INFORMATION CHANNELS COMPOSED OF MEMORYLESS COMPONENTS

KAREL WINKELBAUER

Explicit bounds for the maximum length of n-dimensional codes at any admitted level of the probability of error are derived, valid for all n, in case that the channels considered are composed of a finite number of memoryless components. The special case studied by the author in [2], is discussed in this more general frame.

BASIC NOTATIONS

Given a finite non-empty set M, the symbol W_{M} means the class of all shift-invariant probability measures in the space M^{I}, where I denotes the set of all integers. A measure $m \in W_{M}$ (satisfying the relation $m \circ T_{M}^{-1}=m$) is defined on the σ-algebra F_{M} of Borel sets in M^{I} which may be generated by the class of "elementary" cylinders (a base of the topology) of the form $T_{M}^{i}[z], i \in I$,

$$
[z]=\bigcap_{0 \leqq i<n}\left\{\zeta \in M^{I}: \zeta_{i}=z_{i}\right\} \quad \text { for } \quad z=\left(z_{i}, 0 \leqq i<n\right) \in M^{n} ;
$$

here T_{M} is the shift (defined by $\left.\left(T_{M} \zeta\right)_{i}=\zeta_{i+1}\right)$. Define

$$
\widetilde{W}_{M}=\left\{m \in W_{M}: m \text { is ergodic w.r. to } T_{M}\right\} .
$$

All the information channels considered here are supposed to have finite alphabets A, B (card $A \geqq 2$, card $B \geqq 2$), A the output alphabet, B the input alphabet. Denoting by $x y$ the element in $(A \times B)^{n}$ for $x \in A^{n}, y \in B^{n}$ given by $(x y)_{i}=\left(x_{i}, y_{i}\right)$, $0 \leqq i<n$, associate with any measure ω in $W_{A \times B}$ the information rate (convention: $\log =\log _{2}$)

$$
J(\omega)=\lim _{n}(1 / n) \sum_{x \in A^{n}, y \in B^{n}} \omega[x y] \log \frac{\omega[x y]}{\omega^{A}[x] \omega^{B}[y]},
$$

where $\omega^{4} \in W_{A}, \omega^{B} \in W_{B}$ are the marginal measures determined by the conditions

$$
\omega^{A}[x]=\sum_{y} \omega[x y], \quad \omega^{B}[y]=\sum_{x} \omega[x y] .
$$

A point $\zeta \in Z=(A \times B)^{I}$ is called regular if there is a (uniquely determined) measure $m_{\zeta} \in \widetilde{W}_{A \times B}$ such that

$$
m_{\subsetneq}[z]=\lim _{n}(1 / n) \sum_{i=0}^{n-1} \chi_{[z]}\left(T_{A \times B}^{i} \zeta\right), \quad z \in \bigcup_{n}(A \times B)^{n} ;
$$

χ_{E} designates the characteristic function of $E \subset Z$. The set of all regular points in Z will be denoted by R. Since $\omega(R)=1$, we may define, for $\omega \in W_{A \times B}$,

$$
\begin{aligned}
& q(\Theta, \omega)=\min \left\{t \geqq 0: \omega\left\{z \in R: J\left(m_{\zeta}\right) \leqq t\right\} \geqq \Theta\right\}, \quad 0<\Theta \leqq 1 ; \\
& \bar{q}(\Theta, \omega)=\max \left\{t \geqq 0: \omega\left\{z \in R: J\left(m_{\zeta}\right) \geqq t\right\} \geqq 1-\Theta\right\}, \quad 0 \leqq \Theta<1 .
\end{aligned}
$$

The latter quantities are the lower and the upper Θ-quantiles of the random variable $\left(J\left(m_{\zeta}\right), \zeta \in R\right)$ w.r. to ω.
In the entire paper a channel (a discrete information channel, stationary and of zero past history; cf. [1]) is defined as a family $v=\left(v_{\eta}, \eta \in B^{I}\right)$ of probability measures v_{n} on F_{A} satisfying the relations

$$
v_{\eta^{\prime}}\left(T_{A}^{i}[x]\right)=v_{n}[x] \text { for } \eta^{\prime} \in T_{B}^{i}[y], \quad \eta \in[y], x \in A^{n}, \quad y \in B^{n}, \quad n=1,2 \ldots
$$

Since $v_{\eta}[x]$ is constant for $\eta \in[y]$, define for $E \subset A^{n}$

$$
v[E \mid y]=\sum_{x \in E} v[x \mid y], \quad v[x \mid y]=v_{\eta}[x], \quad \eta \in[y]
$$

If $\mu \in W_{B}$ then $v \mu$ will denote the measure in $W_{A \times B}$ satisfying

$$
v \mu[x y]=v[x \mid y] \mu[y], \quad x \in A^{n}, \quad y \in B^{n}, \quad n=1,2, \ldots
$$

