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ON THE NUMBER OF MONOTONIC FUNCTIONS
FROM TWO-VALUED LOGIC TO k-VALUED LOGIC

JURAJ HROMKOVIC

We deal with the generalized Dedekind’s problem, i.e. with the determination of the number —
o(n) of monotonic functions of n variables from two-valued logic to k-valued logic in this paper.
Improving the lower and upper bounds of ¢(n) we obtain an asymptotic estimate of log, @(n).

0. INTRODUCTION

The problem of number determination of monotonic functions of n variables-t//(n)
was formulated and solved for n = 4 by Dedekind [3]in 1897. Forn = Sand n = 6,
this problem was solved in Church [2] and in Ward [12] respectively. The further
authors bringing the essential improvement of the estimates of 1//(n) were Gilbert [4],
Korobkov [8, 9, 10], Hansel [5], and Kleitman [7] who gave an asymptotic cstimate
of log, t/l(n)A The best known result obtained is Korshunov’s asymptotic estimate
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Besides the classical Dedekind’s problem a more general problem — the problem
of the determination of the number of n variables monotonic functions from m-
valued logic to k-valued logic has been formulated. The best known results concern~
ing the solution of this generalized task can be found in Alexejev [1]. Since we shall
deal with a special cases of the task introduced, with the number determination
of n-variables monotonic functions from two-valued logic to k-valued logic (denoted
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by (n)), we state Alexejev’s results (1) and (2') for ¢(n) only
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The results of this paper are lower bound (Theorem 2) and an upper bound
(Theorem 5) on ¢(n) which does not contain the additional member in the exponent
of 2. Using these bounds we obtain in Section 4 the underlying asymptotic estimate
of ¢(n) which is more precise than (2'):

log, ¢(n) = (k — 1) ([n72j> (1 + ¢(n)), where

a(n)‘ < !:—12 .

The paper consists of four sections. In Section 1 the basic definitions and notations
used are given. The lower bound and the upper bound of (p(n) are obtained in Section
2 and 3 respectively. The above stated estimate of log, ¢(n) is given in Section 4.

I. DEFINITIONS AND NOTATIONS

In this section we define some basic notions which we shall use in this paper.

The set B* = {(a, o, ..., %) I a;€{0,1}, i=1,2,...,n}iscalled n-dimensional
cube. The vectors @' = («,, ..., o,) [or simply &] in B" are called the vertices of the
n-dimensional cube B”.

The norm of a vertex &@" is defined as the number of coordinates which are equal

to one, i.e. n
] =Y o
i=1

The set of all vertices of B" having the norm k is called the k-th sphere of B", and
denoted by Bj.
The distance between & and f§ in B is the number

o, B) = »'Zi‘ai - ﬁ,k >

where & = («;, ..., %,) and § = (f,..., B,). The vertices & and f of B" are called
adjacent iff o(d, f) = 1. An unordered pair of adjacent vertices is called the edge
of B".

We say that the vertex @ precedes the vertex " (we denote &" < f*) iff o; < B,
foralli=1,...,n If& £ f"or f" £ a" holds then & and f" are called comparable.
In the opposite case @ and f" are called incomparable.
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The set A < B"is called independent iff, for all &, ff in 4, & and f are incomparable.
We shall denote the class of all independent sets of B” by A". Clearly A" < 27",

The function f(x,, ..., x,) [f: B" = {0, 1}] defined on B" and gaining the values
from {0, l} is called the Boolean function of n variables. The monotonic Boolean
function f is each Boolean function f satisfying coundition f(c”c) gf(/}) for all &, f§
in B"such that & < f. Y(n) will denote the number of all monotonic Boolean functions
of n variables.

The function f(x,, ..., x,) [f:B" > {0,1,..., k — 1} is called the function from
two-valued logic to k-valued logic, or simply the (2, k) function. The (2, k) function f
is called monotonic (2, k) function if, for all &, f in B* such that & < §, f(&) < f(B)
holds. The number of all monotonic (2, k) functions of n variables is denoted by
@(n). Obviously, the notions (2, 2) function and Boolean function are equivalent.

