): (a) A1 c P2, then 

M = ...(Ay, ...ym(...At ...))Q2 ..., where . . . J , ... = P2 , 
M, 5 S . . . ( A y 1 . . . y m ( . . . z l ' 1 . . . ) ) e 2 . . . , 
M2 = ...(...Al...)[y1jQ

2
il),...,ymlQl)-]...; 

take 

M 3 = . . . ( . . . J ' 1 . . . ) [ j 1 /<2 2 , ) , . . . , j ; m / e (
2

m ) ] . . . 

and the result follows from the substitutivity of J\ 
(b) Ax c 6 2 , then 
M = ...(A>, ...>•„,. P 2 ) ( . . . / l i ...) ... , where ... J , . . . = Q2, 
M, = . . . ( A > i . . . > - m . P 2 ) ( . . . / l ' i . . . ) . . . , 
M2 = ... P\yi\(... Ax.. ) ( 1 ) , . ..,>.,„/(.•• -1i ..•)(»)]•••; 

take 

M 3 = . . . P 2 b , / ( . . . ^ ' , . . . ) ( 1 ) , . . . , y m / ( . . . / l i . . . ) m ) ] . . . 
and the result follows from the compatibility of T. 

Subcase (4) is analogous to (3). 

Case prj: A2 = Ay, ...yn. P2(yu ..., ym); J 2 = P2 . 
Subcase (2): impossible 
Subcase (3): then A t <= P 2 : 

M = . . . A y , . . . > m . ( . . . z l i . . . ) ( y „ . . . , > m ) ) . . . , where ...A,... = P2 , 
M, = ...(kyi...ym.(...A\..)(yi,...,ym))..., 
M2 = ...(...A,...)...; 
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take 

M 3 = . . . ( . . . / . ; . . . ) . . . 
and the result is clear. 

Subcase (4): (a) A2 c P 1 : 
M - = . . . I x j . . . x s . ( . . J 2 . . . ) ) 6 ' . . . , where ...A2... = P1, 
M . = . . . ( . . . ^I2 . . .)[x1 /Q (

1
1 ) ! . . . ,x„/Q (

1„ )]. . . ) 

M2 = . . . ( A x 1 . . . x „ . ( . . . . d 2 . . . ) ) Q 1 . . . ; 

M 3 = . . . ( . . . / l 2 . . . ) [x 1 /Q (
1

1 ) , . . . ! x„/Q 1 „ ) ] . . . 

and the result follows from the substitutivity of P. 

(b) A2 = Ax1 ... x„. P 1(x 1 , . . . , x„), then 

M = ...-(-.x, . . . x„ .P 1 (x 1 , ..., x„)) Q1 ... , 
M, = ... (P^x , , ..., x,,)) [xjQ 1 , , , ..., xjQ1,/] ... , 
M2 = ... P ^ 1 ... ; 

take 
M 3 = M2 

and the result follows from My = ... Pl(Q{i),..., Q(B)) ••• (because P1 does not 
contain any free occurrence of xu ..., x„) using yu-reduction. 

(c) A2 c Q\ then 

M = ... (Xxt ... x„. P1) (... J 2 . . . ) . . . , where ... A2 ... = Q1, 
M 1 = . . . p i [x 1 / 1 ; . . . j 2 . . . ) ( 1 ) , . . . , x n / ( . . . 2 i 2 . . . ) („)] . . . , 
M2 = ( l x 1 . . . x „ . P > ) ( . . . z l 2 . . . ) . . . ; 

take 
M 3 = P 1 [x 1 / l . . . z l 2 . . . ) ( 1 ) , . . . , x„ / ( . . .^ i . . . ) ( „ ) ] . . . 

and the result is clear from the compatibility of T. 

Case /S?r: A2 = (P2
X, ..., P2) ( ; ) , A'2 = P2 . 