The quantile function q_{v} of a channel v (cf. [5]) is defined by

$$
q_{v}(\Theta)=\sup \left\{q(\Theta, v \mu): \mu \in \widetilde{W}_{B}\right\}, \quad 0<\Theta \leqq 1
$$

As an auxiliary function we define

$$
\bar{q}_{v}(\Theta)=\sup \left\{\bar{q}(\Theta, v \mu): \mu \in \widetilde{W}_{B}\right\}, \quad 0 \leqq \Theta<1 .
$$

The quantile functions q_{v} and \bar{q}_{v} of a memoryless channel v are constant, both identically equal to the transmission-rate capacity of the channel (cf. [1]); recall that v is memoryless iff

$$
v[x \mid y]=\prod_{0 \leqq i<n} v\left[x_{i} \mid y_{i}\right]
$$

If $0<\varepsilon<1, Y \subset B^{n}$ then a family $Q=(Q(y), y \in Y)$ of mutually disjoint sets $Q(y) \subset A^{n}$ is, by definition, an n-dimensional ε-code for a channel v of length $l_{Q}=$ $=\operatorname{card} Y$ iff $v[Q(y) \mid y]>1-\varepsilon$ for all $y \in Y$. The maximum length of n-dimensional ε-codes will be denoted by $S_{n}(\varepsilon, v)$; in symbols:

$$
S_{n}(\varepsilon, v)=\max \left\{l_{Q}: Q \text { is an } n \text {-dimensional } \varepsilon \text {-code for } v\right\}
$$

The set of all families $p=(p(b), b \in B)$ of non-negative real numbers which add to one, will be denoted by P (the set of probability vectors on alphabet B). Let μ^{p}
be the measure in W_{B} satisfying the condition

$$
\mu^{p}[y]=\prod_{0 \leqq i<n} p\left(y_{i}\right), \quad y \in B^{n}(p \in P) .
$$

If $N(b \mid y)=\left\{i: y_{i}=b(0 \leqq i<n)\right\}, \quad s_{p}(b)=\left(p(b)(1-p(b))^{1 / 2}\right.$, $d=\max (\operatorname{card} A, \operatorname{card} B)$,
define

$$
F_{n}(p)=\bigcap_{b \in B}\left\{y \in B^{n}:|N(b \mid y)-n p(b)| \leqq 2 s_{p}(b)(n d)^{1 / 2}\right\}, \quad p \in P .
$$

An n-dimensional ε-code $Q=(Q(y), y \in Y)$ for a channel r is said to be a (p, ε)-code for p in P iff $Y \subset F_{n}(p)$. Define

$$
S_{n}^{*}\left(\varepsilon, v, \mu^{p}\right)=\max \left\{l_{Q}: Q \text { is an } n \text {-dimensional }(p, \varepsilon) \text {-code for } \nu\right\} .
$$

The behaviour of the latter auxiliary quantity will be studied by means of the n dimensional information density

$$
I_{n}\left(x y ; v \mu^{p}\right)=(1 / n) \log \left(v[x \mid y] /\left(v \mu^{p}\right)^{A}[x]\right) .
$$

COMPOSED CHANNEL

We shall make the following assumptions: k is a natural number, $\left(v^{\alpha}, \alpha \in \mathscr{K}\right)$ for $\mathscr{K}=\{1, \ldots, k\}$ is a family of memoryless channels, $\xi=\left(\xi_{1}, \ldots, \xi_{k}\right)$ is a probability vector satisfying the condition

$$
\xi_{0}=\min \left\{\xi_{\alpha}: \alpha \in \mathscr{K}\right\}>0,
$$

and v is the composed channel defined by

$$
v_{n}(E)=\sum_{\alpha=1}^{k} \xi_{z^{\alpha}}^{\alpha}(E), \quad \eta \in B^{I}, \quad E \in F_{A} ;
$$

the latter relation will be written as

$$
v=\sum_{\alpha \in, \mathscr{K}} \xi_{\alpha} v^{\alpha}
$$

Together with the given channel v we shall consider its "subchannel" v^{α} for $\mathscr{A} \subset \mathscr{K}(\mathscr{A}$ non-empty $)$ defined by

$$
v^{s d}=\sum_{\alpha \in \mathscr{A}}\left(\xi_{\alpha} \mid \xi(\mathscr{A})\right) v^{\alpha}, \quad \xi(\mathscr{A})=\sum_{x \in \mathscr{A}} \xi_{\alpha},
$$

particularly in case that \mathscr{A} belongs to the class

$$
A(\Theta)=\{\mathscr{A}: \mathscr{A} \subset \mathscr{K}, \quad \xi(\mathscr{A}) \geqq \Theta\}, \quad 0<\Theta \leqq 1 .
$$

