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DUALITY AND OPTIMALITY CONDITIONS 
IN ABSTRACT CONCAVE MAXIMIZATION 

TRAN QUOC CHIEN 

This paper is devoted to abstract concave maximization problems. On the basis of separation 
theorems which are given in Section 1 a unified duality theory associated with Lagrange multi
pliers is developed in Section 2. In Section 3 the well-known Kuhn-Tucker-Lagrange conditions 
are generalized and proved. 

0. INTRODUCTION 

There is no doubt that one of the most important domains of optimization theory 
is concave maximization, the most delicate problems of which are the duality theory 
and the necessary and sufficient optimality conditions. 

Duality theory for one-objective concave maximization is, how it is generally 
known, already completely developed. For vector optimization, however, the duality 
question is mote complicated, since the dual gap in scalar optimization cannot be 
easily transformed into vector optimization. The literature devoted to duality 
in vector optimization can be divided into two groups. In the first group duality 
is developed on the basis of the concept of conjugate maps (see Tanino, Sawaragi 
[12], Zowe [13], Gros [14]) and the results present a generalization of FencheFs 
duality theorem. 

The second group is more or less associated with so called Lagrange multipliers. 
Results of this group are however, ununified and most of them are proved only in the 
space of finite dimension (see Tran Quoc Chien [4], Podinovskij, Nogin [2], Minami 
[7], Neuwenhuis [8]). 

In Section 2 of this paper using separation theorems a duality theory is developed 
for vector concave maximization. As to necessary and sufficient optimality conditions 
in Section 3 the Kuhn-Tucker-Lagrange conditions are generalized for vector optimiz
ation. 

Before giving main results we present some basic notions and preliminaries. 

108 



1. NOTATIONS AND PRELIMINARIES 

Let E be a real vector space with its algebraical dual E*. For an arbitrary subset 
A of E, (LA)0 denotes the vector subspace parallel to the affine hull L of A. If V is 
a vector subspace of E, the core of A relative to Vis defined by 

corK (A) = {x e A | Vu e V3n > 0 : x + av e A if |a| < »/} , 

in particular, cor(L^)o(A) is the usual intrinsic core of A, labelled by icr (A), and 
cor£ (A) is the usual core of A, labelled by cor (A). The linear access of A, denoted 
by lin (A), is by definition the set 

A u {x e E | 3y e A \ {x} : [y, x) <= A} . 

Finally, the admissible cone K(A, X) of A from the point x is the set of points u 

such that there exists a real e > 0 with x + a u e A for all a e (0, e). 

Now let E+ be a convex cone in E such that 

( - E + ) n ( E + ) = {0} 

lin(E + ) = E + 

cor(E + ) * 0 . 

We have then an ordering generated by the cone E+ as follows for any a, b e E 

a>b iff a — be cor (E + ) 

a > b iff a - beE+ \ {0} 

a >. b iff a — b e E+ 

a^b iff b - a^E+\{0} . 

A linear functional fe E* is called nonnegative if 

< / a> > 0 Va 6 E+ . 

The set of all nonnegative linear functionals on E is denoted by E* . / 6 E* is called 
positive if 

</, a> > 0 Va e E+ \ {0} . 

Given a subset A c: E, a point a e A, we say that a is a wea/c maximal of A iff 

fo > a => b i£A 

a is a Pareto maximal of A iff 

b> a=> b£A, 

a is a Borwein maximal of A iff 

lin(i<:(A, a ) ) n £ + = {0}, 
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and a is a proper maximal of A iff there exists a positive linear functional/on E with 

if, by £ </, a> W> e A . 

Analogously are defined a wea/c, Pareto, Borwein and proper minimal of A. 

Now let a e E. We say that a is a supremal (infimal) of A if (A - a) n cor (E+) = 
= 0, ((a - A) n cor (E+) = 0) and for any b < a (b > a), (A - b) n cor (E+) * 0, 
((ft - A) n cor (E+) * 0). 

