
K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 3

FURTHER REMARKS ON THE COMPLEXITY
OF REGULATED REWRITING*

JURGEN DASSOW, GHEORGHE PAUN

The paper continues the investigations of [1], [8] about the number of variables necessary/
sufficient in order to generate certain languages by various grammars with restrictions in deriva
tion. Here, we deal with matrix, programmed, and random context grammars (with appearance
checking and erasing rules).

1. INTRODUCTION

The succinctness of descriptions of a language by some given devices themselves
is a very important problem, and many researchers have devoted to this subject
(especially in the context free case, see [3], [4], [9]). In particular, the natural para
meter of the cardinality of the nonterminal alphabet is of central interest. For context-
free grammars this parameter leads to an infinite hierarchy of languages (even if we
take into account only regular languages, [3]). For regulated rewriting the situation
is quite different: 6 nonterminals are sufficient in order to generate recursively
enumerable language by a matrix grammar (with appearance checking and erasing
rules), [8]. Further it has been shown that two nonterminals are necessary (sufficient)
for the generation of some (all) linear languages.

The aim of the present paper is to say more on families of languages which can be
generated by matrix grammars with 1, 2, or 3 nonterminals and to obtain similar
results for programmed grammars (which are related — from the complexity point
of view — in a very precise way to matrix grammars, [1]).

We prove that three nonterminals are necessary (sufficient) in order to generate
some (all) metalinear languages by a matrix grammar, that three nonterminals are
sufficient for the generation of non-semilinear languages, and that one nonterminal

* Research done during a stay of the second author at the Technological University Magde
burg.

213

is enough for the generation of context-free languages of arbitrary complexity and
of non-context free languages but not for generating non-semilinear languages.

Similar results are proved for programmed grammars. By these results it follows
that there is no function bounding the increase of the number of necessary non
terminals when going from matrix (programmed) grammars to context-free grammars
(see also [1]). In this paper we show that also for random context grammars no such
function exists.

2. NOTATIONS AND TERMINOLOGY

The reader is assumed to be familiar with basic notions and results of formal
language theory (see e.g. [2], [10]). We specify here only some notations and recall
informally some definitions.

Let V = {x1, x2, ..., xn) be an alphabet. V* denotes the set of all strings (words)
over V (including the empty string A). By |w| and \w\x we denote the length of the
string w e V* and the number of occurrences of the letter x e Vin w e V*, respectively.
The Parikh vector pv(w) is defined by

pv(w) = (\w\Xl, \w\X2, ..., \w\Xn).

For a language L e V* we put

Pv(L) = {Pv(w) :weL}.

A language L c f * is called semilinear if there are n-dimensional row-vectors

Ph <2;i> 4i2> •••> airr -1 = i = m, such that

Pv(L) = U {Pi + u-iq-.x + <x2qi2 + ... + crtqir. : a; e H) .
i= i

In all following grammars, VN is the set of nonterminals, VT denotes the set of
terminals, and S is the axiom, S e VN.

A context-free grammar G = (VN, VT, P, S) is called linear iff all productions
of P have the form

(1) A -> uBv or A -* u where u, v e V* .

It is called metalinear iff the following three conditions are satisfied:

i) for all productions A -» w in P, S does not occur in w,

ii) for A e VN, A +- S all productions are of the form (1),

iii) all rules with left-hand side S are of the form

S -» w1A1w2A2 ... wsAsws+1 where Wj e V* and s ^ 0 .

We now recall informally the definitions of three types of regulated rewritting.
For detailed information on matrix and programmed grammars see [7] and [10],

214

Chapter 5; concerning random context grammars we refer to [6] and [11]. A matrix
grammar is a quadruple G = (VN, VT, M, S, F) where

M = {nzj, m2, ..., m„}

is a finite set of sequences of productions,

m ; = [Afi -> wfl, A,-, —> w,-2, ..., A;s(0 -> *f|j(] for t = 1, 2, ..., n ,

and E is a subset of the set of all productions occurring in M. The application of
a matrix mt to w is defined as follows: there are words w = wl5 w2, ..., ws(f) such
that, for l g j < s (i)

i) Wy = wJ+l if Aj does not occur in Wj and A;^ -> wf e E

or

ii) W; = VjAi.Uj and wy- + 1 = VjWi.Uj.

Only those words are in generated language L(G) which are obtained by applications
of whole matrices.