Let $\mathcal{B}_{x}(p)=\sum\left\{p(b) v^{x}[a \mid b] I_{1}\left(a b ; v^{x} \mu^{p}\right): a \in A, b \in B\right\}$,

$$
r_{p}(\Theta, \xi)=\min _{S \in \in A(\theta)} \max _{\alpha \in \mathscr{A}} \mathscr{\varkappa}_{\alpha}(p), \quad 0<\Theta \leqq 1
$$

$$
r_{p}^{\prime}(\Theta, \zeta)=\max _{\mathscr{A} \in(1-\theta)} \min _{x \in \mathscr{A}} \mathscr{R}_{\alpha}(p), \quad 0 \leqq \Theta<1, \quad p \in P
$$

Then the quantile function of the composed channel is expressed by

$$
q_{v}(\Theta)=\max _{p \in P} r_{p}(\Theta, \xi)=\lim _{\lambda \downharpoonright 0} \bar{q}_{v}(\Theta-\lambda), \quad 0<\Theta \leqq 1
$$

(cf. Theorem 4 in [4] and Lemma 3 in [2]), analogously

$$
\bar{q}_{v}(\Theta)=\max _{p \in P} r_{p}^{\prime}(\Theta, \xi)=\lim _{\lambda \leqslant 0} q_{v}(\Theta+\lambda), \quad 0 \leqq \Theta<1
$$

and both q_{v}, \bar{q}_{v} are monotonically increasing, having the same set \mathscr{D}_{v} of discontinuity points in the open interval $(0,1)$ satisfying the relations

$$
\mathscr{D}_{v}=\left\{\Theta: 0<\Theta<1, \quad q_{v}(\Theta)<\bar{q}_{v}(\Theta)\right\}, \quad \mathscr{D}_{v} \subset\{\check{(}(\mathscr{A}): \mathscr{A} \subset \mathscr{K}\}
$$

In every open subinterval $\left(\Theta_{1}, \Theta_{2}\right)$ not containing any discontinuity point from \mathscr{F}_{v}, q_{v} and \bar{q}_{v} are constant and equal to each other (cf. Theorem 4 in [3]).

Hence it follows that the set

$$
P(\Theta)=\left\{p \in P: r_{p}^{\prime}(\Theta, \xi)=\bar{q}_{v}(\Theta)\right\} \quad \text { for } \quad 0 \leqq \Theta<1
$$

is non-empty. Let

$$
\begin{gathered}
w_{0}=\min \left\{v^{\alpha}[a \mid b]: \alpha \in \mathscr{K}, \quad a \in A, \quad b \in B, \quad v^{\alpha}[a \mid b]>0\right\} \\
p_{0}=\min \{p(b): b \in B, \quad p(b)>0\}, \quad p \in P \\
\delta_{\varepsilon}=\frac{1}{4} \min \{|\xi(\mathscr{A})-\varepsilon|: \mathscr{A} \subset \mathscr{K}, \quad \zeta(\mathscr{A}) \neq \varepsilon\}, \\
K_{\varepsilon}=(2 d)^{3} \sqrt{ }(d)\left(w_{0} \delta_{\varepsilon}\right)^{-(1 / 2)}, \quad p_{\varepsilon}=\sup \left\{p_{0}: p \in P(\varepsilon)\right\}, \quad 0<\varepsilon<1 .
\end{gathered}
$$

The composed channel v is, by definition (cf. [2]), non-singular if $v^{\alpha}[a \mid b]>0$ for all $a \in \mathscr{K}, a \in A, b \in B$.

Theorem 1. If ε is a continuity point of the quantile function q_{v} (i.e., $0<\varepsilon<1$, $\varepsilon \notin \mathscr{D}_{v}$), then the maximum length of n-dimensional ε-codes for the channel v satisfies the inequalities

$$
\begin{gathered}
\log S_{u}(\varepsilon, v)<n q_{v}(\varepsilon)+\log \left(2 \delta_{\varepsilon} \xi_{0}\right)^{-1}+K_{\varepsilon} \sqrt{ } n \\
\log S_{n}(\varepsilon, v)>n q_{v}(\varepsilon)-\log \left(2 \delta_{\varepsilon} \xi_{0}\right)^{-1}-K_{\varepsilon}\left(p_{\varepsilon}\right)^{-1} \sqrt{ } n
\end{gathered}
$$

for $n=1,2, \ldots$; if v is non-singular, then

$$
\left|\log S_{n}(\varepsilon, v)-n q_{v}(\varepsilon)\right|<\log \left(2 \delta_{\varepsilon} \xi_{0}\right)^{-1}+K_{\varepsilon} \sqrt{ } n
$$

Remark. The non-singular case was treated in [2], but the method used there for finding the bounds must be modified for the case considered here, as will be seen below. On the other hand, Theorem 4 in [3] guarantees only the existence of a constant c_{ε} such that $\left|\log S_{n}(\varepsilon, v)-n q_{v}(\varepsilon)\right|<c_{\varepsilon} \sqrt{ } n$, but yields no direct method for its computing.