Subcase (2): impossible-

Subcase (3): (a) Ay <= P 2 , j* #= i, then 

M = . . . ( P 2 , . . . , ( . . .Ay ...),..., P 2 ) ( 0 . . . , where. ..Ay ... = P2 

M1 = . . . (P 2 , . . . , ( . . .z l ' 1 . . . ) , . . . ,P , 2 ) ( ; ) . . . , 

M2 = = ... P2 ... ; 

take 

M3 = M2 

and the result is clear. 
(b) Ay c P2, then 

M = . . . ( P 2 , . . . , ( . . . d . . . . ) , . . . , P 2 ) ( i ) . . . , where ... zlx ... = P 2 , 
M 1 = ...(P2,...,(...^'1...),...,P

2)(I,..., 
M2 = ...(.../(,...)...; 
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take 
M 3 = ...(...A\...)... 

and the result is clear (from the compatibility of T). 

Subcase (4): similarly to flfi (4). 

Case fix: A2 = Xyx... ,f'••-**> ... ym . P2, 

A'2 = >•>... .vf*... J 4 ; . • • ym• P 2 1>I /0 '« 1 , • •., J O I 
Subcase (2): impossible. 
Subcase (3): M = ...Xy1 ... yt... ym(... A1 . . . ) . . . , where ... A1 ... = P1. 

M. -= . . .A^ 1 . . .y l . . . .v. ( . . . .4 ' 1 . . . ) . . . , 
M2 = ... A^,.... yh ... yik..- y,„(... 4 X . . . ) [>-,/(.?..,..., j>;J] . . . ; 

take 

M 3 B ... Xyi... y,. ... yfc ... j ,„(.. . zl l . . . ) [>;/(>.„..-, yik).• • 

and the result is clear (from compatibility of T). 

Subcase (4): similarly to J?/?(4). 

Casej3<r: J 2 = (P 2 , . . . , P2 , ..., P2) , 

A'2=(P\,...,P2
(l),...,P

2
(k),...,Pf„). 

Subcase (2): impossible. 
Subcase (3): A1 c P 2 , / 4= i (j = i is clearly impossible!), 

then 
M = . . . ( P 2 , . . . , ( . . . 4 j . . .) , ...,P2, . . . , P 2 ) . . . , where ... Ax ... = P2 , 
Mx =...(P\,...,(...A\...),..., P 2 , . . . , P 2 ) . . . , 
M2 = ...(P\, ...,(... A, ...),..., P2

0), ..., Pf(k), ..., P2)... ; 
take 

M3 = ...(P\,...,(...A\...),...,P2
(V),...,P

2
(k),...,P

2
m)... 

and the result is clear from the compatibility. 
Subcase (4): similarly to fifi{4). 

C a s e ^ : A2 = (P2
(X), ...,P

l
(k), A'2 = P2 . 

Subcase (2): impossible. 

Subcase (3): ^ c P2
;) (remember that <d's are particular occurrences of redexesf), 

then 
M s S . . . ( P f 1 ) , . . . , ( . . . J 1 . . . ) ( 0 , . . . , P » ) ) . . . f where ... Ax ... m P2, 
M1 = ...(Pfl),...,(...A\...)(i),...,P

2
k))..., 

M2 = . . . P 2 ... ; 
take 

M3 = ...(...A\...)... 

and the result is clear from ... A x ... = P2 using compatibility of T. 
Subcase (4): similarly to j?j3(4). 

Take ^-reduction: A1 = Ax. ... x„. P^Xj, ..., x„), 
•41-P-. 
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Case rpi: A2 = Xyi... ym . P2(yu ..., ym), A'2 = P2 . 
Subcase (2): At = A2, i.e. 