The productions of a random context grammar G = (VN, VT, P, S) are of the form

(A -> w, R, Q)

where R and Q are subsets of VN. Such a production is only applicable to x = xxAx2

if XJXJ contains no letter of R and x t x 2 contains all letters of Q.

The productions of a programmed grammar G = (Vy, Vr, P, S) are of the form

(/, A -> w, E, F)

where / is the label of the production, E and E are sets of labels. If A -* w is applicable
to x, then the next production has to be a rule with a label in the success field E.
If A -> w is not applicable, then the next production has to have a label contained
in the failure field E.

Please note that throughout this paper we consider only grammars with context
free core productions and that we allow erasing rules A -> X.

By LIN, MLIN, CF, M, PR, RC, CS, RE we denote the classes of linear, metalinear,
context free, matrix, programmed, random context, context sensitive, and type - 0
Chomsky grammars, respectively. For a class X of grammars, let &(X) be the
family of languages L(G) generated by grammars G in X. (RE stands for "recursively
enumerable".) It is known (see [7], [10], [6]) that

S?(M) = se(PR) = se(Rc) = if (RE),

i.e. the generative capacities of all these types of grammars coincide. In order to
illustrate differences between these regulation mechanisms the descriptional com
plexity of regulated rewriting has been studied in [1]. Here we continue this research.
We consider the following complexity measure.

215

For a grammar G = (VN, VT, S, P) (G = (Vv, VT, S, M, F)), we put

Var(G) = card(Vv)

and, for a language Le £C(X), we define

Varx(L) = inf {Var (G) : G e X, L(G) = L} .

3. ON MATRIX GRAMMARS WITH ONE, TWO, OR THREE
NONTERMINALS

In [8] it is proved that.

1) VarM (L) g 6 for all Le i f (RE) ,

2) VarM (L) «s 2 for all Le £C(LIN) and there is a regular language L' such that
VarM(L) = 2.

It is an open problem whether the bound 6 in 1) is optimal. Further one is interested
in uniform estimations similar to 2) for some other subfamilies of £C(CF) (£C(M)).
In this chapter we contribute to the theory of matrix grammars with at most three
nonterminals.

First we consider matrix grammars with only one nonterminal symbol.

Theorem 1. i) Every language L with VarM (L) = 1 is semilinear ii) There are non-
context-free languages Lsuch that VarM(L) = 1.

Proof, i) G = (VN, VT, S, M, F) be a matrix grammar with VN = {S}. Since
each nonterminal sentential form generated by G contains an occurrence of S it
follows that, possibly excepting the last rules of the last matrix used in some deriva
tions, all rules are effectively used.

Let \x\a be the number of occurrences of the letter a in the word x. For a matrix
m = (S -> X], S -> x2, ..., S —> xt) e M we define

and we put

Moreover, let

E(m) = \xtx2 ...xt\s,

E(M) = max {E(m) :meM}.

p = max {t: (S -• xu S -*• x2,..., S -> xf) e M) ,

q = 2p + E(M).

Clearly, any matrix of M can be applied to each string which contains at least p
occurrence of S, and each matrix in M replaces at most p occurrences of S by terminal
strings. Therefore, given a derivation D with respect to G producing a string w,
we can apply the matrices in D in such an order that we obtain a derivation D'

216

which produces a string w' letter-equivalent to w, and all sentential forms occurring
in the derivation D' have at most q occurrences of S. We take some initial steps
of D, and if we obtain more than 2p occurrences of S then we use one or more
matrices of D which decrease the number of occurrences of S in order to obtain
a sentential form with less than 2p occurrences of S, we continue by a matrix in
creasing the number of S-occurrences; the only restriction is to use the last matrix
of D also as the last matrix of D'.

Consequently a sublanguage L ^ L(G) exists which is letter-equivalent to L(G)
and has only derivations with a bounded number of nonterminals in the sentential
forms (of "finite index"). Now we can continue as in the proof of [7], Lemma 3.13
in order to show that L(G) is letter-equivalent to a regular language, and hence L(G)
is semilinear by [10], Theorem 7.1.

ii) We consider the matrix grammar

G = ({S},{a,b,c,d},S,M,<&)
with

M = {(S -* SS), (S ~> aSb, S -> cSd), (S -> ab, S -> cd)} .

