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FURTHER REMARKS ON THE COMPLEXITY 
OF REGULATED REWRITING* 

JURGEN DASSOW, GHEORGHE PAUN 

The paper continues the investigations of [1], [8] about the number of variables necessary/ 
sufficient in order to generate certain languages by various grammars with restrictions in deriva
tion. Here, we deal with matrix, programmed, and random context grammars (with appearance 
checking and erasing rules). 

1. INTRODUCTION 

The succinctness of descriptions of a language by some given devices themselves 
is a very important problem, and many researchers have devoted to this subject 
(especially in the context free case, see [3], [4], [9]). In particular, the natural para
meter of the cardinality of the nonterminal alphabet is of central interest. For context-
free grammars this parameter leads to an infinite hierarchy of languages (even if we 
take into account only regular languages, [3]). For regulated rewriting the situation 
is quite different: 6 nonterminals are sufficient in order to generate recursively 
enumerable language by a matrix grammar (with appearance checking and erasing 
rules), [8]. Further it has been shown that two nonterminals are necessary (sufficient) 
for the generation of some (all) linear languages. 

The aim of the present paper is to say more on families of languages which can be 
generated by matrix grammars with 1, 2, or 3 nonterminals and to obtain similar 
results for programmed grammars (which are related — from the complexity point 
of view — in a very precise way to matrix grammars, [1]). 

We prove that three nonterminals are necessary (sufficient) in order to generate 
some (all) metalinear languages by a matrix grammar, that three nonterminals are 
sufficient for the generation of non-semilinear languages, and that one nonterminal 

* Research done during a stay of the second author at the Technological University Magde
burg. 
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is enough for the generation of context-free languages of arbitrary complexity and 
of non-context free languages but not for generating non-semilinear languages. 

Similar results are proved for programmed grammars. By these results it follows 
that there is no function bounding the increase of the number of necessary non
terminals when going from matrix (programmed) grammars to context-free grammars 
(see also [1]). In this paper we show that also for random context grammars no such 
function exists. 

2. NOTATIONS AND TERMINOLOGY 

The reader is assumed to be familiar with basic notions and results of formal 
language theory (see e.g. [2], [10]). We specify here only some notations and recall 
informally some definitions. 

Let V = {x1, x2, ..., xn) be an alphabet. V* denotes the set of all strings (words) 
over V (including the empty string A). By |w| and \w\x we denote the length of the 
string w e V* and the number of occurrences of the letter x e Vin w e V*, respectively. 
The Parikh vector pv(w) is defined by 

pv(w) = (\w\Xl, \w\X2, ..., \w\Xn). 

For a language L e V* we put 

Pv(L) = {Pv(w) :weL}. 

A language L c f * is called semilinear if there are n-dimensional row-vectors 

Ph <2;i> 4i2> •••> airr -1 = i = m, such that 

Pv(L) = U {Pi + u-iq-.x + <x2qi2 + ... + crtqir. : a; e H) . 
i= i 

In all following grammars, VN is the set of nonterminals, VT denotes the set of 
terminals, and S is the axiom, S e VN. 

A context-free grammar G = (VN, VT, P, S) is called linear iff all productions 
of P have the form 

(1) A -> uBv or A -* u where u, v e V* . 

It is called metalinear iff the following three conditions are satisfied: 

i) for all productions A -» w in P, S does not occur in w, 

ii) for A e VN, A +- S all productions are of the form (1), 

iii) all rules with left-hand side S are of the form 

S -» w1A1w2A2 ... wsAsws+1 where Wj e V* and s ^ 0 . 

We now recall informally the definitions of three types of regulated rewritting. 
For detailed information on matrix and programmed grammars see [7] and [10], 
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Chapter 5; concerning random context grammars we refer to [6] and [11]. A matrix 
grammar is a quadruple G = (VN, VT, M, S, F) where 

M = {nzj, m2, ..., m„} 

is a finite set of sequences of productions, 

m ; = [Afi -> wfl, A,-, —> w,-2, ..., A;s(0 -> *f|j( ] for t = 1, 2, ..., n , 

and E is a subset of the set of all productions occurring in M. The application of 
a matrix mt to w is defined as follows: there are words w = wl5 w2, ..., ws(f) such 
that, for l g j < s ( i ) 

i) Wy = wJ+l if Aj does not occur in Wj and A;^ -> wf e E 

or 

ii) W; = VjAi.Uj and wy- + 1 = VjWi.Uj. 