M = ... kx1 ... x„(P\x1,..., x, ,)) . . . , 
M1 = ...P1..., 
M2 = ...P1 ...; 

trivially M 3 = Mt= M2. 
Subcase (3): A± c P2, then 

M = ...Xy1...ym((...A1...)(y1,...,ym))..., where ... Ax ... = P2 , 
M t = . . . A j ^ . . . Jm((... ^ i ...)(>'1, ...,ym))..., 
M2 = ...(...A,...)..., 

take 
M 3 = . . . ( . . . / i ; . . . ) . . . 

and the result is clear. 
Subcase (4): similarly to (3). 

Case nn: A2 = (P\,..., P 2 ) ( 0 , A'2 = P2. 
Subcase (2): impossible. 
Subcase (4): similarly to (in(3). 
Subcase (4): similarly to ^^(4). 

C&ssw.A2 = Xy1...yi...ym.P2, 

A'2 = XVl ... yh ...yik...ym. P2\_yij(yh,..., yik)~]. 

Subcase (2): M = ... Xyx ... yt... ym(P\y1, ..., yb ..., ym)) ... , 
Mt = . . . P 1 ... , 

M2 = ...Xyi...yh... yik... ym(P\yi,... (yh, ..., yik),..., ym))...; 

take 
M 3 = . . . P 1 ... 

and the result follows using cr, n and ^ reductions to the k * -term M2. 

Subcase (3): similarly to J?T(3). 
Subcase (4): similarly to ^^(4). 

Case w. A2 = (P\,..., P2,..., P2) , 
A'2=(Pl,...,P2

Ki),...,P
2

m,...,P2
n). 

Subcase (2): impossible. 
Subcase (3): similarly to /to(3). 
Subcase (4): similarly to w(4). 

Case mi: A2 = (P(
2

1},..., P(
2
ft)), A'2 = P2 . 

Subcase (2): impossible. 
Subcase (3): similarly to /fyj(3). 

Subcase (4): similarly to w(4). 

Take Tt-reduction: Ax = (P\,..., PJ,)U), A\ = P). 
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where ... At ... = P2, 

where ... A 2 ... = Pi 

Case TTTT: A2 = (P\, ..., P2„\k), A'2 = P 2 . 

Subcase (2): then M ( = M 2 and so we can take M 3 = Mx. 

Subcase (3): (a) A{ c P2, i 4= k, then 

M =...(Pi,...,(... A,...),...,P2,\k) 

M1 = ...(P2,...,(...A'i...),...,P2„\k) 

M2 = ...Pt...; 

take 

M 3 = M 2 

and the result is clear. 

(b) z)x c P 2 , then 

M = . . . (P2

U...,(... J , . . . ) , . . . , P 2 ) W 

M x = ... ( P 2 , . . . , ( . . . / I ' , . . . ) , . . . , P 2 \ k ) . . . , 

M2 = ...(...A1..)...; 

take 

M 3 - " . ( . . ^ i •••)••• 
and the result follows using one reduction. 

Subcase (4): similarly to (3). 

Case ni: A2 = Xyi ... y,... y,„. P2, 

A'2 = Xyi...yh... yik...y,„. P2 |>./(.v....... yj] 
Subcase (3): impossible. 
Subcase (3): similarly to y5r(3). 
Subcase (4): similarly to 7T7t(4). 

Case na: A2 a (P\, ..., P 2 , ..., P 2 ) , 

^ 2 — (I"l> •••> " 1 ( 1 ) ' •••> Pi(k) 

Subcase (2): impossible. 

Subcase (3): similarly to /Jer(3). 

Subcase (4): similarly to nn{4). 

Case-;,.: A2 = ( P 2 , , , . . . , P2

k)), A'2 = P2. 

Subcase (2): impossible. 

Subcase (3): similarly to /fy<(3). 

Subcase (4): (a) A2 <= Pi similarly to 7i7r(4). 

(b) A, = A2U), then 

M a . . . ( P (

2

1 ) ) . . . , P f „ ) ) 0 , . . . , 

M 2 S . . . P (

2

y ) . . . ; 

take M 3 = M 2 = M t and the result is clear. 