Clearly
L((G) n a*b*c*d* = {a"b"c"d" : n > 1} .

Since {a"b"c"d" : n > 1} is not context-free, L(G) is also not context-free.

Corollary. Each non-regular L g {a}* satisfies VarM (L) > 2, and VarM (L) > 2
holds for each non-context-free language L c {a}* {b}* .

Indeed, the semilinear languages in a* are regular, and the semilinear languages
in a*b* are context-free, [2].

The one-nonterminal matrix grammars can generate context-free languages of
arbitrary context-free complexity (with respect to the measure Var). More precisely,
we have

Theorem 2. For each n J> 1, there are context-free languages L„ such that
Varcf (L„) > n and VarM (L,) = 1.

Proof. Let n — 2. We consider the matrix grammar

G„ = ({S}, {a, b, aua2, ..., a,,}, S, M, 0)
with

M = {mo, m0} u {m, : 1 g i ^ n} ,

'»o = (S -> SS), m'0 =(S-* aSb),

"1; = (S -» «;, S -» o„ ..., S -* a ,) , l <; i; ^ n .

(i + l)-times

The language L„ = I.iO,) is context-free. Indeed, it consists of strings of the

DYCK language over {a, b} shuffled in any possible way with strings in the language

L0 = {w :w e {at, a2,..., a„}*, \w\a. = kt(i + 1) for some kt _: 0, 1 S i _ «} •

More specifically, a derivation D in G„ proceeds as follows: after using once or several
times the matrices m0, m'0 (thus producing a sentential form of the Dyck language)
we replace i + 1 occurrences of S by a ; using a matrix m; for some i, 1 _ i | n;
then again we use the matrices m0, m'0 and so on. Therefore each such derivation
can be rearranged in such a way that we use first all rules S -> SS, S -» aSb from D
keeping unchanged all symbols S which are replaced by terminals at earlier steps
of D, and then we use only matrices m;, 1 | i ^ n. Since L0 is regular and Sf(CF)
is closed under shuffles with regular sets, L„ is context-free (see [7], p. 90).

Now let us consider a context-free grammar G = (VN, VT, S, P) for the language
L„. We regard all the strings of L„ of the forms

(*) a\ama-bm , m ^ 1 ,

(**) aJjamajb'", m 2: 1 ,

for some i 4= j , 1 _ *", j £= n. In order to generate strings of the form (*) we need
derivations

S =>* a\arAibs =>* a\arakAia
kbs =>* a;a'"a;6

m

with r, s > 0, /c > 0, and similarly for the strings of the form (**) involving a non
terminal Aj in a self-embedding derivation A,- =>* a'Ajb', t > 0. If A; = A, then
the derivation

S =>* a\arAibs = a\arAjbs =>* a\ara"ajb"bs

is possible and produces a string not in L„.

Moreover, S # A; because S can produce a string a j + 1 which cannot be replaced
for A,- in a;'arA;ft

s without contradicting the structure of L„. Hence at least n + 1
nonterminals are necessary for the generation of L„. Thus VarCf (L„) > « + 1.

Remark 1. In [3] it is proved that each language Bm, m £ 1, defined by

B. = {a} ,

B2 = {a}* u {b} ,
m - I

Bm = U {^}* for m ^ 3 ,
i = 1

satisfies VarCF (_Bm) = m. Since these languages are regular, VarM (Bm) g 2 for each m.
Hence we found regular languages L„ with VarM (L„) g 2 and VarCf (L„) = n.
Note that in Theorem 2 we have VarCF (L„) > n; we do not know languages L„
for which VarM (L„) = 1 and VarCF (L„) = n holds (this would say that VarCf is
a connected complexity measure - in the sense of [4] — on the family {L: Le £C(CF)
VarM (L) = 1}).

Now let us jump to matrix grammars with three nonterminals. First we give
a counterpart of Theorem 1.

Theorem 3. There are non-semilinear languages Lwith VarM (L) = 3.

