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AN ALGORITHM FOR CALCULATING
THE CHANNEL CAPACITY OF DEGREE f

INDER JEET TANEJA, FERNANDO GUERRA

Arimoto [2] and Blahut [5] proposed a systematic iteration method to compute the channel
capacity of a discrete memoryless channel. Arimoto [3, 4] also presented an iteration method
for computing the random coding exponent function and channel capacity of order « by defining
the mutual information in terms of Rényi [12] entropy of order «. In this paper, we present
an algorithm for computing the channel capacity of degree S by defining mutual information
in terms of Havrda and Charvat [9] entropy of degree . Some upper bounds to the channel
capacity of degree f have also been d=rived.

1. INTRODUCTION

The calculation of the capacity of a discrete memoryless channel is well known
problem in information theory since this quantity can not be represented in closed
form. In order to calculate the channel capacity for a given channel matrix, we must
select the necessary and sufficient number of rows needed for the calculation. This
remains to be troublesome problem especially in nonregular (nonsquare) channel
matrices. A general method for determining the capacity of a discrete memoryless
channel has been suggested by Muroga [11], Cheng [6], and Takano [14]. While
Meister and Oettli [10] proposed an iterative procedure based upon the method
of concave programming and showed that it converges to capacity. Arimoto [2] and
Blahut [5] also proposed another iteration method to compute the capacity which
is very simple and systematic. Arimoto [3, 4] also presented an iterative algorithm
for computing the random coding exponent function and channel capacity of order
o by defining the mutual information in terms of the Rényi [12] entropy of order o.

In this paper, we apply Arimoto’s technique (cf. [3]) to obtain an algorithm
for computing the channel capacity of degree f in which the mutual information
has been defined in terms of Havrda and Charvit [9] entropy of degree . Some
upper bounds to the channel capacity of degree ff have also been derived. While,
the algorithm for computing the channel capacity using generalized y-entropy of
Arimoto [1] has been presented by Taneja and Wanderlinde [16] and using weighted
entropy has been presented by Taneja and Flemming [15].
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2. CAPACITY OF DEGREE

Denote a discrete memoryless channel with n input and m output symbols by the
stochastic m x n matrix Q:

Q= {Qk,’j}a k=1,2..,m; j=12,..,n

where Q,,; 2 Oforalli,jand ) Qy; = 1.
k=1
Let us denote n
4, = {P = (Pl:Pz,-v-,Pn):Pj =0, ij = 1}
i=1
and "
4 ={P=(p;,p2-.sp)ip; >0, Y p;=1}.
j=1
The mutual information of degree f§ of the channel matrix Q is defined by

1) 1%(Q; P) = H(P) — H(Q; P),
where .
H(P) = (210 — 1)1 {;pf -1}, p+1, >0,

and
@2 H(gP)=@" = N)7HY ¥ (00u) = X (3 p0u)}
k=1j= k=1j=1
where H#(Q; P) is the conditional entropy of degree § as defined in [7].
We define the capacity of degree f of a discrete memoryless channel Q as .
(23) CH(P) = max I(Q; P).
Ped,
Let us generalize the concept of conditional entropy of degree § given in (2.2).
Introduce a stochastic matrix & such that
(24) @ ={D,}, k=1,2,...,m; j=1,2,..,n,

where ®;, = 0 for all j, k and ) ®;, = 1 and generalize the conditional entropy
of degree B as J=1

@9 @R =@ -)7T T atel(l - i),
=
B+1B8>0.
Then, if @ is defined by the Bayes formula:
(2.6) Qi = ,,L]Qk_”‘_‘ = Q;k/k ’
Z PiQk/i
i=1

then (2.5) becomes equal to (2.2).
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Furthermore, we can easily prove the inequality
27 JNQ; P; @) = JH(Q; P; 0%),
where Q% is the stochastic matrix whose (j, k)th entry is Q;, as defined in (2.6).
In view of this fact, one obtains another characterization of channel capacity of degree
B as
(2.8) C/(Q) = max max (H(P) — J¥Q; P; @)},

Ped, @@

where ® denotes the set of all stochastic matrices satisfying (2.4).

The following proposition can be verified easily.

Proposition 2.1. The function I’(Q; P) is a convex n function of the input pro-
babilities for all 0 < f < 1.

Proposition 2.2. The probability vector P° = (p, p3,..., p%)€ 4, maximizes
I%(Q; P)for all B < 1if and only if

(@9) @ -0 -1 S ol
= Q) it >0
{ Q) if pj=0

Proof. We want to maximize the following function:

Ms

(,Z 230u,) " Qus

=1

(2.10) 1%(Q; P) = HYP) — H¥Q; P) =
=@ -0 S 1 =5 S Al 3 (5 pou))
f*1, ﬂ >0.