Only those words are in generated language L(G) which are obtained by applications 
of whole matrices. 

The productions of a random context grammar G = (VN, VT, P, S) are of the form 

(A -> w, R, Q) 

where R and Q are subsets of VN. Such a production is only applicable to x = xxAx2 

if XJXJ contains no letter of R and x t x 2 contains all letters of Q. 

The productions of a programmed grammar G = (Vy, Vr, P, S) are of the form 

(/, A -> w, E, F) 

where / is the label of the production, E and E are sets of labels. If A -* w is applicable 
to x, then the next production has to be a rule with a label in the success field E. 
If A -> w is not applicable, then the next production has to have a label contained 
in the failure field E. 

Please note that throughout this paper we consider only grammars with context 
free core productions and that we allow erasing rules A -> X. 

By LIN, MLIN, CF, M, PR, RC, CS, RE we denote the classes of linear, metalinear, 
context free, matrix, programmed, random context, context sensitive, and type - 0 
Chomsky grammars, respectively. For a class X of grammars, let &(X) be the 
family of languages L(G) generated by grammars G in X. (RE stands for "recursively 
enumerable".) It is known (see [7], [10], [6]) that 

S?(M) = se(PR) = se(Rc) = if (RE), 

i.e. the generative capacities of all these types of grammars coincide. In order to 
illustrate differences between these regulation mechanisms the descriptional com
plexity of regulated rewriting has been studied in [1]. Here we continue this research. 
We consider the following complexity measure. 
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For a grammar G = (VN, VT, S, P) (G = (Vv, VT, S, M, F)), we put 

Var(G) = card(Vv) 

and, for a language Le £C(X), we define 

Varx(L) = inf {Var (G) : G e X, L(G) = L} . 

3. ON MATRIX GRAMMARS WITH ONE, TWO, OR THREE 
NONTERMINALS 

In [8] it is proved that. 

1) VarM (L) g 6 for all Le i f (RE) , 

2) VarM (L) «s 2 for all Le £C(LIN) and there is a regular language L' such that 
VarM(L) = 2. 

It is an open problem whether the bound 6 in 1) is optimal. Further one is interested 
in uniform estimations similar to 2) for some other subfamilies of £C(CF) (£C(M)). 
In this chapter we contribute to the theory of matrix grammars with at most three 
nonterminals. 

First we consider matrix grammars with only one nonterminal symbol. 

Theorem 1. i) Every language L with VarM (L) = 1 is semilinear ii) There are non-
context-free languages Lsuch that VarM(L) = 1. 

Proof, i) G = (VN, VT, S, M, F) be a matrix grammar with VN = {S}. Since 
each nonterminal sentential form generated by G contains an occurrence of S it 
follows that, possibly excepting the last rules of the last matrix used in some deriva
tions, all rules are effectively used. 

Let \x\a be the number of occurrences of the letter a in the word x. For a matrix 
m = (S -> X], S -> x2, ..., S —> xt) e M we define 

and we put 

Moreover, let 

E(m) = \xtx2 ...xt\s, 

E(M) = max {E(m) :meM}. 

p = max {t: (S -• xu S -*• x2,..., S -> xf) e M) , 

q = 2p + E(M). 

Clearly, any matrix of M can be applied to each string which contains at least p 
occurrence of S, and each matrix in M replaces at most p occurrences of S by terminal 
strings. Therefore, given a derivation D with respect to G producing a string w, 
we can apply the matrices in D in such an order that we obtain a derivation D' 
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which produces a string w' letter-equivalent to w, and all sentential forms occurring 
in the derivation D' have at most q occurrences of S. We take some initial steps 
of D, and if we obtain more than 2p occurrences of S then we use one or more 
matrices of D which decrease the number of occurrences of S in order to obtain 
a sentential form with less than 2p occurrences of S, we continue by a matrix in
creasing the number of S-occurrences; the only restriction is to use the last matrix 
of D also as the last matrix of D'. 