Proof. We consider the matrix grammar

G = ({S, A, B}, {a}, S, M, F)
with

F = - {S - s4,; A -> S4, ß -> S4}

M = = [A -» S4, ß -> S4, S -> SA),

(S - K S -> S4, A -> Sßß),

(S ->л, S -> S4, A -> S4, ß -> SSA),

(S -+A, S -> я, S -> s 4 , в -> SSA),

(S -+A, S -> Я, Ѕ -> S4, ß -> S4, A -> SSß),

(S ->Я, S -> Я, S -> S4, ß -> S4, A -• SSSa),

(S -> A, S -> я, s -> л, S -> S4, A -•> SSSa),

(S -+л, S -> я, S -> я, S -> S4, A -> «)} -

If there is exactly one symbol S in the current string, then each occurrence of A is
replaced by two occurrences of the letter B; in the presence of exactly two symbols S
each B is transformed in A (and these operations can be iterated); and if exactly
three symbols S occur, then the derivation enters the final stage and terminates;
if (at least) four occurrences of S are produced, then the derivation cannot terminate.
Consequently,

L(G) = {a2" :n^ 1} ,

and this is not a semilinear language.

Remark 2. It is an open problem whether the matrix grammars with two non
terminals can generate non-semilinear languages. However, such grammars can
generate languages, which are not simple matrix languages in the sense of [5] which
form a strong extension of contex-free languages. An example for such a language
is generated by the grammar

G = ({S, A}, {a, b, c, d}, S, M, {A -> d}) with

M = {(A -> d, S -> AS), (A -> aAb, S -> cS), (A -> ab, S -> cASS, (A -> ab, S -> c)}.

L{G) is not a simple matrix language because the family of simple matrix languages
is closed under intersections with regular sets and L{G) n {a, b, c}* = {a"b"c" : n ^ 1
is closed under intersections with regular sets and L(G) n {a, b, c}* =
= {a"b"c" : n = 1}* is not a simple matrix language (see [7]).

Now we give counterparts of the result quoted in Section 3 under the number 2)
for metalinear languages.

219

Theorem 4. For each metalinear language L,

VariVf (L)<3.

Proof. Let G = (VN, VT, S, P) be a metalinear grammar containing the non
linear rules /-j, r2, ..., rp:

i'i : S -» w i j lA i j lw i ,2A ,-,2 ••• wi.k,Ai.kiWi,ki + i ,

I <. i £ p, w:j e V*, A,j e VN \ (S) for 1 ^ j g fc,-. We construct a matrix grammar
G' = ({S, A, B}, Vr, S, M, F) in the following way. For every tripel (/,./, X), 1 <
<, i < p, \ <^ j <. k„ and X e Vw, let q(i,j,X) be a positive natural number such
that q'i,j, X) + q(k, t, Y) for (/,./, X) # (fc, f, 7). Further let

2 = 1 + max {q(i,j, X) : \ <. i < p, \ < j < kh X e VN} .

We put

F =- {4 -> xe}

and introduce in M the following matrices:

1) (S -> w) for S -» w E P, w e VT* ,

2) (A -> Ae, S -» w,., A'" '•' -A ••')BS), 1 < i < p ,

3) ([A -» „]«'•>•*>. A -» A0, B - u A ^ ' ^ B ^ f o r l ^ i | f A _ J - * : (,

X -> « YD e P, X, r e Vv, «, p e V*

([A -> /] ' is a short writing for / occurrences of the rule A -» A),

4) ([A -> X]a(iJ-X), A ~* Ae, B -» z, S -> wi,J.+ IA" (' ' - J '+ ' -4 ' - + ')BS)for 1 ^ / ^ p,

1 g / < kh X -> zeP,XeVN,ze V*,

5) ([A -» l] " , , ' ' t " A) , A. -> Ae, B -> z, S -> wiiki + 1) for 1 ^ / < p, X -> z 6 P,

X e V, z e Vr*.

Each derivation in G starts with a rule r;, 1 :g / <, p, and then we can apply only
linear rules in order to obtain the derivation Axj ->* ztJ. Therefore without loss
of generality we have only the following terminating derivations in G:

S =>* wi.lAi.lWi.2Ai.2 ••• Wi.k:Ai.ki
wi.k,+ l =>

=> witluIABlyivitiwiaAii2 ... wijfc.Aijtiwiifci + 1 =>*

=>* w i i l z i i l w i > 2 A i > 2 ... wiiklAUt,wtJtl+l =>*

=>* W ; . l 2 ; , 1 W ; , 2 Z i , 2 W ; , 3 A ; , 3 . . . W; f / i iA i j) fc (W,- j ik(+1 =>*

=>* WJ.I-J.XWJ^Z,^ ... w ;. t iz ;,J(iw ;, t i+1 .