Remark 1.1. The following implications are evident: proper maximal minimal => 
=> Borwein maximal minimal => Pareto maximal minimal => weak maximal 
minimal. 

Remark 1.2. Neuwenhuis [8] has developed a duality theory just for the supremal 
points. 

We recall now some separation theorems which play a crucial role in convex 
optimization. 

Theorem 1.1. (Bair [5].) Let E be a real vector space and E a real ordered vector 
space with E+ 4= {0}. For each finite family {A,- \j e J} of convex subsets of E such 
that Aj, j e J, has nonempty intrinsic core there exist a family {y,- | j e J} of points 
inE + u (-E+) and a family {Lj \j e J} of linear mappings of E to E with the follow
ing properties: 

f) icr (Aj.) = 0 if and only if 
JeJ 

(1) A}<={xeE\LJ(x)gyJ} V/ e J 

(2) Z ^ y = 0 and » , ^ 0 
jeJ jeJ 

(3) 3j0 e J : LJo * 0 and AJo * {x e E j LJo(x) = yJo} 

Theorem 1.2. (Bair [5].) Let E be a real vector space and E a real ordered vector 
space with E+ #= {0}. For each finite family {A, | j e J} of n + 1 nonempty convex 
subsets of E such that n sets A}, j e J\ {j J have a nonempty core, there exist a family 
{yj \je J} of points in E+U(—E+) and a family {L} \je J} of linear mappings 
of E to E for which properties (1), (2) and (3) of Theorem IT are satisfied if and only if 

A}l n ( f) cor A,) = 0 . 
jeJ\Ui) 

Theorem 1.3. (Dubovitskij-Milyutin [9].) Let E be a real linear topological space 
with its topological dual E*. For each finite family {A,-1 j e J} of n + 1 nonempty 
convex subsets of E with int (Aj) 4= 0 Vj e J \ {jx} there exist a family {yj \ j e J} 
of real numbers and a family [L} | j e J] <= E* such that 

AJtn( f| intA j) = 0 
J W M J I ! 

if and only if properties (l), (2) and (3) of Theorem 1.1 are satisfied. 
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Theorem 1.4. If E is a real ordered locally convex space with nonempty weak 
interior of E* intw E* and A is a nonempty convex subset of E then the Borwein 
maximal and the proper maximal concepts are equivalent. 

Proof. It remains to prove that a Borwein maximal of A, say a0, is also a proper 
maximal. Put 

K = lin (K(A, a0)) = K(A, a0). 
We know that (see [1] 

(IT) K00 = K 

where 
K° = {/e E* | if, x> < 1 Vx eK} 

is the polar of K and 
K00 = { x e E | < / , x > < 1 V/eX 0 } 

is the bipolar ofK. 
If X 0 n intw E* = 0 there exists, by Theorem 1.3, a point a e E, a 4= 0 such that 

</, fl)P^ <», a> V/e K° , Vfl e intw E* . 

The first inequality implies, in view of (1.1), that a eK and from the second inequality 
it follows that a e E+ which contradicts the fact that a0 is a Borwein maximal. 
Hence there exists a functional / eK° n intw E* which implies that a0 is a proper 
maximal. • 

Theorem 1.5. (Holmes [l].) Let E be a linear space and <Pt,..., <Pn, ¥ linear 
functional on E. Then ¥ e span {<Pl,..., $„} (the linear hull of 4>t, ..., <P„) if and 
only if „ 

fj ker <£, c ker ¥ . 

; = i 

Corollary. Let E be a real vector space and fi, i-\ linear functional on E such that 

(1.2) ker (i = {x e E | <,u, x> = 0} c {x e E \ <>j, x> ^ 0} . 

Then there exists a real k such that 

rfk.fi. 

Proof. It suffices, in view of Theorem 1.5, to prove that 

ker fi cz ker ^ . 