LEMMATA

To show the validity of Theorem 1, we shall first prove two lemmas under the assumption that we are given a real number $\varepsilon^{\prime}\left(0<\varepsilon^{\prime}<1\right)$, a probability vector p in P, and a non-empty set $\mathscr{A} \subset \mathscr{K}$. Let $\omega^{\alpha}=\left(r^{\alpha} \mu \mu^{p}\right)^{A}$ for $\alpha \in \mathscr{A}, L(t)=t \log t^{-1}$ $(0<t \leqq 1), L(0)=0$,

$$
\begin{aligned}
& L_{0}=\max \{L(t): 0 \leqq t \leqq 1\}=\mathrm{e}^{-1} \log \mathrm{e} \\
& K^{\prime}=K^{\prime}\left(\varepsilon^{\prime}\right)=d\left(\varepsilon^{\prime}\right)^{-(1 / 2)} \\
& \bar{K}=\bar{K}\left(\varepsilon^{\prime}\right)=L_{0} d^{2}\left(5 \sqrt{ }(d)+2 K^{\prime}+4 K^{\prime}(1+2 \sqrt{ }(d))^{1 / 2}\right) \\
& K_{0}=K_{0}\left(\varepsilon^{\prime}\right)=K^{\prime} L_{0} d(d+1)\left(w_{0}\right)^{-(1 / 2)} \\
& K_{0}^{\prime}=K_{0}^{\prime}\left(\varepsilon^{\prime}\right)=\left(K^{\prime}+2 \sqrt{ }(d)\right) L_{0}\left(d^{2}+1\right)\left(w_{0}\right)^{-(1 / 2)}, \\
& \lambda_{n}=\lambda_{n}\left(\varepsilon^{\prime}\right)=(1 / n)\left(\log \left(\xi_{0}\right)^{-1}+\left(\bar{K}+K_{0}\right) \sqrt{ } n\right) \\
& \lambda_{n}^{\prime}= \lambda_{n}^{\prime}\left(\varepsilon^{\prime}, p_{0}\right)=(1 / n)\left(\log \left(\xi_{0}\right)^{-1}+\left(\bar{K}+K_{0}^{\prime}\right)\left(p_{0}\right)^{-1} \sqrt{ } n\right) \\
& \lambda_{n}^{\prime \prime}=\lambda_{n}^{\prime \prime}\left(\varepsilon^{\prime}\right)=(1 / n)\left(\log \left(\xi_{0}\right)^{-1}+\left(\bar{K}+K_{0}^{\prime}\right) \sqrt{ } n\right)
\end{aligned}
$$

If $N(a, b \mid x, y)=\left\{i: x_{i}=a, y_{i}=b(0 \leqq i<n)\right\}, \quad s_{\alpha}(a \mid b)=\left(v^{\alpha}[a \mid b] \quad(1-\right.$ $\left.\left.-v^{\alpha}[a \mid b]\right)\right)^{1 / 2}$, define for $\alpha \in \mathscr{K}, y \in B^{n}$,
$\Gamma_{n}^{\alpha}(y ; a, b)=\left\{x \in A^{n}:\left|N(a, b \mid x, y)-N(b \mid y) v^{\alpha}[a \mid b]\right| \leqq K^{\prime} s_{\alpha}(a \mid b) \sqrt{ }[N(b \mid y)]\right\}$,

$$
\Gamma_{n}^{\chi}(y)=\bigcap_{a \equiv A, b \in B} \Gamma_{n}^{x}(y ; a, b), \quad \Gamma_{n}^{* / 2}(y)=\bigcup_{x \in, \dot{\prime}} \Gamma_{n}^{x}(y)
$$

Lemma 1. If $x \in \Gamma_{n}^{\alpha}(y)$ for $y \in F_{n}(p)$ then

$$
\min _{\alpha \in, \sigma^{\prime}} \mathscr{R}_{x}(p)-\lambda_{n}^{\prime}<I_{n}\left(x y ; v^{\sigma i} \mu^{p}\right)<\max _{\alpha \in \mathscr{A}} \mathscr{R}_{\alpha}(p)+\lambda_{n}
$$

Moreover, if v is non-singular, $I_{n}\left(x y ; v^{\mathscr{\alpha}} \mu^{p}\right)+\lambda_{n}^{\prime \prime}>\min _{\alpha \in \mathscr{A}} \mathscr{R}_{\alpha}(p)$.
Proof. I. Given $\alpha \in \mathscr{A}$, suppose that $x \in \Gamma_{n}^{x}(y)$; then $v^{x}[x \mid y] \geqq w_{0}^{n}, \omega^{x}[x] \geqq$ $\geqq\left(p_{0} w_{0}\right)^{n}$ because of $\mu^{p}[y] \geqq\left(p_{0}\right)^{n}$, and if $v^{\alpha}[a \mid b]>0$ and $\sigma^{\alpha}[a]>0$, respectively, then