We now prove that the only possible derivations in G' are the same ones, and thus
L(G) = L'G').

Since the rules A -» A have to be effectively used a derivation in G' has to start
with a matrix of type (l) or type (2). In the former case a derivation in G is simulated

220

directly. In the latter case we have obtained

S=> wiAA"(i'l-A('!)BS = r>..

We cannot apply a matrix of type (2) since it introduces at least Q occurrences of A,
all matrices do not decrease the number of occurrences of A in the sentential forms
and hence no termination is possible.

Since the matrices of type (3) do not change the number of B's and the application
of (4) or (5) requires the occurrence of S in the sentential form, (1) is also not appli
cable to p..

Further the application of a matrix of type (3) or (4) or (5) is only possible if it
starts with ([A -» X]q<-''UA,,l>, A -» AQ, . . .) , otherwise we cannot effectively use all
productions A -» X or we can effective apply A -» AQ.

Hence we obtain

S => p, => wiAuiAA"<i'i'B:'')BviAS = v2 .

by application of a rule of type (3). Now we can iterate this process and obtain

S => p, => v2 =>* wiAziAwi^Aq(L2-Ai-l)BS = P3

by application of a matrix of type (4). Again we iterate and get

S => pj => v2 =>* p3 =>* wiAziAwii2zi<2 ... wikizikiwiik(+l

terminating with a matrix of type (5). Thus we have simulated a derivation in G.
Since Var (G') = 3, we obtain VarM (L(G)) g 3 and the theorem is proved. •

Theorem 5. There are metalinear languages Lsuch that VarM (L) = 3.

Proof. Let us consider the language

L = {a"b"c'"dmepfp : n, in, p £ 1}

and suppose that there is a grammar G = ({S, A}, {a, b, c, d, e,f), S, M, F) which
generates it.

Now we discuss all possible derivations in G with respect to the number of occur
rences of A and/or S in the sentential forms. In order to do this we introduce the
following notions. Let

D : S = u0 => ux => u 2 => ... => u„ G {a, b, c, d, e,f}*

be a derivation in G such that ui+1 is obtained from ut by application of a matrix
of M. Then

Mj=> ui+ !=> . . . =>«,-, 0 g i < j ^ n

is called a subderivation of D. It is called linear if each uk, i ^ k g j , contains at
most one nonterminal (i.e. the matrix acts like a linear rule (1) in a context-free
grammar). If w; = u^Bu" where «• and u" are terminal words we obtain Uj = u'/UjU"

221

in a linear subderivation, and then we call B =>* u'j also a linear subderivation of D.
Consider a linear derivation with respect to G. If there is a linear sub-

derivation S =>* xSy, A =>* xAy, then we have to have x = a', y = P' for
some a, fi e {a, b, c, d, e,f}. If i > 0 and j > 0, then (a, f>) has to be a pair in
{(a, b), (c,d),(e,f)}, because otherwise we contradict the relations between the
number of occurrences of the letters in the strings of L. If i = 0, then ;' = 0; and if
j = 0, then i = 0, too. Consequently, each starting linear subderivation of a deriva
tion of a string in L has at most two steps. Thus, for an infinite part of L, we need
nonlinear derivation steps.

If in some non-linear derivation

D : S =>* xxXx2Yx3 =>* x'xw2x2wxx'3 = z ,

ze Vj, x'i being obtained from xh i = 1, 2, 3, we have X = Y and wx contains
a symbol y, w2 contains a letter 8 such that y + 5, then we can produce the derivation

D' : S =>* xxXx2Yx3 = xxYx2Xx3 =>* x\wxx'2w^ ,

and its terminal word contains "illegal" substrings.
Therefore, if the first non-linear step of a derivation contains two or more occur

rences of both S and A, then the derivation can introduce an arbitrary number
of at most two symbols (in the non-linear phase and only a bounded number of
symbols in the starting linear phase). If the first non-linear step contains occurrences
of only one symbol from {A,S} (and then for at least two times), then the non-linear
phase introduces an arbitrary number of at most one symbol (and the starting
linear phase only a bounded number of symbols).

Thus, for infinitely many strings in L, we need derivations whose first non-linear
step contains both S and A and one of them only for one time.