Consequently a sublanguage L ^ L(G) exists which is letter-equivalent to L(G) 
and has only derivations with a bounded number of nonterminals in the sentential 
forms (of "finite index"). Now we can continue as in the proof of [7], Lemma 3.13 
in order to show that L(G) is letter-equivalent to a regular language, and hence L(G) 
is semilinear by [10], Theorem 7.1. 

ii) We consider the matrix grammar 

G = ({S},{a,b,c,d},S,M,<&) 
with 

M = {(S -* SS), (S ~> aSb, S -> cSd), (S -> ab, S -> cd)} . 

Clearly 
L((G) n a*b*c*d* = {a"b"c"d" : n > 1} . 

Since {a"b"c"d" : n > 1} is not context-free, L(G) is also not context-free. 

Corollary. Each non-regular L g {a}* satisfies VarM (L) > 2, and VarM (L) > 2 
holds for each non-context-free language L c {a}* {b}* . 

Indeed, the semilinear languages in a* are regular, and the semilinear languages 
in a*b* are context-free, [2]. 

The one-nonterminal matrix grammars can generate context-free languages of 
arbitrary context-free complexity (with respect to the measure Var). More precisely, 
we have 

Theorem 2. For each n J> 1, there are context-free languages L„ such that 
Varcf (L„) > n and VarM (L,) = 1. 

Proof. Let n — 2. We consider the matrix grammar 

G„ = ({S}, {a, b, aua2, ..., a,,}, S, M, 0) 
with 

M = {mo, m0} u {m, : 1 g i ^ n} , 

'»o = (S -> SS), m'0 =(S-* aSb), 

"1; = (S -» «;, S -» o„ ..., S -* a , ) , l <; i; ^ n . 

(i + l)-times 

The language L„ = I.iO,) is context-free. Indeed, it consists of strings of the 



DYCK language over {a, b} shuffled in any possible way with strings in the language 

L0 = {w :w e {at, a2,..., a„}*, \w\a. = kt(i + 1) for some kt _: 0, 1 S i _ «} • 

More specifically, a derivation D in G„ proceeds as follows: after using once or several 
times the matrices m0, m'0 (thus producing a sentential form of the Dyck language) 
we replace i + 1 occurrences of S by a ; using a matrix m; for some i, 1 _ i | n; 
then again we use the matrices m0, m'0 and so on. Therefore each such derivation 
can be rearranged in such a way that we use first all rules S -> SS, S -» aSb from D 
keeping unchanged all symbols S which are replaced by terminals at earlier steps 
of D, and then we use only matrices m;, 1 | i ^ n. Since L0 is regular and Sf(CF) 
is closed under shuffles with regular sets, L„ is context-free (see [7], p. 90). 

Now let us consider a context-free grammar G = (VN, VT, S, P) for the language 
L„. We regard all the strings of L„ of the forms 

(*) a\ama-bm , m ^ 1 , 

(**) aJjamajb'", m 2: 1 , 

for some i 4= j , 1 _ *", j £= n. In order to generate strings of the form (*) we need 
derivations 

S =>* a\arAibs =>* a\arakAia
kbs =>* a;a'"a;6

m 

with r, s > 0, /c > 0, and similarly for the strings of the form (**) involving a non
terminal Aj in a self-embedding derivation A,- =>* a'Ajb', t > 0. If A; = A, then 
the derivation 

S =>* a\arAibs = a\arAjbs =>* a\ara"ajb"bs 

is possible and produces a string not in L„. 

Moreover, S # A; because S can produce a string a j + 1 which cannot be replaced 
for A,- in a;'arA;ft

s without contradicting the structure of L„. Hence at least n + 1 
nonterminals are necessary for the generation of L„. Thus VarCf (L„) > « + 1. 

Remark 1. In [3] it is proved that each language Bm, m £ 1, defined by 

B. = {a} , 

B2 = {a}* u {b} , 
m - I 

Bm = U {^}* for m ^ 3 , 
i = 1 

satisfies VarCF (_Bm) = m. Since these languages are regular, VarM (Bm) g 2 for each m. 
Hence we found regular languages L„ with VarM (L„) g 2 and VarCf (L„) = n. 
Note that in Theorem 2 we have VarCF (L„) > n; we do not know languages L„ 
for which VarM (L„) = 1 and VarCF (L„) = n holds (this would say that VarCf is 
a connected complexity measure - in the sense of [4] — on the family {L: Le £C(CF) 
VarM (L) = 1}). 