Take T-reduction: Ax = xt... Xj . . . x„ . Pu 

A\ =xx...xix... xJk ...x„. P^XJKXJ,, . 

Case TT: A2 = ?.yi ... yt... y,„. P 2 , 

A'2 = Xy% ...yh... yh ... y,„. P2[yij(yh,..., )>..)]. 

PІ). 

01 
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Subcase (2): A± = A2: 

M = ... Xxx... xt... Xj ... xJP1) ..., 

M. = ... Xxx ... x ; . . . xjl ... xJk... xJP^Xjfcxj^ ..., XjJ] ..., 

M2 = ... Xxy... xh ... xit... Xj ... xJP^Xifcx^ ..., x ; , ) ]) . . . ; 
take 

M 3 s . . . Ax t . . . xh . . . xh ... xJt ...Xjk... xJP^Xifcx^,..., x;,), 

xJl(xji,...,xik)'])... 

and the result follows using substitution lemma (or, in case of i = j , as a trivial 
M3 = M,= M2). 

Subcase (3): similarly to r\t](3) using substitutivity of T. 
Subcase (4): similarly to (3). 

Case xa: A2 = (P2
X, ...,P2,..., Pm), 

A'2=(P2,...,P2
0),...,P

2
{k),...,P

2
m). 

Subcase (2): impossible. 
Subcase (3): similarly to pa(3). 
Subcase (4): similarly to TT(4). 

CaseT/x: A2 = (P2
0), ..., Pfm)), A'2 = P2. 

Subcase (2): impossible. 
Subcase (3): similarly to fl[x(3). 

Subcase (4): similarly to TT(4). 

Take cr-reduction: A1 = (P\, ..., P), ..., P\), 
A'1=(P\,...,P)0),...,P)(k),...,P!l). 

Case aa: A2 = (P\,..., P2, ..., Pm), 
A'2=(Pl,...,P2

iO),...,P
2
0),...,P

2
m). 

Subcase (2): clear, abalogously to TT(2). 
Subcase (3): similarly to pa(3). 
Subcase (4): similarly to (3). 

Case ft.: A2 = (P2
0),..., P2

m)), A'2 = P2. 

Subcase (2): impossible (type restrictions!). 
Subcase (3): similarly to fi[i(3). 

Subcase (4): similarly to o-a-(4). 

Take/.-reduction: At = (P0), ...,P{n)), A\ = Pl. 

We have the last \i\i: A2 = (P0),..., Pfm)), A'2 = P2. 

Subcase (2): then Mt = M2 and we can take M3 = Mt = M2. 
Subcase (3): similarly to /?/*(3). 
Subcase (4): similarly to (3). • 
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STRONG NORMALIZATION 

Lemma. T is SN. 

Proof. To prove the lemma, we shall use a generalization of the elegant method 
shown in [5]. The method uses monotonocity of A "/-terms. 

Remark. XxI-terms are defined as subset of AB satisfying: 
(i) variables are Axi-terms; 

(ii) if A', Yare XxI-terms, then (XY) is lx i-term; 
(iii) if X is l*i-term with free occurrences of variables x 1 , . . . , x„, then Xx1 ... x„.X 

is A "/-term; 
(iv) if XU...,X„ are lx i-terms with the same sets of free variables, then 

(Xu . . . ,X„)is2x i - term; 
(v) if X is Axi-term, then X ( i ) is 2xi-term; 

(vi) if Xu ...,X„ are Axi-terms such that Xx-term (Xu ...,X„) is of normal type 
(£U...,Q and Yis Ax/-term [of type ((... (itfm) ...) {,)], then Y(XU... 
..., X„)w ... (Xu ..., Z„)(m) is 2xi-term. 