A set Ay = {& in B" | & z &}, for £e B", is said to be the interval of B". Using
the notation of interval we introduce the following notation. Let C < B". Then
Ae = U Ay,

For each (2, k) function f, we shall consider the set system N, = {N}, N}, ...

k—1

... N7}, where N = {& in B"|f(&) = i}. Clearly, B" = U Niand Ny Ny =0
for j =+ k. =0

Concluding this section we give some notations. Let L be a set. Then ‘L\ denotes
the number of elements in L. Let m be a real number [m | ([m])is the floor (ceiling)
of m.

2. THE LOWER BOUND OF (p(n)

We shall obtain the lower bound (]) of the number of all monotonic functions
from two-valued logic to k-valued logic in this section. We shall use a similar idea as
in Alexejev [J] but our proof technique utilizing the nice properties of the n-dimen-
sional cube helps to obtain the finer estimate of ¢(n) than (1').

Theorem 1. Let {S,,...,S,_,} < 2" be a sct system, where S; are independent
foralli=1,..,k~1,andS;nS; =0fori#j Letl £r <s=k— 1 andfor

k-1
no two &in S, and f in S, & = f§ holds. Then ¢(n) = 27, where d = ) IS,-].
i=1

Proof. We show using the set system {S, S,, ..., S,-,} that 2¢ different, monot-
onic functions from 2-valued logic to k-valued logic can be constructed. Let
{81, 85, ...,5;_,} be a set system, where S; < S;forall i = 1,..., k — 1. Clearly,
forl £i<js<k-landall@in§;, all fin S the negation of f < & holds (i.e.
& < fordand fare incomparable). It can be easy seen that there exists exactly

e
k-1 3184
[T28t=2"" =2

i=1
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different set systems {S], S5, ..., S;_,} chosen from the basic set system {S,, S, ...
o Sisq}-

In what follows we shall show that a monotonic (2, k) function can be assigned
to each set system {S7,..., S; _,} in such a way that two different, monotonic (2, k)
functions are assigned to different set systems &, &,. Obviously, this will prove
our asssertion.

We define a decomposition of B” to k disjoint sets Dy, Dy, ..., D,_, according

to a set system {S;. ..., S;_} in the following way.
k=1

Doy =Ag, s Dz =Ag, ,— Doy Dy = Ag — _}1’ Dy, ...
i1 e Jj=i+1
oDy =45, —UD;, Dy=B"-{D;.
j=2 Jj=1

Then putting N} = D, foralli = 0,..., k — I, the set system N, determines unambi-
guously a (2, k) function.

Let us shown that the (2, k) function defined in the way introduced above is
monotonic. We prove it by contradiction. Let there exist & and f§ in B, such that
&> fandi=f(a) <f(f)=jforsomeijin{01,..k— 1} Then

k=i k=1
deD;=Ag.— \ D, and feD;=A;. — U D,..
c=i+1 c=j+1
But, considering the properties of {S7, S5, ..., S;,} and the construction of D; and
D; we see that for all § in D; and all € in D; the negation of § < & holds. 1t means
that either & < f or & and f§ are incomparable, what is the contradiction with the
assumption & > f.

Now we shall show that different (2, k) functions f” and f” are assigned to different
set systems & = {87, 85, ..., Si_,}, and &” = {8}, S5,..., S;_,}. Since &' = &"
there exists ¢ in {0, 1, ..., k — 1} such that S, + S.. Without loss of generality we
can assume that there exists & in S, such that & does not belong to S.. Clearly, /(&) = c.
Let us assume [ = f* what implies f”(&) = c. It follows that there exists f in S
such that f < & So, f"(B) = ¢ implies f'(5) = ¢, what can hold iff therc exists §
in S, such that § < f. But this is a contradiction with the independence of the set
S, because § < f < & and 7, & belong to S.. [m}

Theorem 2. Let n, k be natural numbers, n = k = 2. Then

(w2)*2 (k.-‘f.)/z((n/zn) )

Loo(m)z2 for n,keven,

2. (p(n) = 22(‘(12;/2(["/2"1_") for n,k odd,

3. (p(n) = 2(“,’,2;'_‘,\/2)+2(k:§:'1([n/,z”|,,.) for n oddand keven,

4. o(n) = 2("72)+ ("/ZH"L WZ) {72('\;::]:”("/2"“11) for n even and k odd.