Now let us jump to matrix grammars with three nonterminals. First we give 
a counterpart of Theorem 1. 

Theorem 3. There are non-semilinear languages Lwith VarM (L) = 3. 

Proof. We consider the matrix grammar 

G = ({S, A, B}, {a}, S, M, F) 
with 

F = - {S - s4,; A -> S4, ß -> S4} 

M = = [A -» S4, ß -> S4, S -> SA), 

(S - K S -> S4, A -> Sßß), 

(S ->л, S -> S4, A -> S4, ß -> SSA), 

(S -+A, S -> я, S -> s 4 , в -> SSA), 

(S -+A, S -> Я, Ѕ -> S4, ß -> S4, A -> SSß), 

(S ->Я, S -> Я, S -> S4, ß -> S4, A -• SSSa), 

(S -> A, S -> я, s -> л, S -> S4, A -•> SSSa), 

(S -+л, S -> я, S -> я, S -> S4, A -> «)} -

If there is exactly one symbol S in the current string, then each occurrence of A is 
replaced by two occurrences of the letter B; in the presence of exactly two symbols S 
each B is transformed in A (and these operations can be iterated); and if exactly 
three symbols S occur, then the derivation enters the final stage and terminates; 
if (at least) four occurrences of S are produced, then the derivation cannot terminate. 
Consequently, 

L(G) = {a2" :n^ 1} , 

and this is not a semilinear language. 

Remark 2. It is an open problem whether the matrix grammars with two non
terminals can generate non-semilinear languages. However, such grammars can 
generate languages, which are not simple matrix languages in the sense of [5] which 
form a strong extension of contex-free languages. An example for such a language 
is generated by the grammar 

G = ({S, A}, {a, b, c, d}, S, M, {A -> d}) with 

M = {(A -> d, S -> AS), (A -> aAb, S -> cS), (A -> ab, S -> cASS, (A -> ab, S -> c)}. 

L{G) is not a simple matrix language because the family of simple matrix languages 
is closed under intersections with regular sets and L{G) n {a, b, c}* = {a"b"c" : n ^ 1 
is closed under intersections with regular sets and L(G) n {a, b, c}* = 
= {a"b"c" : n = 1}* is not a simple matrix language (see [7]). 

Now we give counterparts of the result quoted in Section 3 under the number 2) 
for metalinear languages. 
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Theorem 4. For each metalinear language L, 

VariVf (L)<3. 

Proof. Let G = (VN, VT, S, P) be a metalinear grammar containing the non
linear rules /-j, r2, ..., rp: 

i'i : S -» w i j lA i j lw i ,2A ,-,2 ••• wi.k,Ai.kiWi,ki + i , 

I <. i £ p, w:j e V*, A,j e VN \ (S) for 1 ^ j g fc,-. We construct a matrix grammar 
G' = ({S, A, B}, Vr, S, M, F) in the following way. For every tripel (/,./, X), 1 < 
<, i < p, \ <^ j <. k„ and X e Vw, let q(i,j,X) be a positive natural number such 
that q'i,j, X) + q(k, t, Y) for (/,./, X) # (fc, f, 7). Further let 

2 = 1 + max {q(i,j, X) : \ <. i < p, \ < j < kh X e VN} . 

We put 

F =- {4 -> xe} 

and introduce in M the following matrices: 

1) (S -> w) for S -» w E P, w e VT* , 

2) (A -> Ae, S -» w,., A'" '•' -A ••' )BS), 1 < i < p , 

3) ([A -» „]«'•>•*>. A -» A0, B - u A ^ ' ^ B ^ f o r l ^ i | f A _ J - * : ( , 

X -> « YD e P, X, r e Vv, «, p e V* 

([A -> / ] ' is a short writing for / occurrences of the rule A -» A), 

4) ( [A -> X]a(iJ-X), A ~* Ae, B -» z, S -> wi,J.+ IA" ( ' ' - J '+ ' -4 ' - + ')BS)for 1 ^ / ^ p, 

1 g / < kh X -> zeP,XeVN,ze V*, 

5) ( [ A -» l ] " , , ' ' t " A ) , A. -> Ae, B -> z, S -> wiiki + 1) for 1 ^ / < p, X -> z 6 P, 

X e V, z e Vr*. 