Indeed, if, on the contrary, there exists an x e ker fi, x 4= 0 with (JI, x> > 0 then 
— x e ker fi while 

<>7, - x > = -<•/, x> < 0 
which contradicts (1.2). • 

In what follows X, Y and Z are supposed to be real vector spaces, Y and Z are 
ordered by positive cones Y+ and Z + with cor (Y+) 4= 0 and cor (Z+) 4= 0. D a X 
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is a nonempty convex set, D' c X is an intrinsicly open set (i.e. D' = inc (D')) with 
D c D'. F resp. G are concave operators from D' to Tresp. to Z: 

E : D' -> Y 

G :£>'-> Z 
The program 

(P) E(x) -* max 

x e D & G(x) ^ 0 

is called a concave maximization program. 

A point x* e X is called a feasible solution of program (P) if x* e D and G(x*) ^ 0, 
a wea/c maximal, a Pareto maximal a Borwein maximal and a proper maximal 
solution of program (P) if it is a feasible solution of (P) and E(x*) is, at the same time, 
a weak maximal, Pareto maximal, Borwein maximal and proper maximal of the set 

(1.3) Q = U (It*) - -+) • 
xeD 

G(*)gO 

2. DUALITY 

Let 5£+{Z, Y) be the set of all nonnegative linear operators of Z to Y and JS? 
a subset of £C + (Z, Y). For any Le Z£ we define 

(2.1) vF(L) = n {)' e r | j = E(x) + <L, G(x)>} . 

Then the program 

(D^) U vr(L) -> min 
LeSC 

is called an £C-dual of program (P), where L* 6 «Sf is called a wea/c minimal, Pareto 
minimal, Borwein minimal and proper minimal of program (D^), respectively, 
if there exists a weak, Pareto, Borwein and proper minimal, respectively, of the set 
II = U VF(L) which belongs to vF(L*). 

LEZ' 

From definition it follows immediately 

Theorem 2.1. (Weak duality principle.) For any feasible solution x of program 
(P) and any Le if we have 

E(x)=>> Vjev f (L ) . 

Lemma 2.1. Suppose that Slater's condition is satisfied (i.e. 3x e D : G(x) > 0). 
Let y* e Q (see (1.3)) and n e Y* n 4= 0 be such that 

(2A) <»/, }>*> ^ <i|, y> V y e g . 
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Then there exists a t e Z * with 

(2.2) <JJ, y*> £ in, yy + <c, z> V(y, z) e F 

where 

(2.3) F = {(y, z) E y x Z | 3x e D : y ^ F(x) & z ^ G(x)} . 

Proof. Put 

(2.4) M = {(y, 0) 6 y x Z | <,,, y> = <,,, j>*>} . 

It is evident that M n c o r ( F ) = 0. Hence, in view of Theorem 1.2, there exists 
a pair (n, v) e y* x Z*, («, v) + (0, 0) such that 

<M, y> + <v, z> :g (ft, u> V(y, z) e F V(«, 0)e M . 

It is easy to verify, with help of Slater's condition, that JJ. and v are nonnegative and 
p 4= 0. In particular we have 

<ji, y*> £ in, y> V(y, 0) e M 

or, what is equivalent, 

ker>7 <= {ye Y| <«, y> g 0} . 

By Corollary of Theorem 1.5 there exists a real k such that /. = fe . >/. fc is different 
from zero, since // 4= 0. Putting £ = (l//c) v we obtain the required functional. • 

Theorem 2.2. (Strict Duality Principle 1.) Suppose that Slater's condition and the 
following condition 

(C) V/j e y* , r, positive , V^eZ* 3Le JS? : <, = 170 L 

are satisfied. Then if x* e D is a proper maximal solution of program (P), there 
exists a Pareto minimal solution L* e JS? such that 

F(x*) e vF(L*). 

Proof. Let x* e D be a proper maximal solution of program (P), then by definition, 
F(x*) is a proper maximal of the set Q, i.e. there exists a positive linear functional 
r\ e y* such that 

(2.5) <,, F(x*)> £ <-,, y> V y e Q . 