Let us maximize (2.10) with respect to the condition L p; = 1. Using the Lan-
grange method of multipliers and let

SE) =@ = ) (T -1 =T Y0l + 3 (TR0 +
+ 2(2;11’1 - 1)}

then, we have

8f§JP) @ =17 {pp Z b, Bl + i(i PiQu)' ™ Qi + A=0,
' k=1j=1

(11) A= -2~ - {p —k;Pf_leu +k21 Qk/,-(,leij)”“} -
= = e
By maximization lemma (ref. Gallager [8]), as I/(Q; P) is a convex n function
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of P=(py,Ps,..., P) €4, for 0 < B <1 and the partial derivatives of I%(Q; P)
are continuous, then the necessary and sufficient conditions at P°® = (p{, p3, ..., ph) €
€ 4, to maximize I*(Q; P) are

8O- = if °
212) oI (Q; P) { =1 {f p{) >0
op; =4 if pi =0
Expression (2.11) and (2.12) together give
@ - -1 —klek/jl’?Bi‘ +thQk/j(_ZlP?Qw)Bﬂ}
= = =
=CHQ) if p}>0
(2.13) {é Q) it pl =0
where CH(Q) = (A/B) — (2'# — 1) 1.

Let us prove now that C*(Q) is the channel capacity. In order to prove this, multi-
ply (2.]3) by p? and taking sum over all j, j = 1, 2, ..., n at which p? > 0, we have

1(0: P°) = Q).

max I*(Q; P) = C*(Q).

Pedy,

3. COMPUTATION OF THE CAPACITY OF DEGREE B

Based upon the double-maximum form in (2.8), an iterative algorithm for comput-
ing C*(Q) is composed of the following steps:

i) Initially, choose an arbitrary probability vector P! e A9 (in practice the uniform
distribution p; = 1/n for all j = 1, 2,..., n generally suitable);
ii) Then, iterate the following steps for ¢t = 1,2, ...

a) Maximize H(P*) — J#(Q; P'; ®) with respect to @ € ® with P’ fixed.
According to (2.7) the maximizing @ is

>

: QP
3.1 Pl = I
) Z QuiP;
i=1

ie.
(32)  Cft 1) = max (HA(P) — JX(Q: P's @)} = HI(P') — J(Q; P; &) ;

b) Maximize H*(P) — J#(Q; P; ®') with respect to P e 4, while fixing @*. This
maximizing probability vector denoted by P'*! is given by
1
sYT=4
(343) P;’H="—(L‘“—l—aﬂ*1,ﬁ>0,
Y (s)r
i=1
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where
(34) si=1-Y 00 {1 —(®5)' "}, B+1, B>0.
k=1

In fact, the following lemma is true:
Lemma 3.1. For any fixed ¢ € @,
(35 max (HAP) — J/(0; P; @)} = HI(P¥) — J(Q; P*; @) =
Ped,
n 1
=TT T - 12 CHQ). 0< B L.
j=t

where P* € 4, is given by

i
sT=#
(3.6) Py =,
IR
=1t
and
(3.8) S; = 1 “kZlQ,éf,/j(l - d’},’;”)'

Proof. The function which we want to maximize is of the following form:
HYP) — J¥Q; P; @) with ®e® fixed.

Using the Lagrange method of multipliers, we have

S(P) = HP) = 1(Q: Py @)+ (1 = X 1) =

=@ )T - ) - ) Y Q)+
i=1 =1j=

+ 3. X 0Lpe" + AL =Y p).
k=1 j=1 j=1

Now

(P B ~ ~ m . m - ~
];( R BT/ AR ) s L
op; k=1 k=1

This gives

—A=0.

A= QU= BT = U= BE QR X Qe i)

After simplifying, we get
_ 2P -1+ 1
s = DAL
B

where s; is as given in (3.7).
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Thus,
e
Bs;

Using the fact that i p; = 1, we get (3.6).

This completes tf';lproof of the lemma. [

At step iib), let
(3.8) CHt + 1,1) = max {HXP) — J¥(Q; P; ®")} =

= H“(P‘P:fi - JHQ; P @),

and from Lemma 3.1, we have

(9) O+ 1,0 = (@ = ) IS (T -,

where s/ is as given in (3.4). Thus, from the definitions of C*(t, 1) and C¥(r + L, 1),
we have following lemma and theorem.

Lemma 3.2.
(3.10)
L2, )= C'(2,2) .. SCL)SCt+ L) < ... S CHQ).

Theorem 3.2. Let P° € 4, be any probability vector that achieves the maximum
of I(Q@; P). Then for all 0 < B £ 1, we have

(1) Q-+ 1= = DY AE) T - ()P

Ji=

Theorem 3.3. The sequences C’(t, ) or C*(t + 1, 1) defined in (3.2) and (3.9)
respectively converges monotonically from below to C/(Q) as ¢ —» co for all 0 <
<p=1.