Each derivation in G starts with a rule r;, 1 :g / <, p, and then we can apply only 
linear rules in order to obtain the derivation Axj ->* ztJ. Therefore without loss 
of generality we have only the following terminating derivations in G: 

S =>* wi.lAi.lWi.2Ai.2 ••• Wi.k:Ai.ki
wi.k,+ l => 

=> witluIABlyivitiwiaAii2 ... wijfc.Aijtiwiifci + 1 =>* 

=>* w i i l z i i l w i > 2 A i > 2 ... wiiklAUt,wtJtl+l =>* 

=>* W ; . l 2 ; , 1 W ; , 2 Z i , 2 W ; , 3 A ; , 3 . . . W; f / i iA i j ) fc (W,- j ik(+1 =>* 

=>* WJ.I-J.XWJ^Z,^ ... w ;. t iz ;,J(iw ;, t i+1 . 

We now prove that the only possible derivations in G' are the same ones, and thus 
L(G) = L'G'). 

Since the rules A -» A have to be effectively used a derivation in G' has to start 
with a matrix of type (l) or type (2). In the former case a derivation in G is simulated 
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directly. In the latter case we have obtained 

S=> wiAA"(i'l-A('!)BS = r>.. 

We cannot apply a matrix of type (2) since it introduces at least Q occurrences of A, 
all matrices do not decrease the number of occurrences of A in the sentential forms 
and hence no termination is possible. 

Since the matrices of type (3) do not change the number of B's and the application 
of (4) or (5) requires the occurrence of S in the sentential form, (1) is also not appli
cable to p.. 

Further the application of a matrix of type (3) or (4) or (5) is only possible if it 
starts with ([A -» X]q<-''UA,,l>, A -» AQ, . . .) , otherwise we cannot effectively use all 
productions A -» X or we can effective apply A -» AQ. 

Hence we obtain 

S => p, => wiAuiAA"<i'i'B:'')BviAS = v2 . 

by application of a rule of type (3). Now we can iterate this process and obtain 

S => p, => v2 =>* wiAziAwi^Aq(L2-Ai-l)BS = P3 

by application of a matrix of type (4). Again we iterate and get 

S => pj => v2 =>* p3 =>* wiAziAwii2zi<2 ... wikizikiwiik(+l 

terminating with a matrix of type (5). Thus we have simulated a derivation in G. 
Since Var (G') = 3, we obtain VarM (L(G)) g 3 and the theorem is proved. • 

Theorem 5. There are metalinear languages Lsuch that VarM (L) = 3. 

Proof. Let us consider the language 

L = {a"b"c'"dmepfp : n, in, p £ 1} 

and suppose that there is a grammar G = ({S, A}, {a, b, c, d, e,f), S, M, F) which 
generates it. 

Now we discuss all possible derivations in G with respect to the number of occur
rences of A and/or S in the sentential forms. In order to do this we introduce the 
following notions. Let 

D : S = u0 => ux => u 2 => ... => u„ G {a, b, c, d, e,f}* 

be a derivation in G such that ui+1 is obtained from ut by application of a matrix 
of M. Then 

Mj=> ui+ !=> . . . =>«,-, 0 g i < j ^ n 

is called a subderivation of D. It is called linear if each uk, i ^ k g j , contains at 
most one nonterminal (i.e. the matrix acts like a linear rule (1) in a context-free 
grammar). If w; = u^Bu" where «• and u" are terminal words we obtain Uj = u'/UjU" 
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in a linear subderivation, and then we call B =>* u'j also a linear subderivation of D. 
Consider a linear derivation with respect to G. If there is a linear sub-

derivation S =>* xSy, A =>* xAy, then we have to have x = a', y = P' for 
some a, fi e {a, b, c, d, e,f}. If i > 0 and j > 0, then (a, f>) has to be a pair in 
{(a, b), (c,d),(e,f)}, because otherwise we contradict the relations between the 
number of occurrences of the letters in the strings of L. If i = 0, then ;' = 0; and if 
j = 0, then i = 0, too. Consequently, each starting linear subderivation of a deriva
tion of a string in L has at most two steps. Thus, for an infinite part of L, we need 
nonlinear derivation steps. 