By Lemma 2.1 there exists a functional £, e Z* with 

(2.6) in, Hx*)> = <* J>> + « . z> %- z ) e P 

In view of condition (C), there is an operator L* e SC with 

(2.7) £ = 1} o L* 

From (2.6) and (2.7) it follows 

(2.8) <»;, F(x*)> ^ Of, F(x)> + it, o L* G(x)> Vx e D 
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which implies 

(2.9) E(x*) = E(x) + <L*, G(x)> Vx e D . 

By definition E(x*) e vP(L*) and then by the weak duality principle E(x*) is a Pareto 
minimal of H. Consequently L* is our desired Pareto minimal solution of program 
(D*)- D 

Theorem 2.3. (Strict Duality Principle 2.) Suppose that Slater's condition and the 
following condition 

(C) V>7 e Y* \ {0} V£ e Z* 3L e i f : ^ = >7 o L 

are fulfilled and operator E(x) is strictly concave on D. Then if x* e D is a Pareto 
maximal solution of program (P), there exists a Pareto minimal solution L* e ^ 
of program (D^) such that 

F(x*)evF(L*). 

Proof. Since the sets cor(P) and M = {(v, 0)e Y x Z | y = E(x)} are disjoint, 
there exist, by Theorem 1.2, (0, 0) * ((?, £) e Y* x Z* such that 

<>?, y'y = <»?, y> + <£, z> V ( / , 0 ) e M V ( v , z ) e P . 

It is easy to verify that rj e Y* \ {0} and £, e Z* . In particular we have 

(2.10) <//, y> = <??, E(x)> + <£, G(x)> Vx e D \/(y, 0) e M 

Since E(x) is strictly concave, in (2.10) equality is attained only at one point, and 
namely at x*. One obtains then 

(2.11) <>/, E(x*)> > (n, F(x)y + <£, G(x)> Vx e D \ {x*} 

In view of condition (C) there is an operator L* e 3" such that 

(2.12) £ = r,oL. 

From (2.11) and (2.12) it follows then 

{n, E(x*)> > {n, F(x)y + <»/ „ L*, G(X)> VX e D \ {x*} 

which implies 

(2.13) E(x*) = E(x) + <L*, G(x)> Vx e D . 

Inequality (2.13) shows that F(x*) e vF(L*) and by the weak duality principle E(x*) 
is a Pareto minimal of H. The proof is complete. • 

Theorem 2.4. (Converse Duality Principle.) Suppose that Slater's condition and 
condition (C) of Theorem 2.3 are satisfied and the set Q is algebraically closed (i.e. 
Q = lin (Q)). Then if L* 6 if is a Pareto minimal solution of program (D^) there is 
a Pareto maximal solution x* of program (P) with 

F(x*)evF(L*). 
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Proof. Let L* 6 i? be a Pareto minimal solution of program (Dy). By definition 
there is a Pareto minimal y* of H with y* e vF(L*). We assert that 

(2.14) Vy<y*:yeQ. 

Suppose, on the contrary, there is an y0 < y* with y0 $ Q. By Theorem 1.2 there 
exists a functional n e Y* \ {0} with 

<»7, Jo> = <>., J>> Vy e (2 

In view of Lemma 2.1 there is a functional ( e Z * such that 

(2.15) <ij, y0> ^ <»7, E(x)> + <«, G(x)> Vx e Z>. 

Then for any Le if with <̂  = f? o L(such an L always exists in view of condition (C)) 
and y with y0 < y < y* we have 

(2.16) y = E(x) + <L, G(x)> Vx e D . 

which means y e H what contradicts Pareto minimality of y*. Property (2.14) is thus 
proved. 