$$
\begin{gathered}
\left|N(a, b \mid x, y)-n p(b) v^{\alpha}[a \mid b]\right|< \\
<\sqrt{ }(n)\left(\sqrt{ }(d) v^{\alpha}[a \mid b]+K^{\prime}\left(v^{\alpha}[a \mid b]\right)^{1 / 2}\right) \\
\left|N(a \mid x)-n \omega_{\alpha}[x]\right|< \\
<\sqrt{ }(n) d\left(2 \sqrt{ }(d)\left(\omega^{\alpha}[a]\right)^{1 / 2}+\bar{K}^{\prime}\left(\omega^{\alpha}[a]\right)^{1 / 4}\right)
\end{gathered}
$$

where $N(a \mid x)=\sum\{N(a, b \mid x, y\}: b \in B\}, \bar{K}^{\prime}=K^{\prime}(1+2 \sqrt{ }(d))^{1 / 2} ;$ cf. [6], Chapter 2 , and notice that $s_{p}(b) \leqq \frac{1}{2}$. Similarly as in [6], loc. cit., we have

$$
\begin{gathered}
\log \frac{v^{\alpha}[x \mid y]}{\omega^{\alpha}[x]}=\sum_{a, b} N(a, b \mid x, y) \log v^{\alpha}[a \mid b]-\sum_{a} N(a \mid x) \log \omega^{x}[a] \lessgtr \\
\lessgtr n \mathscr{M}_{x}(p) \pm L_{0} d^{2}\left(\sqrt{ }(d)+2 K^{\prime}+4 \sqrt{ }(d)+4 \bar{K}^{\prime}\right) \sqrt{ }(n)
\end{gathered}
$$

Thus it is proved under the above assumptions that

$$
\begin{equation*}
\left|I_{n}\left(x y ; v^{\alpha} \mu^{p}\right)-\mathscr{R}_{\alpha}(p)\right|<\bar{K} \cdot n^{-(1 / 2)} . \tag{1}
\end{equation*}
$$

II. Given α, β in \mathscr{A}, suppose that $x \in \Gamma_{n}^{\alpha}(y)$, and that $v^{\beta}[x \mid y]>0$; then $v^{\beta}[a \mid b]=$ $=0$ implies that $N(a, b \mid x, y)=0$. Let

$$
A_{b}=\left\{a \in A: v^{\alpha}[a \mid b]>0, v^{\beta}[a \mid b]>0\right\}
$$

$$
V_{b}=\sum_{a \in A_{b}} N(a, b \mid x, y) \log \frac{v^{\beta}[a \mid b]}{v^{\alpha}[a \mid b]} \quad \text { for } \quad b \in B_{y}
$$

where $B_{y}=\{b \in B: N(b \mid y)>0\}$. Since (cf. [2] (2.14))

$$
\sum_{a \in A_{b}} v^{\alpha}[a \mid b] \log \frac{v^{\beta}[a \mid b]}{v^{\alpha}[a \mid b]} \leqq L\left(v^{\alpha}\left[A_{b} \mid b\right]\right)
$$

$$
\left|N(a, b \mid \dot{x}, y)-N(b \mid y) v^{\alpha}[a \mid b]\right|<\frac{1}{2} K^{\prime} \sqrt{ }[N(b \mid y)] \text { for } b \in B_{y}
$$

we obtain the inequality

$$
V_{b}<N(b \mid y) L\left(v^{x}\left[A_{b} \mid b\right]\right)+\frac{1}{2} K^{\prime} \log \left(w_{0}\right)^{-1} \cdot d \sqrt{ }[N(b \mid y)], \quad b \in B_{y}
$$

Case 1: If, for all a in $A, v^{\beta}[a \mid b]=0$ implies that $v^{\alpha}[a \mid b]=0$, then $v^{\alpha}\left[A_{b} \mid b\right]=$ $=1$, and

$$
V_{b}<\sqrt{ }[N(b \mid y)] K^{\prime} d \log \left(w_{0}\right)^{-(1 / 2)} \text { for } b \in B_{y}
$$

Case 2: Let $v^{\beta}\left[a_{b} \mid b\right]=0$ and $v^{\alpha}\left[a_{b} \mid b\right]>0, a_{b} \in A, b \in B_{y}$; then
$N\left(a_{b}, b \mid x, y\right)=0>N(b \mid y) v^{x}\left[a_{b} \mid b\right]-K^{\prime}\left(N(b \mid y) v^{\alpha}[a \mid b]\right)^{1 / 2}$
so that $\sqrt{ }[N(b \mid y)]<K^{\prime}\left(w_{0}\right)^{-(1 / 2)}$. Thus in both cases

$$
V_{b}<\sqrt{ }[N(b \mid y)]\left(K^{\prime}\left(w_{0}\right)^{-(1 / 2)} L_{0}+K^{\prime} d \log \left(w_{0}\right)^{-(1 / 2)}\right) \quad \text { for } \quad b \in B_{y}
$$