If in some non-linear derivation 

D : S =>* xxXx2Yx3 =>* x'xw2x2wxx'3 = z , 

ze Vj, x'i being obtained from xh i = 1, 2, 3, we have X = Y and wx contains 
a symbol y, w2 contains a letter 8 such that y + 5, then we can produce the derivation 

D' : S =>* xxXx2Yx3 = xxYx2Xx3 =>* x\wxx'2w^ , 

and its terminal word contains "illegal" substrings. 
Therefore, if the first non-linear step of a derivation contains two or more occur

rences of both S and A, then the derivation can introduce an arbitrary number 
of at most two symbols (in the non-linear phase and only a bounded number of 
symbols in the starting linear phase). If the first non-linear step contains occurrences 
of only one symbol from {A,S} (and then for at least two times), then the non-linear 
phase introduces an arbitrary number of at most one symbol (and the starting 
linear phase only a bounded number of symbols). 

Thus, for infinitely many strings in L, we need derivations whose first non-linear 
step contains both S and A and one of them only for one time. 

If such a derivation is of the form 

S =>* w =>* xxSx2 =>* z 

where w contains both S and A, xx, x2, z are terminal strings, then we have to have 
xx = x2 = X, because otherwise the symbol S in xxSx2 can be replaced by an arbi
trary string y = a"b"c"d"e"f" of Land xxyx2 cannot be in L. 

If such a derivation is of the form 

S =>* w =>* xxAx2 =>* z 

with w, xx, x2, z as above, then the phase xxAx2 =>* z can contain a string xxyxAy2x2 

with yxy2 =t= X only if yx = e', y2 = rf, (8, ^) is a pair in {(a, b), (c, d), (e,f)}. Thus 
at most two symbols can be introduced for arbitrary many times by derivations 
involving the above step A =>* yxAy2. 

The above discussion implies that there are infinitely many strings in Lsuch that 
in their derivations we can find subderivations wx =>* w2 of arbitrary length such that 
wx, w2, and all intermediate steps contain occurrences of S and A, and it introduces 
an arbitrary number of occurrences of at least four symbols of {a, b, c, d, e,f}. 
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If all intermediate steps in such a derivation wx =>* vv2 contain exactly one S and 
one A, then each direct derivation in it can introduce only pairs of symbols (other
wise we avoid them and obtain incorrect strings). At most two such pairs pu p2 

can be introduced, and moreover, the above considered derivation A =>* yxAy2 

has to introduce also one of these pairs px, p2. Hence there are infinitely many 
derivations w[ =>* w2 involving strings with more occurrence of one of S and A 
in w[ (possibly ignore initial parts of derivation wx =>* w2). The symbol occurring 
two or more times can introduce occurrences of at most one terminal. Thus the other 
symbol has to introduce at least three terminal letters. Assume that there are infinitely 
many derivations w' =>* w2 as above such that A occurs one time in all its sentential 
forms (hence S occurs at least two times). The same arguments hold if there are 
infinitely many derivations with at least two A's. 

If at some stage A is erased and a new A is introduced from an S, then this new 
occurrence of A cannot introduce any symbol different from that which is produced 
by A (if any). Therefore there are infinitely many derivations z, =>* z2 such that 

1) all steps contain one A and at least two S's, 
2) each direct derivation uses only nonterminal linear rules for A (may be, two 

or more rules in the same matrix have the left-hand-side A; hence are applied 
at the same point). 

3) the rules involving A introduce at least three different terminals, 
4) all rules of all matrices in these derivations are used effectively (and not overpassed 

in the appearance checking sense, because all nonterminals symbols are present). 

If the number of occurrence of S in these derivations is bounded, then, with 
exception of a finite number of derivations, the derivations have the form 

z. =>* z3 =>* z4 =>* z2 where |z3 | s = |z4j s . 