Suppose the base B = {ou ..., on). Let us interpret every member of the base 
assigning to ot a set T0. = J(oj) ordered by orderings <„., 1 < i < n. Let us define 
collections Hx (for normal types a) of hereditarily monotonic members of the type 
structure in the following way: 

(H0i, < J = (T.„ <0i) 
Hpa = {f e Tfa: Va, a ' e H a T a e H ^ A (a <a a' =• fa < p fa')} 

for f, g e H^-.f <pxg iff Va e Ha. fa <p ga 

H(«,....*0 = H^ X ••• X Ha„ 

(au ..., a„) <(a1,...,CI„) (a'1}..., a )̂ iff a; < a . aj for all i, 1 <. i <. n . 
[5] contains the proof that under any interpretation of free variables of X xi-term N 
by values in H's, the value of N in the interpretation is monotonic and is contained 
in H„, where r\ is the type of N (one only needs to extend the proof also to the case 
(vi) of our definition of Axi-terms; however, it is sufficient to note that if the value 
of (XU...,X„) is some (a l5 ..., am), then the /lx-terms (Xu ..., X„){1), ... 
...,(Xu ...,X„)(m) will have their denotations au ..., am, respectively). Therefore, 
we can use the orderings <x for the Axi-terms if we assume their symbols to be in
terpreted only by values from H's. Using Axi-terms, we shall not consider /x-reduction 
in order to make standard arguments about the /lxi-calculus possible. Assuming that 
every numerical term has a numerical value (the assumption we can take from the 
ordinary typed A-calculus, cf. e.g. [9], 2.2), it is possible to introduce such a mapping 
of Xx -terms into lxi-terms in which the image of a redex will be greater than that 
of the corresponding contractum. Let us remark that the exclusion of the //-reduction 
from the lx/-calculus makes no problems because the norms of the Xx -terms will 
be constructed in such a way that they will not contain /(-redexes. 
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Choose numerical type o from the base B. Let us have symbols 0°, S0, + „ for 
zero (of the type o), successor (of the type o) and addition (of the type (oo) o). 

Define +I-calculus by extending our Ax/-calculus by these A "/-terms 0°, S0, + 0 

and the Ax/-terms defined by 
SPx = Xf* . Ax* . Sf(fx) 
S(ai an) = Az'""'—""*. (S41(z (1)),..., SxJzM), where (au ..., a„) is normal type 
+ „ ; = V * a A / * - A x « . ( / x ) + , ( a x ) 
+ («,,...A.) = Ax(ai «»)A/a,-"' ,!"). (x(1) + . , >•(„,, ..., x(n) + a„ j ( n ) ) with («!, ..., a„) 

being normal type. 
Moreover, define AxLterms L (of normal types only) by 
(i) L° = 0° 

(ii) L°° = Ax". x 
(hi) i***> = xf.n'.fn 
(iv) LW)* = Ax*. Xyp. (n*x) +7(n

fl
y) • 

(v) £-'.•••*> = Az(- - > . ( L - z ( 1 ) + „ . , . + j L - z ( n ) ) 
(vii) L(ai «»>' = Ay« . (L*lPy, ..., I"""v). 
It is shown in [5] that all these terms belong to H's. 

Now, we shall define a transformation embedding Ax -terms into +/-terms in 
such a way that redexes have their images greater than those of contracta. Extending 
the concepts from [5], we define 

A*x°j' ... xl". M" = kxi ... xn. 

. SP(M +, S„ ... S„(L^-^>->^(xu ..., x„)(1) . . . ( * . , ..., x„)(m))) , 

fc-times 

where k is the total number of the occurrences of embedded tuple types contained 

in au ...,an and (au ..., a„) = (yu ..., ym) (where the right hand side is a normal 

type). First, define the transformation * of the type symbols as follows: 

£* = o iff £ is a member of the base 

foO* = fa***) 
(ZU...,Q* = (!;*,...,Q 

and further assume that every type symbol has been transformed using such a trans
formation *. 