Proof. From Theorem 3.1, we have
(312) Q) -+ L= (@77 = )7 AT - (T
=
Summing (3.12) from ¢ = 1 to ¢t = N, we have

(13 ${CQ) - e+ 10} @ - )7 T TP - (5 =

=@ - DS - G S @ = ) Ll
Jj=1 j=1 .
for all N = 1. Note that the right hand side of (3.13) is finite and constant since
P'e 4). Thus the value C#(Q) — C’(r + 1,1) is nonnegative and nonincreasing
with increasing 7, this clearly gives
lim C%(t + 1, £) = lim C(t, 1) = C¥(Q). O
=0

=
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Corollary 3.1. The approximation error e’(f) = C(Q) — C¥(t + 1, 1) is inversely
proportional to the number of iterations. In particular, if P! is chosen as the

uniform distribution, then
1=8 _ )" Lpl-s
o) - oKt + 1, s BTN

t

4. UPPER BOUNDS ON THE CAPACITY OF DEGREE f

In this section, we shall derive some properties of C*(Q) that give upper bounds
on the capacity of degree §.

First, let
4.1) CHQ; @) = max {H#(Q) — J¥HQ; P; ®)}

Pedn
and from (3.9), we have
n 1
(42 (e @)= - H{[ XTI T -1, B 1,0,
Jji=1

where s; is as given in (3.7).

From the Lemma 3.1, we have
4.3) max C¥(Q; @) = C¥(Q).

Pc@

Moreover, we can prove the following:

Theorem 4.1, Let Q; and Q, be m x n channel matrices respectively, a an arbitrary
number such that 0 < « < 1, and @ and arbitrary n x m stochastic matrix. Then,
we have
(4.4) CHaQy + (1 — ) @y; B) < 2« CHQy; D) + (1 — ) C(Q,; D),
forall0 < g < 1.

Proof. From (4.2), we have

(4.5) " 1
CHaQy + (1 —a) @y By = (227 — 1)7* {[j;(as} + (1= a)s)) A — 1},

where s; is as given in (3.7).
Now from Minkowski inequality, we have

“9 (S o) + (-0 77 2

i
1 n 1
o L)+ (- { X ()
i j=1
according as f§ . Also

j=1
(4.7) (21>” - 1)_1 20
according as § = 1. From (4.6) and (4.7), we have (4.4) forall 0 < § < 1. m|

1=

VIA

AV
=]
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Using (4.3) and (4.4), we can easily prove the following inequality:
Corollary 4.1. For 0 < 8 < 1, we have

(48) CHoQy + (1 ~ @) @) < a C(Qy) + (1 = 2) CX(Q,).
Theorem 4.2.

@ w@>mclvwg_mcﬁ_g+
n n n n n

R (E RO

m

where 7 = ), Qu.» and j, denotes one of the integers arbitrarily chosen from
k=1

1 to n corresponding to each k.

i) Az -7 I—ZQ,,,J +z Oy )riﬁ Ty
B

. (z )t~
Z Qi
i=1

n

1\ &
(i) co)z v - (;;) .ZlHﬂ(Q(.m),
=
where HHQ ;) = (2'# ~ )7 {¥ @i, — 1}, is the conditional entropy
k=1
of degree f of X = k when Y = j is given.

Proof. (1) Let ¢ be an arbitrary number such that 0 < ¢ < 1 and define

(4.9) py=1/n, j=12..,n
1—¢, j=ji

D, =
ik *—8—1,]:#])‘

Then from (4.1) and (4.3), we have
Q) 2 H(P) - Qi i @) -

@ -0 {nl"" -1-% (an_) 3y (Q:;)
ST ARTE -
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=

LGV T

=07 = (5 2 - -

k=1 ¥

RSV G) T

(ref. Gallager [8]for0 < B < 1)

e (oo (Y5 )

Maximizing right hand side of (4.10) with respect to &, 0 < ¢ < 1, we obtain

(4.11)

In fact, let

=

Fle) = (2'% - 1) {(n” -1)- (Ey [1—(1-¢"]-

then
F(eg) =

gives (4.11).

1

R I

n

(06

Substituting this value of ¢ from (4.11) in (4.10), we get the required result.

(i) We have
(4.12)

where

(4.13)

Substituting @,
result.

max {H*(P) — J%(Q; P; ®)} =

Ped,

==y (E g - ) s ),

s;=1 _,‘;Qf”'(l - ‘I’;/;ﬂ .

= Qu;l 3 Qi in (4.13) and using (4.12), we get the required
i=1
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(iii) From (4.1) and (4.13), we have
(4.14) CHQ) = HYP) - JHQ; P; B) =

=@ -0)H{Er-1-% Yol + Y Y o).
i=1 k=1j=1 K=1j=1

Substituting in (4.14),

and
Dip = ,,‘QML k=12..,m
Z Qusi
we get
m n B
@z @ -y 1= St ()
k=1j=1 n
m  n 8 C\1-p
+Y S, (l) & -
k=1j=1 n
! / _Z,l Qusi
s . IV moon . 1\ mon ;
=@ ool (VIS v et -+ () SiSour} e
n) ¥=1,=1 n/ K=1j=1
Y $ (50 -1 m
- AU -
. <n) k:U;lQMJ) _ £ 8 i kZ]Qk/j 1 B
- 2176 -1 n) =i 2t -1
;Qw) IV &
=H \ =t — —<*) Y H Qi) s
n n i=1
which completes the proof of part (iii). [m]
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