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INFORMATION CHANNELS COMPOSED
OF MEMORYLESS COMPONENTS

KAREL WINKELBAUER

Explicit bounds for the maximum length of n-dimensional codes at any admitted fevel of the
probability of error are derived, valid for all n, in case that the channels considered are composed
of a firite number of memoryless components. The special case studied by the author in [2],
is discussed in this more general frame.

BASIC NOTATIONS

Given a finite non-empty set M, the symbol W,, means the class of all shift-invariant
probability measures in the space M’, where I denotes the set of all integers. A me-
asure m € W), (satisfying the relation m o T,;' = m) is defined on the g-algebra Fy,
of Borel sets in M! which may be generated by the class of “‘elementary” cylinders
(a base of the mpo]ogy) of the form T"4[z] iel,

El=N{teM:{;=z) for z={(z,0<i<n)eM";
Ogi<n
here T\, is the shift (defined by (Ty{); = ;4,)- Define
Wy = {m e Wy: mis ergodic w.r. to Ty} .

All the information channels considered here are supposed to have finite alphabets’
A, B (card 4 = 2, card B = 2), A the output alphabet, B the input alphabet.
Denoting by xy the element in (4 x B)' for x € A", y € B" given by (xy); = (x;, ;).
0 < i < n, associate with any measure w in W, the information rate (conven-
tion: log = log,)

J(@) =lim (1fn) T ofxy]log G

w* [x] wB[y] ’

where w* e W,, ® € W, are the marginal measures determined by the conditions

o'[x] = ;m[xy] , o[yl = Zm[xy] .

xe
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A point {e Z = (4 x B)' is called regular if there is a (uniquely determined) me-
asure m; € W, 5 such that

n-1
m[z} = lim (1/n) ¥ 3 AATixsl), zeU(4 x B)";
n i=0 "
X designates the characteristic function of E < Z. The set of all regular points in Z
will be denoted by R. Since w(R) = 1, we may define, for w € W, p,

40, 0) =min{t 2 CofzeR:J(m) £t} 20}, 0<O L1

40, w) =max{t 2 0:wfzeR: J(m) 2t} 21 -0}, 020 <1.

The latter quantities are the lower and the upper @-quantiles of the random variable
(J(m,), L e R) w.r. to .

In the entire paper a channel (a discrete information channel, stationary and
of zero past history; cf. [1]) is defined as a family v = (v,, # € B’} of probability
measures v, on F 4 satisfying the relations

v ATi[x]) = v,[x] for n'e Tl;[y] , nely], xed", yeB", n=12...
Since v,[x] is constant for # e [y], define for E = 4"
ME[] = Tolx |yl oIyl =wld. el
If 1 € Wy then vy will denote the measure in W, 5 satisfying
vulxy] = v[x|yIuly]. xed", yeB', n=1,2,...

The quantile function g, of a channel v (cf. [5]) is defined by

q,(@) = sup {q(@, vu): pe Wy}, 0< O < 1.
As an auxiliary function we define

3,(0) =sup {4(0, vpu): ne Wy}, 050 < 1.
The quantile functions g, and g, of a memoryless channel v are constant, both

identically equal to the transmission-rate capacity of the channel (cf. [1]); recall

that v is memoryless iff
vx | RS IREARAR
0gi<n
If 0 <& <1, Y= B" then a family @ = (Q(y), y € Y) of mutually disjoint sets
Q(y) = 4" is, by definition, an n-dimensional e-code for a channel v of length I, =
= card Yiff v[Q(y) | ] > 1 — eforall y € Y. The maximum length of n-dimensional
e-codes will be denoted by S,(e, v); in symbols:

S,(¢, v} = max {ly: Q is an n-dimensional s-code for v} .
The set of all families p = (p(b), b € B) of non-negative real numbers which add

to one, will be denoted by P (the set of probability vectors on alphabet B). Let p”
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be the measure in Wy satisfying the condition
wly] =TT p(y), veB(peP).
Osi<n
TN | y) = {ity; =005 i<n), s(b)=(p(b)(t— p(b))''?,

d = max (card 4, card B),
define

N(b|y) — np(b)| £ 25(b) (nd)'?}, peP.