If such a derivation is of the form

S =>* w =>* xxSx2 =>* z

where w contains both S and A, xx, x2, z are terminal strings, then we have to have
xx = x2 = X, because otherwise the symbol S in xxSx2 can be replaced by an arbi
trary string y = a"b"c"d"e"f" of Land xxyx2 cannot be in L.

If such a derivation is of the form

S =>* w =>* xxAx2 =>* z

with w, xx, x2, z as above, then the phase xxAx2 =>* z can contain a string xxyxAy2x2

with yxy2 =t= X only if yx = e', y2 = rf, (8, ^) is a pair in {(a, b), (c, d), (e,f)}. Thus
at most two symbols can be introduced for arbitrary many times by derivations
involving the above step A =>* yxAy2.

The above discussion implies that there are infinitely many strings in Lsuch that
in their derivations we can find subderivations wx =>* w2 of arbitrary length such that
wx, w2, and all intermediate steps contain occurrences of S and A, and it introduces
an arbitrary number of occurrences of at least four symbols of {a, b, c, d, e,f}.

222

If all intermediate steps in such a derivation wx =>* vv2 contain exactly one S and
one A, then each direct derivation in it can introduce only pairs of symbols (other
wise we avoid them and obtain incorrect strings). At most two such pairs pu p2

can be introduced, and moreover, the above considered derivation A =>* yxAy2

has to introduce also one of these pairs px, p2. Hence there are infinitely many
derivations w[=>* w2 involving strings with more occurrence of one of S and A
in w[(possibly ignore initial parts of derivation wx =>* w2). The symbol occurring
two or more times can introduce occurrences of at most one terminal. Thus the other
symbol has to introduce at least three terminal letters. Assume that there are infinitely
many derivations w' =>* w2 as above such that A occurs one time in all its sentential
forms (hence S occurs at least two times). The same arguments hold if there are
infinitely many derivations with at least two A's.

If at some stage A is erased and a new A is introduced from an S, then this new
occurrence of A cannot introduce any symbol different from that which is produced
by A (if any). Therefore there are infinitely many derivations z, =>* z2 such that

1) all steps contain one A and at least two S's,
2) each direct derivation uses only nonterminal linear rules for A (may be, two

or more rules in the same matrix have the left-hand-side A; hence are applied
at the same point).

3) the rules involving A introduce at least three different terminals,
4) all rules of all matrices in these derivations are used effectively (and not overpassed

in the appearance checking sense, because all nonterminals symbols are present).

If the number of occurrence of S in these derivations is bounded, then, with
exception of a finite number of derivations, the derivations have the form

z. =>* z3 =>* z4 =>* z2 where |z3 | s = |z4j s .

Then the subderivation z3 =>* z4 can be iterated, and hence A can introduce only
a pair of terminal symbols. Therefore there are infinitely many derivations zx =>* z2

as above involving sentential forms with an arbitrary number of occurrences of S.
We consider such a derivation. In it we have to use two matrices mx, m2 where m1

rewrites A by some Q AaJ and m2 replaces A by some <pkA^jr and either i > 0, k > 0,
Q 4= \JJ or j > 0, r > 0, a =1= ty (otherwise A cannot introduce three different terminals).
Since all matrices are used effectively and since there is a sufficient number of occur
rences of S the application of each of mx, m2 can be delayed up to the application
of the other matrix. Interchanging the matrices we obtain incorrect pairs of symbols.
This completes the proof. •

Remark 3. Note that it is essential that L is built by three pairs of six different
letters since languages {a"bncmdm : n, m ~2: 1}, {a"bncmdmapbp : n, m, p >. 1} can be
generated by matrix grammars with two nonterminals.

223

4. THE MEASURE Var FOR PROGRAMMED GRAMMARS

In [1] it has been proved that, for each Le Sf(RE),

3) VarM(L)5£VarP R(L) + 2 ,

4) VarPR (L) <_ VarM (L) + 2 .

First we note that relation 3) can be improved to

3') VarM (L) ^ VarPR (L) + 1

(taking the initial matrices (C -> Cp+1, S -> CS), 1 < r ^ p, instead of (S' -> CrS)
in the proof of Lemma 6 in [l] . The rule C -> Cp + 1 forbids the use of this new
initial matrix in a later step of a derivation (p + 1 occurrences of C block the deri
vation). Thus the symbol S' becomes useless.)

By the results on the complexity of matrix grammars therefore we obtain

VarPR (L) <, 8 for all Le Sf(RE),

VarPR (L) ^ 4 for all Le „§?(LLV),

VarPR (L) < 5 for all Le SC(MLIN).