From here it follows that

$$
\begin{equation*}
\sum_{b \in B_{y}} V_{b}=\log \frac{v^{\beta}[x \mid y]}{v^{\alpha}[x \mid y]}<\sqrt{ }(n) K_{0} \tag{2}
\end{equation*}
$$

III. Given α, β in \mathscr{A}, suppose that $x \in \Gamma_{n}^{\alpha}(y)$, and that $\omega^{\beta}[x]>0$; then $\omega^{\rho}[a]=0$ implies that $N(a \mid x)=0$. Let

$$
\begin{aligned}
& A_{0}=\left\{a \in A: \omega^{\alpha}[a]>0, \quad \omega^{\beta}[a]>0\right\} \\
& V_{0}=\log \frac{\omega^{\beta}[x]}{\omega^{\alpha}[x]}=\sum_{a \in A_{0}} N(a \mid x) \log \frac{\omega^{\beta}[a]}{\omega^{\alpha}[a]}
\end{aligned}
$$

Since $\left|N(a \mid x)-n \omega^{\alpha}[a]\right|<\frac{1}{2}\left(K^{\prime}+2 \sqrt{ }(d)\right) d \sqrt{ }(n)$, we find that

$$
V_{0}<n L\left(\omega^{\alpha}\left[A_{0}\right]\right)+\frac{1}{2}\left(K^{\prime}+2 \sqrt{ }(d)\right) d^{2} \log \left(p_{0} w_{0}\right)^{-1}
$$

because under the assumptions made, if $\omega^{\alpha}[a]>0$ and $\omega^{\beta}[a]>0$, respectively, then $\omega^{\alpha}[a] \geqq p_{0} w_{0}, \omega^{B}[a] \geqq p_{0} w_{0}$.

Case 1: If, for all a in $A, \omega^{\beta}[a]=0$ implies that $\omega^{\alpha}[a]=0$, then $\omega^{\alpha}\left[A_{0}\right]=1$, and

$$
V_{0}<\sqrt{ }(n) \cdot \frac{1}{2}\left(K^{\prime}+2 \sqrt{ }(d)\right) d^{2} \log \left(p_{0} w_{0}\right)^{-1}
$$

Case 2: Let $\omega^{\rho}\left[a_{0}\right]=0$ and $\omega^{\alpha}\left[a_{0}\right]>0, a_{0} \in A$; then $N\left(a_{0} \mid x\right)=0$. Choose b_{0} in B such that

$$
p\left(b_{0}\right) v^{2}\left[a_{0} \mid b_{0}\right]>0
$$

then

$$
\begin{gathered}
N\left(a_{0}, b_{0} \mid x, y\right)=0>n p\left(b_{0}\right) v^{\alpha}\left[a_{0} \mid b_{0}\right]-K^{\prime \prime}\left(n p\left(b_{0}\right) v^{\alpha}[a \mid b]\right)^{1 / 2}- \\
-K^{\prime}\left(v^{\alpha}[a \mid b] N\left(b_{0} \mid y\right)\right)^{1 / 2}
\end{gathered}
$$

where $K^{\prime \prime}=2 \sqrt{ }(d)$. Thus $\sqrt{ }(n)<\left(K^{\prime}+K^{\prime \prime}\right)\left(p_{0}\right)^{-1}\left(w_{0}\right)^{-(1 / 2)}$ so that

$$
V_{0}<\sqrt{ }(n) \frac{K^{\prime}+2 \sqrt{ }(d)}{p_{0} \sqrt{ }\left(w_{0}\right)}\left(L_{0}+d^{2} L\left(p_{0} \sqrt{ }\left(w_{0}\right)\right)\right)
$$

In both cases we obtain that

$$
\begin{equation*}
\log \frac{\omega^{\beta}[x]}{\omega^{x}[x]}<\sqrt{ }(n) K_{0}^{\prime} \frac{1}{p_{0}} \tag{3}
\end{equation*}
$$

If v is non-singular, then $\omega^{\alpha}[a] \geqq w_{0}$ for $\omega^{\alpha}[a]>0$, and $\omega^{\beta}[a] \geqq w_{0}$ for $\omega^{\beta}[a]>0$, which yields (cf. Case 1) the inequalities

$$
\begin{equation*}
\log \frac{\omega^{\beta}[x]}{\omega^{\alpha}[x]}<\sqrt{ }(n)\left(K^{\prime}+2 \sqrt{ }(d)\right) d^{2} \log \left(w_{0}\right)^{-(1 / 2)}<\sqrt{ }(n) K_{0}^{\prime} \tag{4}
\end{equation*}
$$