Rr) = 0 {ye B

An n-dimensional e-code Q = (Q(y), y € Y) for a channel v is said to be a {p, &)-code

for pin Piff Y < F,(p). Define

Si(e, v, 1) = max {l,: Q is an n-dimensional (p, &)-code for v} .

The behaviour of the latter auxiliary quantity will be studied by means of the n-

dimensional information density

Li{xy; v?) = (1/n)log (v[x | ¥][(vuery* [x]) -

COMPOSED CHANNEL

We shall make the following assumptions: k is a natural number, (v, x€ %)
for # = {1,...,k} is a family of memoryless channels, ¢ = (g”,, ..., &) is a pro-

bability vector satisfying the condition
£y =min{{ae X} >0,
and v is the composed channel defined by
k
v(E)= Y Evi(E), neB', EeF,;
a=1

the latter relation will be written as
v=) L.

aeX’

‘

Together with the given channel v we shall consider its
sl < A (s non-empty) defined by

v = Y (), ) = T &y,

aead S

particularly in case that .« belongs to the class
AO)={d:d ch, )20}, 0<O 1.

Let Z,(p) = Y.{p(b)vi[a | b] 1, {ab; ). ac A, be B},

IIA

(@, &) = min maj& Ap), 0<O L1,

SHeA(@)

r(©,8) = max minZ,(p), 02O <1, peP.

SEA(1—0) aest

‘subchannel”™ v* for
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Then the quantile function of the composed channel is expressed by

9.,(0) = maxr(0,&) = limg 0 — 1), 0<O £1
peP il0

(cf. Theorem 4 in [4] and Lemma 3 in [2]), analogously
G{0) = max r(0,&) =limg,(0 +7), 020 <1,
peP A10
and both g,. 7, are monotonically increasing, having the same set 2, of discontinuity
points in the open interval (0, 1) satisfying the relations
Z,={0:0<0 <1, q(0)<q(0). 2, c i)t cH}.

In every open subinterval (@, @2) not containing any discontinuity point from
2,, q, and §, are constant and equal to each other (cf. Theorem 4 in [3]).

Hence it follows that the set
P(O) = {peP:1)(0,8) =§(0) for 00 <1
is non-empty. Let
wo = min {W[a|bliaed, acd, beB, v[alb] >0},
po = min {p(b): be B, p(b) >0}, peP,
b, = dmin{|d() ~ ¢t A, L)+ 2},
K, = (2d)* J(d) (wed,) P, p, =sup{po:pePle)}, 0<e<l.

The composed channel v is, by definition (cf. [2]), non-singular if v*[a | b] > 0 for

allae A, aec A4, be B.

' Theorem 1. If ¢ is a continuity point of the quantile function g, (ie., 0 <& < 1,
¢ ¢ &), then the maximum length of n-dimensional e-codes for the channel v satis-
fies the inequalities
log S,(s,v) < 1 g,(¢) + log (28,£0) ™" + K, /n,
log S,(e, v) > n g,(e) — log (26,&,)"* — K(p.)™' v,
for m = 1,2, ...; if v is non-singular, then

llog S,(e, v) — n q,(g)] < log (20,&0)"" + K, /n .

Remark. The non-singular case was treated in [2], but the method used there for
finding the bounds must be modified for the case considered here, as will be seen
below. On the other hand, Theorem 4 in [3] guarantees only the existence of a con-
stant ¢, such that !log S,(e. v) — nq,(e)] < ¢,/n, but yields no direct method for

its computing.
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LEMMATA

To show the validity of Theorem 1, we shall first prove two lemmas under the
assumption that we are given a real number & (0 < &' < 1), a probability vector
pin P, and a non-empty set o/ = A . Let o = (vi?)! for xe o, L(1) = tlog ™!
(0 <t =1),L0) =0,

Ly = max {L(1):0 <t <1} =c¢ 'loge,
K' =K'(¢) = d(e)~ />,
K = K(¢') = L, d*(5 V(d) + 2K’ + 4K'(1 + 2 J(d))'"?),
Ko = Kye') = K'Ly d(d + 1) (wg) /2|
Kj = Kofe") = (K' + 2(d)) Ly(d?* + 1) (wy) /2,
.= Ale) = (1n) (log (£)™" + (K + K¢) /n),
J = /i,',({:’, l’o) = (l’/n) (log (50)—1 + (R + K(/,) (po)™* \/n) S
Jn= (&) = (1fn) (log (&) ™" + (K + Kp) /) -