In this chapter we improve the latter two relations.

Theorem 6. i) For any Le Sf(LlN), VarPR (L) <, 2 .

ii) For any Le Sf(MLIN), VarPR (L) ^ 3.

Proof, i) Let G = (VA., Vr, S, P) be a linear context-free grammar. We construct
the programmed grammar C = ({S, A}, VT, S, P') where

P' = {(*,S-.A , { [S]},0}u

u {([X], A -> uAu, {[Y]}, 0) : X -> uYv e P, u, v e V*, X, Ye VN) u

u {([X], A -> z, 0S 0) : X -> z e P , z e V^.Z e Vw} .

Clearly, the label [Z] of a rule identifies the left-hand member of the corresponding
rules in P. Hence the labels control the derivation in the same way as the nonterminals
in VN. Consequently L(G) = L(G') and VarPR (L(G)) < 2.

ii) Now consider a metalinear grammar G = (VN, VT, S, P) containing the non
linear rules rh 1 <, i <£ p, as in the proof of Theorem 4. We construct the programmed
grammar

G' = ({S, A, £} , Vr, S, P') with 5 ^ VN ,

P' = {(*w, S -+ w,<l>,®):S-+weP,we V*} u

u {(*,-, S -> w , , ! ^ {[/, 1, A;i]}, 0) : 1 c i -g p} u

u {([/,;, X] , A -> «Ay, {[/ , ; , Y]}, 0) : 1 <= i < p, 1 < j < kh

X -> MYt; e P, u, u e VT*, Z , Ye VN]

u {([/, j , Z] , A -> x, {[/ , j + 1, 5]} , 0) : 1 ^ i £ p, I £ j < kt,

224

X -* x e P, x e Vf, X e VN} u

u {([;,./, B], B -» wfjJ.AB, { [; , / A,-.;]}, 0) : 1 < i £ p, 2 ^ j g fc,} u

u {([;, fc, + 1, B], £ -> w,-jti+1, 0, 0) : 1 < i £ p} .

Again, the labels [i,j,X] identify the non-linear rule, the nonterminal position
in it and the nonterminal in this position. Hence L(G) = L(G'), Var^ (L{G)) S 3.

Theorem 7. There exists a linear language Lwith VarPR (L) = 2.

Proof. We consider the language

L = {ab"c"d : n ^ 1}

and suppose that L = L(G) for a programmed grammar

G = ({S}, {a, b, c, d), S, P) .
For any derivation

S =>ri H>! =>r2 w2 =̂ >r;> ... =>r'" w„, = ab"c"d ,

the rule r,„ is used effectively (each w; contains at least one S) and thus the derivation

S =>r'" w'

is correct. Hence rm introduces the terminal symbols a and d. Since n is an arbitrary
number, rm cannot introduce a and d in wm. This contradiction proves VarPi((L) ^ 2.
According to the previous theorem, we obtain VarFJj (L) = 2.

Also Theorem 2 can be reproduced for programmed grammars, even in a sharper
form.

Theorem 8. For any n Si 1 there is a language L„ such that

VarfR (L„) = 1, VarCf- (L„) = n .

Proof. We consider the languages B„, n ^ 1, of Remark 1. It is known, [3],
that VarCF (B„) = n. Further VarPR (B„) = 1 is proved in [1] for n ^ 3. The proof
for n = 1, 2 is left to the reader. •

5. THE MEASURE Var FOR RANDOM CONTEXT GRAMMARS

By Theorem 2 and Theorem 8 there are no functions / and g such that

V a r „ (L) ^ /(VarM (L)) and VarCF (L) ^ g(y*rPR (L))

for all Le £C(CF). In this chapter we prove the analogous statement for random
context grammars. This improves the relation between context-free and random
context grammars given in [l] .

Theorem 9. For any n ^ 1, there is a context-free language L„ such that

225

VarRC (L„) <= 8 and Varcf (L„) = n (hence there is no mapping such that
VarCJ7 (L) £ j(VarRC (L)) for all Le if(CE)).