IV. Let $\mathscr{A}^{*}=\left\{\alpha \in \mathscr{A}: x \in \Gamma_{n}^{\alpha}(y)\right\}$; by assumption, \mathscr{A}^{*} is non-empty. Write

$$
I_{n}=I_{n}\left(x y ; v^{s} \mu^{p}\right), \quad I_{n}^{*}=I_{n}\left(x y ; v^{s s^{*}} \mu^{p}\right)
$$

$$
\begin{gathered}
\mathscr{B}=\left\{\beta \in \mathscr{A}: \beta \notin \mathscr{A}^{*}, v^{\beta}[x \mid y]>0\right\}, \quad \mathscr{B}^{\prime}=\left\{\beta \in \mathscr{A}: \beta \notin \mathscr{A}^{*}, \omega^{\beta}[x]>0\right\} \\
r=\max _{x \in \mathscr{A}} \mathscr{R}_{\alpha}(p), \quad r^{\prime}=\min _{\alpha \in \mathscr{A}} \mathscr{R}_{\alpha}(p) \\
\varrho=(1 / n)(r+\bar{K} \sqrt{ } n), \quad \varrho^{\prime}=(1 / n)\left(r^{\prime}-\bar{K} \sqrt{ } n\right) \\
V=\sum_{\beta \in \mathscr{B}} \xi_{\beta}\left(\sum_{\alpha \in \mathscr{A}^{*}} \xi_{\alpha} \frac{v^{\alpha}[x \mid y]}{v^{\beta}[x \mid y]}\right)^{-1} \\
V^{\prime}=\sum_{\beta \in \mathscr{\mathscr { B }}} \xi_{\beta}\left(\sum_{\alpha \in \mathscr{S}^{*}} \xi_{\alpha} \frac{\omega^{\alpha}[x]}{\omega^{\beta}[x]}\right)^{-1}
\end{gathered}
$$

If $\alpha \in \mathscr{A}^{*}$ then, according to (1),

$$
2^{n \varrho^{\prime}} \omega^{\alpha}[x]<v^{\alpha}[x \mid y]<\omega^{\alpha}[x] 2^{n \varrho}
$$

so that $\varrho^{\prime}<I_{n}^{*}<\varrho$. Applying the inequality (2), we obtain
$\exp _{2}\left(n I_{n}\right)=\exp _{2}\left(n I_{n}^{*}\right) \cdot(1+V)\left(1+V^{\prime}\right)^{-1}<2^{n o}\left(1+\left(1-\xi_{0}\right)\left(\xi_{0}\right)^{-1} \exp \left(K_{0} \sqrt{ } n\right)\right)$ so that $I_{n}<r+\lambda_{n}$. Analogously, making use of (3), we get $I_{n}>r^{\prime}-\lambda_{n}^{\prime}$. If v is nonsingular, then $I_{n}>r^{\prime}-\lambda_{n}^{\prime \prime}$ by (4).

Lemma 2. If $0<\varepsilon<1-\varepsilon^{\prime}$ then

$$
\log S_{n}^{*}\left(\varepsilon, v^{s} \mu^{p}\right)<n\left(\max _{\alpha \in s i} \mathscr{R}_{\alpha}(p)+\lambda_{n}\left(\varepsilon^{\prime}\right)\right)+\log \left(1-\varepsilon-\varepsilon^{\prime}\right)^{-1}
$$

if $\varepsilon^{\prime}<\varepsilon<1$ then

$$
\log S_{n}^{*}\left(\varepsilon, v^{\mathscr{A}} \mu^{p}\right)>n\left(\min _{\alpha \in \mathscr{A}} \mathscr{R}_{x}(p)-\lambda_{n}^{\prime}\left(\varepsilon^{\prime}, p_{0}\right)\right)-\log \left(\frac{4}{3}\left(\varepsilon-\varepsilon^{\prime}\right)^{-1}\right)
$$

If v is non-singular, then it holds for $\varepsilon^{\prime}<\varepsilon<1$ that

$$
n\left(\min _{\alpha \in \mathscr{A}} \mathscr{R}_{\alpha}(p)-\lambda_{n}^{\prime \prime}\left(\varepsilon^{\prime}\right)\right)<\log S_{n}^{*}\left(\varepsilon, v^{\alpha} \mu^{p}\right)+\log \left(\frac{4}{3}\left(\varepsilon-\varepsilon^{\prime}\right)^{-1}\right)
$$

The proof is the same as that of Lemma 2 in [2], performed by making use of the preceding Lemma 1 .