Now define transformation * from A "-terms into +/-terms as 
x* = x iff x is a variable 

(MA')* = M*N* 

(Axj ... x„. M)* = X*x1...x„.M* 

(M(l,)* = (M*)(l, 

(M*,. . . . M„*) = (S,. ...SPi((M* + . , (L«-<-'->->'«>(Afr,..., M*) ( 1 ) . . . 

. ( ! . 7 i S " . . , M„*)(m)),..., MB* + ^(L(("(a»""')-)',1)(M*! . . . , M * ) U ) . . . 

. . . (M*, . . . ,M*) ( m ) ) ) ( 1 ) ) , . . . 
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..., V ^ J M * + . , (£.<~<-"-.>->*>(Mj, ...,M„*)(1) ... 

... (M*,1).".TM„*) (,„ )), ..., M*„ + a „ (L«-™->^>(M*, ..., M*) ( 1 ) . . . 

... (MX,..., M„*)(m)))(m))) where (at> ..., a„) = (fiu ..., /?,„) (where 
the right hand side is a normal type) and k is the total number 
of embedded tuple types contained in au ..., <x„. 

Using 1.4 of [5], to prove strong normalization of T it is sufficient to show that 
whenever 

Mx -> M2, 
then 

M* > M* 
(because then Lox(Mf) > L0X(M2) by monotonicity of L's) for each reduction of 
ft, i], n, T, a, %: 

/i-case: ML = (Ax, ... x„. P) Q, M2 = P[xjQ(1), ..., x„/e ( ,0]; 

M* = ( 2 * x 1 . . . x „ . P * ) g * = 

= (AXi ... x„ . S(P* +Lx1... x,,)) g* = 

= s(p*[x1/e(*1),...,xn/e*)] + Lg*)...G*) 

M*-p*[x1/e(*1),...,x,/e*)] 
and M* > M* follows from the monotonicity of +/-terms. 

»7-case: Mt = lxy ... x„ . P(xu ..., x„), M2 = P; 

Mt = l*x, ... x„ . P*(Sk+1((Xl + L(Xl ... x„)(1) ...(xu ..., x„)(„0, ..., x„ + 

+ L(xu ..., x„) ( 1 ) . . . (xu ..., x„)(m))(1),..., S
fc+1((xt + L(xu ..., x,X„ ... 

• • • (*i, • • -, x„)(m), ..., x„ + L(x1; ..., x„) ( 1 ) . . . (xu ..., x„)(m))(m))) = 

= Xxt ... x„. S(P*(S'C+J((xj + L(xu ..., x„) ( 1 ) . . . (xu ..., x„)(m), ..., x„ + 

+ L(xu ..., x„) ( 1 ) . . . (x1; ..., x„)(m))(1),..., S
k + 1((xl + L(xu ..., x„) ( 1 ) . . . 

• •• (*i, • • •, x„)(ra), • •., x„ + Lfxu ..., x„)(1) ... (xu ..., x„)(m))(m))) + 

+ SfcL^x1,...,x„)(1)...(x1,...,x„)(m))) 

M* = P* 
and M* > M* because for any a1; ..., am e HPi x ... x Hp we have 
Mj(a . , . . . . a,„) = S(P*(S*+1(ai + L(...)), ..., Sfc+1(am + L(...)) + S"(L(--))) > 
> P*(a1 ; . . . , a,„) = M*(a1 ; . . . , a,„) from the monotonicity of P*. 

7r-case: M ( = ((P l5 ..., P„))(0), M2 = P ; ; 

Mr = (p1,-,!
3„)r;,= 

= (S(P* + LP* ... P*),..., S(P* + LP* . . . P*))(/) = 

= S(P* + LP*...P„*) 

M* = P*, 

and Mf > M2 follows. 
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T-case: M t = Xxx ... xt... x„. P, 

M2 s Xxt ...yh... yh ...x„. P[xJ(ytl,..., yt)]; 

M* = X*x1 ... x ; . . . x„. P* = 

= Xx1 ... x ; . . . x„ . S(P* + Sk(L(Xl, ..., Xi,..., x„) ( 1 ) . . . 