If Nla,b|x,p)={itx;=a,y;=b0Zi<n), sfa | b) = (va [ b} (1 -
— v*[a | b]))"2, define for ae &, ye B,

Ii(yia,b) = {xe 4" |N(a, b|x,y) — N(b|y)v[a|b]| £ K s a]|b)[N(b|»)},
RO = ) s b, 10) = U RO).

i

I

~
1

Lemma 1. If x e I'Y(y) for y € F,(p) then
min 2,(p) — 7 < L(xy; v/u") < max 2,(p) + 4, -
aecd ’ : sect )
Moreover, if v is non-singular, I(xy; v™ui”) + 2 > min Z,(p) .
aed

Proof. I. Given ae s/, suppose that x e I';(y); then v/[x | y] 2 wh, o’[x] =
2 (powo)" because of ([ ¥] Z (po)', and if v*[a | b] > 0and w*[a] > 0, respectively,
then

lN(u, b ] X, ¥) —n p(b) v’[a l b]l <
< V() (V(d)vla|b] + K([a|b])7),
IN(a|x) — nofx]| <
< /(n) d@2 J(d) (0[a])"/* + K'(e[a])*'*)
where N{a | x) = Y {N(a, b | x, y}: be B}, K' = K'(1 + 2 /(d))"/? ; cf. [6], Chapter
2, and notice that s,(b) < 1. Similarly as in [6], loc. cit., we have

log%}l{] = aZbN(a, b|x,y)logvi[a|b] — %N(a [ x)logwa] $
S n2(p) + Ly d*(V(d) + 2K’ + 4 J(d) + 4K') /(n) .
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Thus it is proved under the above assumptions that
6y ]I,,(xy; ViP) — Wu(p)l < K.n 03,

I1. Given o, B in &, suppose that x € I'y(y), and that /[ x | y] > 0; then v"[a [ 6] =
= 0 implies that N(a, b|x,y) =0 Let

A, = {aeA:v[a|b] > 0,v[a|b] >0},

V, =Y N(a, b|x, y)logv[a‘b] for beB,,
acAs fa|b]

where B, = {be B: N(b| y) > 0}. Since (cf. [2] (2.14))

T va] o] 1oe H’Z%L T4, | 5]).

IN(a, b|x,y) = N(b| y)v[a]|b]| < 3K V[N(b | )] for beB,,
we obtain the inequality
< N(b|y) L(v[4,] b]) + 3K log (wo)™" . d V[N(b|»)]. beB,.

Case I 1f, for all a in A, v*[a | b] = Oimplies that v*[a | 6] = 0, then v[4, | b] =
= 1, and
Vi < JIN(b| ¥)] K'dlog (wo)™"/» for beB,.

Case 2: Let v![a, | b] = 0 and v/[a; | b] > 0, ay € 4, b € B,; then
Maa b 2) = 0> N(o | ) ¥y | 51 = KNG [ ) vTa | 5
so that /[N(b | y)] < K'(wo) ™/, Thus in both cases
Vi < VIN(b | 9] (K'(wo)™""® Ly + K'd log (wo)”Y/?) for beB,.

From here it follows that

) YV, =log Yg[im < J(n) K, .
Vx| y]

beB,

II1. Given o, f in o7, suppose that x € I'}(y), and that w’[x] > 0; then &’[a] = 0
implies that N(a | x) = 0. Let

Ay ={aed:0w[a] >0, oa] >0},

V, = log w:}x:][ =a§uN(a | x) log cuj{a} .
Since |N(a | x) = n wa]] < K’ + 2+/(d)) d /(n), we find that
Vo < n L(@A4o]) + HK' + 2/(d)) d* log (pyw,) ™",

because under the assumptions made, if @*[a] > 0 and w’[a] > 0, respectively,
then w[a] = pow,, ©’[a] = pow,.
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Case I:1f, for all a in 4, w’[a] = 0 implies that w*[a] = 0, then @*[4,] = 1, and
Vo < /(1) - HK' + 2/(d)) d* log (powo) ™" -
Case 2: Let @'[ag] = 0 and w[ao] > 0, ag € 4; then N(a, | x) = 0. Choose
b, in B such that
p(bo) v“[a0 | bo] >0
then

N(ag, by i X, y] =0>n p(bn) v“[ao 1 bol — K”(n p(bo) v"‘[a I b])”Z -
= K'(v[a | b]N(bo | y))**
where K = 2 /(d). Thus /(n) < (K" + K"} (po) ™" (wo) */? so that

Vo < v X2 (L r0 sw0).