Theorem 2. Let $K_{1}(\delta)=\widetilde{K}(\delta)+K_{0}(\delta)+d \log \mathrm{e}, K_{2}(\delta)=\bar{K}(\delta)+K_{0}(\delta), 0<$ $<\delta<\frac{1}{4}$. Then the maximum length of n-dimensional ε-codes $(0<\varepsilon<1)$ for the composed channel v satisfies the inequalities

$$
\log S_{n}(\varepsilon, v)<n q_{v}(\varepsilon+4 \delta)+\log \left(2 \delta \xi_{0}\right)^{-1}+\sqrt{ }(n) K_{1}(\delta)
$$

for $4 \delta \leqq 1-\varepsilon$, and

$$
\log S_{n}(\varepsilon, v)>n \vec{q}_{v}(\varepsilon-4 \delta)-\log \left(2 \delta \xi_{0}\right)^{-1}-\sqrt{ }(n)\left(p_{0}\right)^{-1} K_{2}(\delta)
$$

for $\varepsilon \geqq 4 \delta$ and any $p \in P(\varepsilon-4 \delta)$. If v is non-singular, then

$$
\log S_{n}(\varepsilon, v)>n \bar{q}_{v}(\varepsilon-4 \delta)-\log \left(2 \delta \xi_{0}\right)^{-1}-\sqrt{ }(n) K_{2}(\delta), \quad \varepsilon \geqq 4 \delta
$$

Proof. Repeating the proof of Theorem 1 in [2] with the aid of the preceding lemma, we obtain that

$$
\log S_{n}(\varepsilon, v)<n q_{v}(\Theta)+n \lambda_{n}\left(\varepsilon^{\prime}\right)+\log \left(1-\varepsilon \cdot \Theta^{-1}-\varepsilon^{\prime}\right)^{-1}+d \log (n+1)
$$

for $\varepsilon<\Theta \leqq 1, \varepsilon^{\prime}>0, \varepsilon^{\prime}+\varepsilon \cdot \Theta^{-1}<1$. Since $1-\varepsilon \cdot \Theta^{-1}-\varepsilon^{\prime} \geqq \frac{1}{2}(\Theta-\varepsilon)$ for $\varepsilon^{\prime} \leqq \frac{1}{2}(\Theta-\varepsilon), \log (n+1)<\sqrt{ }(n) \log$ e, the first inequality follows from the preceding one by setting $\delta=\varepsilon^{\prime}=\frac{1}{4}(\Theta-\varepsilon)$. Taking p in $P\left(\Theta^{\prime}\right)$ and using the second inequality of Lemma 2 above in the proof of Theorem 2 in [2], we derive the inequality

$$
\log S_{n}(\varepsilon, v)>n \bar{q}_{v}\left(\Theta^{\prime}\right)-n \lambda^{\prime}\left(\varepsilon^{\prime}, p_{0}\right)-\log \left(\frac{4}{3}\left(\varepsilon-\varepsilon^{\prime}\right)^{-1}\right)
$$

for $0 \leqq \Theta^{\prime}<\varepsilon, 0<\varepsilon^{\prime}<\varepsilon-\Theta^{\prime}$. From here the second inequality given in the theorem follows for $\delta=\varepsilon^{\prime}=\frac{1}{4}\left(\varepsilon-\Theta^{\prime}\right)$. The third inequality is verified analogously.

Theorem 1 is a corollary to Theorem 2 for $\delta=\delta_{\varepsilon}$ because $\bar{q}_{v}\left(\varepsilon-4 \delta_{\varepsilon}\right)=q_{v}(\varepsilon)=$ $=q_{v}\left(\varepsilon+4 \delta_{\varepsilon}\right)$ for $\varepsilon \notin \mathscr{D}_{v}, K_{1}\left(\delta_{\varepsilon}\right)<K_{\varepsilon}, K_{2}\left(\delta_{\varepsilon}\right)<K_{\varepsilon}$. In verifying the latter inequalities it is necessary to use the following relations: $\delta<\frac{1}{4}, d \geqq 2, L_{0}<\left(\frac{3}{4}\right)^{2}$.
[1] K. Winkelbauer: On the coding theorem for decomposable discrete information channels. Kybernetika 7 (1971), 109-123 (Part I), 230-255 (Part II).
[2] K. Winkelbauer: On discrete channels decomposable into memoryless components. Kybernctika 8 (1972), 114-132.
[3] K. Winkelbauer: Information channels with memoryless components. In: Trans. 7th Prague Conf. on Inform. Theory, Vol. A, Academia, Prague 1977, 559-576.
[4] K. Winkelbauer: Discrete communication channels decomposable into finite-memory components. In: Contributions to Statistics (Jaroslav Hajek Memorial Volume), Academia, Prague 1979, 277-- 306.
[5] K. Winkelbauer: On the asymptotic properties of discrete channels decomposable into stable components. In: Proc. 2nd Prague Conf. on Asymptotic Statistics, JČMF, Prague 1978, 327-340.
[6] J. Wolfowitz: Coding Theorems of Information Theory. Second edition. Springer-Verlag, Berlin--Heidelberg-New York 1964.

Doc. RNDr. Karel Winkelbauer, DrSc., Matematický ústav University Karlovy (Mathematical Institute - Charles University), matematicko-fyzikalni fakulta UK, Sokolovská 83, 18600 Praha 8. Czechoslovakia.