. . . ( * . , . . . ,x ; , ...,x„)(m))) 

M* = X*Xl ...yh... yh ... x„. (P[xjyh, ..., yh)])* = 

= Xx1...yh...yh... x„. S(P[xJ(yh,..., yh)}* + 

+ Sl(L(xu ..., yh, ..., yh,..., x„)(1) ...(xu ..., yh, ..., yh, ..., x„)(m))), 

and M* > M* follows from k > I and x* > (yh,..., >';j)* according to the type 
restrictions in the rule T. 

tr-case: M1 = (Pu ..., P ; , ..., P„), 

M2=(P1,...,Pi(1),...,PiU),..:,P„); 

M* = (^((Pt + LM*H1) ... MHm),..., P* + LM*Hl) ... M* ( ra)) (1)),... 

..., Sk((P* + LM*H1) ... M*Hm),..., P„* + LM*H1) ...M*Hm)\m))) 

M2* = (S\(P* + LM*H1) ... M* (m) , . . . , P*(1) + LM*(1) ... M2*(m),..., P*0, + 

+ LM*2(1) ... M* (m) , . . . , P„* + LM* ( 1 ) . . . M* ( m )) ( 1 ) , . . . 

..., Sk((P* + LM*(1) ... M* (m) , . . . , P*(1) + LM*H1) ... M*2(m),..., P*w + 

+ LM*2(l) ... M* ( ra ),..., P„* + LM*ni)... M*(ra))(m))) 

and M* > M* follows from k > I (type restrictions!) and the comparison of 
the corresponding projections M* ( 1 ) , . . . , M*(ra) and M* ( 1 ) , . . . , M*(m). 

^u-case: Mx = (P (1), ...,P („}), M2 = P; 

M* = (S(P*1) + LP*ly ... P(*n)),..., S(P(% + LP*, ...P*,)) 

M * = P * = (P* ) , . . . , P* ) ) , 

and M* > M* follows. 

Therefore, according to the properties of *, reductions from T cannot create an 
infinite sequence. • 

CONCLUSION 

Theorem. The notion of reduction T is Church-Rosser and strongly normalizing. 
The p roof follows from the lemmata above and from WCR A SN => CR (cf., e.g., 

[1], 3.1.25). 

Corollary. The Xx -calculus has the well-known pleasant properties implied by CR 
and SN, e.g.: 

(i) to every Xx -term of the calculus with tuple types there exists a uniquely deter
mined normal form; 

(ii) the normal form of any Xx-term is reached after a finite number of reductions; 

380 



(iii) any reduction strategy leads to the normal form; 

(iv) two Xx -terms are equal in the theory induced by T iff they have identical normal 

forms; 

(v) the equality of Xx -terms in the theory induced by T is decidable. 

Example. Suppose U, Vare terms of respective types (a1; a2, a3) and /?(a., a2, a3), 

with (a l5 a2, a3) being normal. Let us show how Xx -term 

T = (>«-/"••*>. V(y, x)) ((U(3), U(1)), U(2)) , 

(where, as it is easy to see, ordinary jS-reduction cannot be performed because im-

meadiate substitutions are not defined) will be transformed using our reductions: 

T-+a(Xxy . V(y, x)) ((U(3), U(1))(1), (U(3), U(1))(2), U(2)) - * 

- J U (XxyVy? . V((yu y2), x)) (U(3), U(1), U(2)) -»* 

- » L {bcyiyi • V(yi, y2, x)) (U(3), U(1), U(2)) -

-^V((U ( 3 ) , U(1), U(2))(2), (U(3), U(1), U(2))(3), (U(3), U(1), U(2))(1)) - • 

- i , V(U(1), U(2), U(3)) - „ VU. 

Clearly, our reductions enable to transform the Xx -terms in the naive way, just as 

one expects. 
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