Proof. We consider the following languages
n - l

L„ = U {(a'b)m b : m ^ 1} for any « ^ 3
; = i

Clearly, if we consider a context-free grammar for L„, then each i, 1 <; j <, «, requires
a derivation A; =>* (a'b)'Ai(a'b)k, j + k > 0, and thus we have to have A,- 4= A;

for / =|= j and A, #= S for 1 <: j g n. Consequently, Varcf (L„) = n because it is
easy to construct a context free grammar with n nonterminals which generates L„.

However, the following (1-free) random context grammar generates the language

G = ({S, A, 5 , C, £>, £, X, Y}, {a, b}, S, P)

where P consists of the following rules:

1) (S --» A'bB, 0, 0) , 1 = i = R ,
2) (£^X,0,0),
3) (A^C,{C},{X}),
4) (X -* ED, 0, {C}) ,
5) (C-+a,$,{D}),
6) (D -> X, {C}, 0) ,
7) (X - Y {A, C}, 0) ,
8) (£^A,0,{Y}),
9) (Y-+bB, {£}, 0) ,

10) (B^b,0, 0) ,
11) (A->a, {5 ,Z, Y D}, 0) .

A string (a'b)m A'bB, m ^ 0 (at the first step we have m = 0) can be rewritten only
by rule 2) or by rule 10). After rule 10) only rule 11) can be used, and we obtain
a terminal string (a'b)m + 1 b.

Using rule 2), we obtain the string (a'b)'" A'bX, which can be rewritten only by rule
3), and we get a string (a'b)'" AkCAJbX, k + j — i — 1. Now, only rule 4) can be
applied and then we have to use rule 5) passing to (a'b)"' AkaAJbED. This string can
be rewritten only by rule 6) which leads to (a'b)m AkaA'bEX. Now we have to use
again rule 3) and so until we obtain (a'b)m a'bE'X. Then rule 7) can be used in order
to obtain (a'b)m + 1 E'Y, and in the presence of Y rule 8) can replace each E by A,
and then rule 9) leads to (alb)m+1 A'bB, which has the same form as the word in
the beginning of this proof. Consequently, L(G) = L„, VarRC (L„) ^ 8.

Thus the proof is complete for n ^ 3. The proof for n — 1, 2 is left to the reader. •

Remark 4. The relation VarM (L) <= VarRC (L) + 2 (Lemma 4 in [1]) can be

improved to
VarM (L) < VarRC (L) + 1 for all Le <?(RE).

226

Indeed, the symbol C in the proof of [1], Lemma 4 can be removed, replacing it
by the trap symbol N in rules which check the presence of the permitting symbols
in the current string and replacing the appearance checking rules B -* N (which
verify the absence of the forbidden symbols) by B ~+ NN.

ACKNOWLEDGEMENT

The authors are grateful to the referee for his comments which considerably improved
the paper.

(Received August 23, 1983.)

R E F E R E N C E S

[1] J. Dassow: Remarks on the complexity of regulated rewriting. Fund. Inform. 7(1984),
83 -103 .

[2] S. Ginsburg: The Mathematical Theory of Context-free Languages. McGraw Hill, New
York 1966.

[3] J. Gruska: On a classification of context-free languages. Kybernetika 3 (1967), 22—29.
[4] J. Gruska: Descriptional complexity of context-free languages. In: Proc. Symp. Math.

Foundations of Computer Science '73, 71 — 83.
[5] O. Ibarra: Simple matrix languages. Inform, and Control 17 (1970), 359—394.
[6] O. Mayer: Some restrictive devices for context-free grammars. Inform, and Control 20

(1972), 69 -92 .
[7] Gh. Paun: Matrix Grammars (in Romanian). The Scientific and Encyclopaedic Publ. House,

Bucharest 1981.
[8] Gh. Paun: Six nonterminals are enough for generating a recursively enumerable language

by a matrix grammar. Internat. J. Comput. Math. 75 (1984).
[9] A. Piricka-Kelemenova: Doctoral dissertation, Bratislava 1980.

[10] A. Salomaa: Formal Languages. Academic Press, New York 1973.
[11] A. P. J. van der Walt: Random context languages. Information Processing 1971, North-

Holland, Amsterdam 1972, 66—68.

Dr. J. Dassow, Technological University Magdeburg, Department of Mathematics and Physics,
DDR-3010 Magdeburg, PSF 124. German Democratic Republic.

Dr. Gh. Paun, University of Bucharest, Faculty of Mathematics, R-70109 Bucuresti, Sir. Academiei
14. Romania.

227