Fix now a y0 < y*. By (2.14) the segment [y0, y*) is contained in Q. Consequently, 
for the algebraical closedness of Q, y* e Q. It means that there exists an x* e D, 
G(x*) = 0 with E(x*) = y*. The weak duality principle guarantees that x* is a Pareto 
maximal solution of program (P) and E(x*) = y*. The proof is complete. • 

Remark 2.1. Our duality theory which has been presented above, contains duality 
concepts of Podinovskij, Nogin [2] and of Bitran [6] as particular cases. Indeed, 
if Y and Z are of finite dimension, say dim Y = n and dim Z = m, then if will be 
sets of (m x m)-matrices. If i f is the set of all nonnegative (n x m)-matrices one 
has the set of feasible matrices of Bitran [6]. If i f is the set of all nonnegative (n x m)-
matrices rows of which are equal to each other, one obtains duality results of Podi-
novski, Nogin [2]. 

The question under what conditions the above conditions (C) and (C) are fulfilled 
remains open. Maybe it serves a good direction for further investigation. 

3. KUHN-TUCKER-LAGRANGE CONDITION 

In this section one shall need the following generalization of differential for con
cave functionals. 

Let X be a real vector space, G : X ->• R be a concave functional and x*eX. 
The set 

8G(x*) = { l e P : l(x) - l(x*) = G(x) - G(x*) VxeX} 

will be called superdifierential of functional G at x*. 
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We recall, without proof, some important properties of superdifferential (for 
details see Akilov, Kutatelaze [3], Chapter II). 

(i) If x* ecor (dom G), where dom G = {x eX | G(x) > - c o } is the effective 
domain of functional G, then dG(x*) + 0. 

(ii) If G j , . . . , G„ are concave x* e cor ( f) dom G;) then 
; = 1 

d(G1 + ... + G„)(x*) = dG,(x*) + . . . + 5G„(x*) 

(iii) If G is concave and x* e cor (dom G) then 

G(x*) = sup G(x) o O e <3G(x*). 
XEX 

Given a convex set U cz X we define 

, / s f 0 if x e U 
8u(x) = 

^—oo if x £ U 
(iv) For any x* e U we have 

d<5t,(x*) - U* - { / e l * | /(x*) = inf/(x)} . 

Now let us consider the concave maximization program defined in Section 1 

(P) F(x) -+ max 

x e D & G(x) = 0 

Theorem 3.1. (Kuhn-Tucker-Lagrange condition.) Assume that Slater's condition 
is fulfilled. Then a point x* e D is a weak maximal solution of program (P) if and only 
if there exist functional ^ e Y*\ {0} and £ 6 Z* such that 

(a) G(x*) > 0 

(b) O e ^ o F(x*) + d£ a G(x*) + D* 

(c) <£, G(x*)> = 0 

Proof. Sufficiency of the Kuhn-Tucker-Lagrange condition is evident. It suffices 
therefore to prove necessity. 

Let x* e D be a. weak maximal solution of program (P). By definition, E(x*) is 
a weak maximal of the set Q (see (1.3)). It implies that there exists a functional 
^ e Y* \ {0} with <^, E(x*)> = <>?, y> Vy e Q. In view of Lemma 2.1 there exists 
a functional £, e Z* such that 

<„, F(x*> = (n, yy + <«J, z> V ( y , z ) e P . 

In particular we have 

<j, F(x*)y = sup {<.-, E(x)> + <£, G(x)>} 
xeD 

which is equivalent to 

<!/, F(x*)> = sup {<*,, E(x*)> + <f, G(x)> + <5D(x)} . 
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Now it suffices to refer to properties (ii) and (iii) and we obtain condition (b). 
Conditions (a) and (c) are evident. The proof is complete. • 

Remark 3.1. Slater's condition is not necessary for sufficiency of Kuhn-Tucker-
Lagrange conditions. 

Remark 3.2. If r\ is positive then Kuhn-Tucker-Lagrange conditions are sufficient 
for x* to be a proper maximal solution of program (P). 

Remark 3.3. Theorem 3.1 derives results of Holmes [ l ] and Minami [7] as 
particular cases. 

(Received January 19, 1984.) 
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