Po /(o)
In both cases we obtain that
of[x] o1
(3) log —— < J/(n) K —.
o[x] Po

If v is non-singular, then w*[a] Z w, for &*[a] > 0, and w*[a] = w, for w’[a] > 0,
which yields (cf. Case 1) the incqualities

@ tog 2T < ) (k7 2 (@) P g (o) < () K

]

IV. Let * = {oc.o/: xei(y)}; by assumption, «/* is non-empty. Write
I, = L{xy;v7u?), I = L{xy; v"'w),

B={Bed: péa* V[x|y]>0}, # ={fed:p¢L* o [x] >0},

r=max Z(p), r = minZ(p),
acaf acs
0= () +Kyn), ¢ =1 - K vn),
V=3¢ ( v &, V] Jf])ﬁl,
pez

sear Vx| y]

wu[x] -1
vi=3%¢ el
/}é’ ’ (a;i* w”[x])
If w e o7* then, according to (1),
2" ox] < v[x1{y] < w[x]2%
so that o' < I} < o. Applying the inequality (2), we obtain
€Xp2 (”In) = €Xp, ("1:) . (1 + V) (1 + V')7I < 2"'0(1 + (1 - fo) (60)41 exp (Ko \/”))
so that I, < r + 2,. Analogously, making use of (3), we get I, > ' — . If v is non-
singular, then I, > 1’ — A, by (4). O
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Lemma 2. If 0 < ¢ < 1 — ¢ then

log (e, viu®) < n(mai( R(p) + M) +log(t — e — &)
if & < ¢ <1 then '
o 8206, %1%) > nmin .05) = 7 ) ~ og (e — ).
s
If v is non-singular, then it holds for &' < ¢ < 1 that
n( mi:; Ap) — 2:(&)) < log Si(e, vur) + log (3(e — &)™)

The proof is the same as that of Lemma 2 in [2], performed by making use
of the preceding Lemma 1.

Theorem 2. Let K ,(8) = K(8) + Ko(8) + dloge, Ky(8) = K(5) + Ko(8). 0 <
< 8 < L. Then the maximum length of n-dimensional e-codes (0 < ¢ < 1) for the
composed channel v satisfies the inequalities

log S,(, v) < n q,(e + 40) + log (26&0)™* + /(n) K,(0)
for4d £ 1 — ¢, and
log S,(e, v) > n q,(e — 48) — log (26&,)™* — /(n) (po) " * K,(6)
for & = 45 and any p e P(e — 45). If v is non-singular, then
log S,(e,v) > n q,(e — 46) — log (26&0) ™" — /(n) K,(8), e=4d.

Proof. Repeating the proof of Theorem 1 in [2] with the aid of the preceding

lemma, we obtain that
log S,(e,v) < nq(@) + nA(e) +log(l —e.@ " — &) ' +dlog(n+1)

fore<@=1,¢>06+¢.0"" <1 Since 1 ~¢.07" —¢ 2 HO — &) for
¢ £ 30 —g),log(n + 1) < /(n) log e, the first inequality follows from the preced-
ing one by setting 6 = ¢ = 4(@ — ¢). Taking p in P(@') and using the second
inequality of Lemma 2 above in the proof of Theorem 2 in [2], we derive the ine-
quality
log S,(e, v) > n §(0') — n X&', po) — log (3(c — &)™ 1)
for 0 £ 0@ <¢ 0<¢ <e— @. From here the second inequality given in the
theorem follows for 6 = &' = {(¢ — @"). The third inequality is verified analogously.
m}
Theorem 1 is a corollary to Theorem 2 for & = 5, because 7,(¢ — 45,) = q,(¢) =
= q,(¢ + 48,) fore ¢ 9,, K(3,) < K,, K5(8,) < K, In verifying the latter inequalities
it is necessary to use the following relations: 6 < ,d = 2, L, < (%)%

(Received May 29, 1984.)
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