Then the subderivation z3 =>* z4 can be iterated, and hence A can introduce only 
a pair of terminal symbols. Therefore there are infinitely many derivations zx =>* z2 

as above involving sentential forms with an arbitrary number of occurrences of S. 
We consider such a derivation. In it we have to use two matrices mx, m2 where m1 

rewrites A by some Q AaJ and m2 replaces A by some <pkA^jr and either i > 0, k > 0, 
Q 4= \JJ or j > 0, r > 0, a =1= ty (otherwise A cannot introduce three different terminals). 
Since all matrices are used effectively and since there is a sufficient number of occur
rences of S the application of each of mx, m2 can be delayed up to the application 
of the other matrix. Interchanging the matrices we obtain incorrect pairs of symbols. 
This completes the proof. • 

Remark 3. Note that it is essential that L is built by three pairs of six different 
letters since languages {a"bncmdm : n, m ~2: 1}, {a"bncmdmapbp : n, m, p >. 1} can be 
generated by matrix grammars with two nonterminals. 
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4. THE MEASURE Var FOR PROGRAMMED GRAMMARS 

In [1] it has been proved that, for each Le Sf(RE), 

3) VarM(L)5£VarP R(L) + 2 , 

4) VarPR (L) <_ VarM (L) + 2 . 

First we note that relation 3) can be improved to 

3') VarM (L) ^ VarPR (L) + 1 

(taking the initial matrices (C -> Cp+1, S -> CS), 1 < r ^ p, instead of (S' -> CrS) 
in the proof of Lemma 6 in [ l ] . The rule C -> Cp + 1 forbids the use of this new 
initial matrix in a later step of a derivation (p + 1 occurrences of C block the deri
vation). Thus the symbol S' becomes useless.) 

By the results on the complexity of matrix grammars therefore we obtain 

VarPR (L) <, 8 for all Le Sf(RE), 

VarPR (L) ^ 4 for all Le „§?(LLV), 

VarPR (L) < 5 for all Le SC(MLIN). 

In this chapter we improve the latter two relations. 

Theorem 6. i) For any Le Sf(LlN), VarPR (L) <, 2 . 

ii) For any Le Sf(MLIN), VarPR (L) ^ 3. 

Proof, i) Let G = (VA., Vr, S, P) be a linear context-free grammar. We construct 
the programmed grammar C = ({S, A}, VT, S, P') where 

P' = {(*,S-.A , { [S]},0}u 

u {([X], A -> uAu, {[Y]}, 0) : X -> uYv e P, u, v e V*, X, Ye VN) u 

u {([X], A -> z, 0S 0) : X -> z e P , z e V^.Z e Vw} . 

Clearly, the label [Z] of a rule identifies the left-hand member of the corresponding 
rules in P. Hence the labels control the derivation in the same way as the nonterminals 
in VN. Consequently L(G) = L(G') and VarPR (L(G)) < 2. 

ii) Now consider a metalinear grammar G = (VN, VT, S, P) containing the non
linear rules rh 1 <, i <£ p, as in the proof of Theorem 4. We construct the programmed 
grammar 

G' = ({S, A, £} , Vr, S, P') with 5 ^ VN , 

P' = {(*w, S -+ w,<l>,®):S-+weP,we V*} u 

u {(*,-, S -> w , , ! ^ {[/, 1, A;i]}, 0) : 1 c i -g p} u 

u {([/,;, X] , A -> «Ay, {[/ , ; , Y]}, 0) : 1 <= i < p, 1 < j < kh 

X -> MYt; e P, u, u e VT*, Z , Ye VN] 

u {([/, j , Z ] , A -> x, {[/ , j + 1, 5 ]} , 0 ) : 1 ^ i £ p, I £ j < kt, 
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X -* x e P, x e Vf, X e VN} u 

u {([;,./, B], B -» wfjJ.AB, { [ ; , / A,-.;]}, 0) : 1 < i £ p, 2 ^ j g fc,} u 

u {([;, fc, + 1, B], £ -> w,-jti+1, 0, 0) : 1 < i £ p} . 

Again, the labels [i,j,X] identify the non-linear rule, the nonterminal position 
in it and the nonterminal in this position. Hence L(G) = L(G'), Var^ (L{G)) S 3. 

Theorem 7. There exists a linear language Lwith VarPR (L) = 2. 

Proof. We consider the language 

L = {ab"c"d : n ^ 1} 

and suppose that L = L(G) for a programmed grammar 

G = ({S}, {a, b, c, d), S, P) . 
For any derivation 

S =>ri H>! =>r2 w2 =̂ >r;> ... =>r'" w„, = ab"c"d , 

the rule r,„ is used effectively (each w; contains at least one S) and thus the derivation 

S =>r'" w' 

is correct. Hence rm introduces the terminal symbols a and d. Since n is an arbitrary 
number, rm cannot introduce a and d in wm. This contradiction proves VarPi( (L) ^ 2. 
According to the previous theorem, we obtain VarFJj (L) = 2. 