Proof. Considering the result of theorem 1 it is sufficient to show that there exists
a set system & < 25" fulfilling the assumptions of Theorem 1 such that the cardinality
sum of sets in & is equal to binary logarithm of the lower bound of ¢(n). Clearly,
the spheres B} are independent sets and the set system & = {B,B.,...,B. |,
where a; < a, for i < m, fulfils the assumptions of Theorem 1. So, choosing the
most powerful (according to the cardinality) spheres to & we obtain the assertion

of Theorem 2. O

3. THE UPPER BOUND OF o(n)

To obtain the upper bound of ¢(n) we use a new method based on the following
two theorems. We shall not prove the assertion formulated in Theorem 3 because it is
well-known [6, 7].

Theorem 3. The number of monotonic Boolean functions of n variables is equal
to the number of all independent sets in 2",

Theorem 4. Let M} _, be the set of all (k — 1)-tuples (S, S,, ..., S,..,), where S;
is an independent set of B" for i = 1,2,...,k — 1. Then ¢(n) = ]?\/ﬂ:—-ll‘

Proof. We shall prove the assertion introduced showing that a (k — 1)-tuple
of independent sets of B" can be unambiguously assigned to each monotonic (2, k)
function in such a way that different (k — 1)-tuples are assigned to different, monoton-
ic (2, k) functions fy, f5.

Let f be a monotonic (2, k) function of n variables. Let N, = {N, N}, ..., Ny~ '}
Let S; & N, be the set of minimal vectors of N for i = 1,2,...,k — L. Then we
have a (k — 1)-tuple (S,, S, ..., Sy—,) for each monotonic (2, k) function. Clearly,
the sets S; are independent.

Now, we shall show that two different (k — L)-tuples (S, S5, ..., S,-;) and
(S1. S5, ..., Sk 1) arc assigned to different monotonic (2, k) functions [ and f’.
Let us consider two set systems N, and N, for two different monotonic (2, k)
functions f and [’ respectively. Then there exists i in {1,2,...,k — 1} such that
Ni #+ Ni.. We can assume without the loss of generality that there exists & in N’
such that & ¢ N’f Let f§ be such vector in S; that § < & (obviously, such a vector
must exist). If B does not belong to S the proof is completed. Let us consider the
possibility that § € S;. Realizing that & ¢ N%. and f’ is monotonic we obtain & e N/,
for j > i. So, there exists § in N7. such that § < @and e S}. Obviously § cannot be-
long to S; because § € S; implies j = f(7) > f(&) = i, what is a contradiction with
the fact § < 4. O

Before formulating the upper bound of ¢(n) in the following Theorem 5 we note
that the equality between ¢(n) and [MZ_,| does not hold.
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Theorem 5.

o(n) = 2570 exp {(k -1 ()l/Z”_ 1)( L w2

n
3 T e T a
(L + y,(n)) for n even, where lim y,(n) = 0,

n- oo

o(n) < 21 2% 0 gy {(k _ ])K( n )( 1 n?

n
n—3)2) Gean T e T 5;5) +
[ n /1 n?
+ ((n - 1)/2> (i(nﬂ)x: + 5(4’)} (1 4+ 7,(n))

for n odd, where lim y,(n) = 0.
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Proof. Considering the result of Theorems 3 and 4 we obtain

o(n) < M| = (]
Using Korshunov's estimate of y(n), and a simple arrangement we obtain the asser-
tion of Theorem 5.

O
4. THE ASYMPTOTIC ESTIMATE OF BINARY LOGARITHM OF ¢(n)

In this section we give an asymptotic estimate of binary logarithm of the number
of monotonic (2, k) functions which is more precise than the estimate of Alexejev [1].
We obtain it in the following two lemmas.

2 (k- 1)(“";%) (1 = K?/n).

Proof. It is no hard technical problem to show that

(1 = 1) 2 (o) 0 - 0

where i as a constant. Using this fact and the assertion of Theorem 2 we have

Lemma 1. log, ¢(n)

‘P(”) > 2(1.— II(L"/','“)(I "kl/n)‘

W]
Lemma 2. log, (n) < (k — 1) ([n’;ZJ) 1+ (—;—A , for a constant c.

[n/2]

Proof. Taking logarithms of the upper bound of ¢(n) and doing some simple
arrangements the result of Lemma 2 can be obtained. ]
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Theorem 6. ¢() = (k — 1) (Ln;,‘z J) (1 + 0(1/n)).

Proof. It is the direct consequence of Lemmas 1 and 2. O
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