Also Theorem 2 can be reproduced for programmed grammars, even in a sharper 
form. 

Theorem 8. For any n Si 1 there is a language L„ such that 

VarfR (L„) = 1, VarCf- (L„) = n . 

Proof. We consider the languages B„, n ^ 1, of Remark 1. It is known, [3], 
that VarCF (B„) = n. Further VarPR (B„) = 1 is proved in [1] for n ^ 3. The proof 
for n = 1, 2 is left to the reader. • 

5. THE MEASURE Var FOR RANDOM CONTEXT GRAMMARS 

By Theorem 2 and Theorem 8 there are no functions / and g such that 

V a r „ (L) ^ /(VarM (L)) and VarCF (L) ^ g(y*rPR (L)) 

for all Le £C(CF). In this chapter we prove the analogous statement for random 
context grammars. This improves the relation between context-free and random 
context grammars given in [ l ] . 

Theorem 9. For any n ^ 1, there is a context-free language L„ such that 
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VarRC (L„) <= 8 and Varcf (L„) = n (hence there is no mapping such that 
VarCJ7 (L) £ j(VarRC (L)) for all Le if(CE)). 

Proof. We consider the following languages 
n - l 

L„ = U {(a'b)m b : m ^ 1} for any « ^ 3 
; = i 

Clearly, if we consider a context-free grammar for L„, then each i, 1 <; j <, «, requires 
a derivation A; =>* (a'b)'Ai(a'b)k, j + k > 0, and thus we have to have A,- 4= A; 

for / =|= j and A, #= S for 1 <: j g n. Consequently, Varcf (L„) = n because it is 
easy to construct a context free grammar with n nonterminals which generates L„. 

However, the following (1-free) random context grammar generates the language 

G = ({S, A, 5 , C, £>, £, X, Y}, {a, b}, S, P) 

where P consists of the following rules: 

1) (S --» A'bB, 0, 0 ) , 1 = i = R , 
2) (£^X,0,0), 
3) (A^C,{C},{X}), 
4) (X -* ED, 0, {C}) , 
5) (C-+a,$,{D}), 
6) (D -> X, {C}, 0 ) , 
7) (X - Y {A, C}, 0) , 
8) (£^A,0,{Y}), 
9) (Y-+bB, {£}, 0 ) , 

10) (B^b,0, 0 ) , 
11) (A->a, {5 ,Z, Y D}, 0 ) . 

A string (a'b)m A'bB, m ^ 0 (at the first step we have m = 0) can be rewritten only 
by rule 2) or by rule 10). After rule 10) only rule 11) can be used, and we obtain 
a terminal string (a'b)m + 1 b. 

Using rule 2), we obtain the string (a'b)'" A'bX, which can be rewritten only by rule 
3), and we get a string (a'b)'" AkCAJbX, k + j — i — 1. Now, only rule 4) can be 
applied and then we have to use rule 5) passing to (a'b)"' AkaAJbED. This string can 
be rewritten only by rule 6) which leads to (a'b)m AkaA'bEX. Now we have to use 
again rule 3) and so until we obtain (a'b)m a'bE'X. Then rule 7) can be used in order 
to obtain (a'b)m + 1 E'Y, and in the presence of Y rule 8) can replace each E by A, 
and then rule 9) leads to (alb)m+1 A'bB, which has the same form as the word in 
the beginning of this proof. Consequently, L(G) = L„, VarRC (L„) ^ 8. 

Thus the proof is complete for n ^ 3. The proof for n — 1, 2 is left to the reader. • 

Remark 4. The relation VarM (L) <= VarRC (L) + 2 (Lemma 4 in [1]) can be 

improved to 
VarM (L) < VarRC (L) + 1 for all Le <?(RE). 
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Indeed, the symbol C in the proof of [1], Lemma 4 can be removed, replacing it 
by the trap symbol N in rules which check the presence of the permitting symbols 
in the current string and replacing the appearance checking rules B -* N (which 
verify the absence of the forbidden symbols) by B ~+ NN. 
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