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TIME OPTIMAL CONTROL 
OF A SECOND ORDER NONLINEAR PLANT 

K. BALACHANDRAN, D. SOMASUNDARAM 

In this paper a second order non linear relay controlled plant is considered. The equation 
of the switching curve and the controllable region are determined. It is established that the error 
and error derivative can be reduced to zero simultaneously and in the shortest possible time 
with at most one switching reversal of the control. The same result is obtained for the unstable 
case provided that the initial values of error and error derivative fall in a controllable region. 

1. INTRODUCTION 

Time optimal control of a number of second order linear plants has been thoroughly 
studied by Athans and Falb [ l ] . Lee and Markus [2] discussed the time optimal 
control problem for a class of second order nonlinear systems. It has been shown 
in [2] that the time optimal controllers for these non linear systems are relay con
trollers. A number of examples are given but no analytical treatment for obtaining 
the equation of the switching curve is presented. Almuzara and Flugge-Lotz [3] 
treated a non linear system in which the nonlinear function is periodic. Boettiger and 
Haas [4] and James [5], respectively, analysed the time optimal control of a soft 
spring and Van der Pol Oscillator. In [9] Boltyanskii gave an example of a nonlinear 
system where the region of controllability is not completely filled with optimal 
trajectories. Vakilzadeh and Keshavarz [7, 8] considered the analytical treatment 
of sscond order nonlinear plants with different types of nonlinearity. In this paper 
we shall consider a special type of second order nonlinear plant. 

2. ANALYSIS 

Consider a plant whose dynamics are described by the second order nonlinear 

equation 

( l ) c + ac\c\ + be = Ku , a > 0 u = ± 1. 
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If b > 0, the plant is a stable one. On the other hand if b < 0, the plant is an unstable 
one. The plant represents a forced vibrating system whose damping force is propor
tional to the square of the velocity. 

Here our object is to design a controller for simultaneous reduction c(t) and c(t) 
to zero when the input r(t) = 0. Therefore, the systems error differential equation 
is given by 

(2) _ + ae\e\ + be = —Ku. 

The reduction of error and error derivative to zero will mean the reduction of output 
c(t) and output derivative c(t) to zero. 

Now e = (de/df) = e(d_/de), the equation (2j can be written as 

de 
(3) e— + ae\e\ + be = -Ku. 

de 
The solution of the nonlinear differential equation (3) for e > 0, when yi = ae, 
y2 = x'(al(aK))e and a = bj(aK) is 

(4) J-2 = +[(_« ~ " ~ «J'i) + (Pi ~ _« + u + a/?,) exp (2/J. - 2yi)f'
2 u = ± 1 

and for e < 0 

(5) J-2 = - [ ( _ a + u + a v j + Q32 - _a - u - aj_t) exp (2y, - 2/?,)]1 '2 u = + 1 

where /?, = y.(0) and /?_ = >>2(0). 

3. SWITCHING CURVE AND TIME OPTIMAL CONTROL LAW 

Figure 1 shows the phase plane trajectories for the stable case (a > 0). The solid 
curves are for control u = + 1 and the dashed ones for u = — 1, the arrows show 
the direction of increasing time. When a = 1, these trajectories originate from the 
initial state (/?l5 /?2) and approach to the point (—1, 0) for u = +1 and (I, 0) for 
u = — 1. In general if a > 0, the trajectories approach to the point ( — a - 1 , 0 ) for 
u = + 1 and (a-1, 0) for u = - 1 . 

The two forced trajectories which pass through the origin are denoted by y+ for 
control u = + 1 and y_ for control u = —1. The switching curve is the union 
of segments AO and BO. From equations (4) and (5), the equation of switching 
curve is obtained and is given by 

(6) y2 = - T ^ [_« - 1 + a\yt\ + (1 - i«) exp (2|yi|)]
1/2. 

The switching curve as well as the variation of a is shown in Fig. 2. 
As seen from Fig. 1 for all states initially above the switching curve, we must 

first apply the control u = + 1 and when the state reaches the switching curve then 
the control u = — 1. Conversely for all states initially below the switching curve 
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we must first apply the control u = — 1 and when the state reaches the switching 
curve the control u = + 1 . Hence all the initial states (/?_, /?2) can be brought to the 
origin (0, 0) simultaneously and in the shortest possible time by the application 
of one of the four possible control sequences 

0) [ + 1], [ - ! ] , ' [ + 1 , - 1 ] , [ - 1 . + 1 ] 
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Fig. 1. The u — +1 and u = - 1 forced 

trajectories in the y-\y2-plane when a. — 1, 
Fig. 2. The switching curve in the ylj'2-plane 

when a > 0. 

4. UNSTABLE CASE AND CONTROLLABLE REGION 

Case (i) a > 0 and b < 0 

Figure 3 shows the phase plane trajectories for a = — 1. A separatrix is a trajectory 
which tends toward a saddle point as t - . +co. From Fig. 3 it is observed that the 
separatrices tend to ( + 1 , 0) for control u = + 1 and (—1,0) for control u = —1 . 
It is easy to see that the domain of controllability is the interior of the region bounded 
by the two separatrices. Fig. 4 shows the controllable region and the switching curve. 
The equation of the switching curve is given by 

(8) ^ = - ^ T [ f - | y 1 | + i e x p ( 2 | > ) l | ) ] ^ 
\yi\ 
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Using the shape of the forced trajectories shown in Fig. 3, we can prove that by similar 
argument as above the control sequences (7) are the only candidates for the time 
optimal control of this case. Hence, if the initial values of yt and y2 fall in the inte
rior of the region bounded by the two separatrices then (yu y2) can be brought 
to the origin (0, Oj by the application of one of the four possible control sequences (7j. 
The variation of a is also shown in Fig. 4. 

\% 

\ 0 

Fig. 3. The u <= + 1 and u = — 1 forced 
trajectories in the.yjj^-plane when a = — 1. 

Fig4. The switching curve and the controllable 
region in the y\y2 -plane when a < 0. 

Case (ii) b = 0 and a < 0. 

Jn this case, the system ( l j is unstable which is equivalent to the following system 
with a > 0 

(9) c - ac\c\ = Ku . 

The forced trajectories are shown in Fig. 5 and the equations are given as follows: 

for e > 0 

(10J y2 = + [(Pi - u) exp (2^ - 2/?. j + uf12 

and fore < 0 

(U) y2- -» - m + ") exp (2/?! - 2yi) - uf'2 
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From (10) and (11), the equation of the switching curve is 

(12) J ' 2 = - ] ^ I [ l - e x p ( - 2 | v 1 | ) r 2 

Fig. 5. The u= +i and u = — 1 forced 
trajectories in the y\JVP'ane when a = 0. 
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Fig. 6. Block diagram of relay control of the nonlinear plant with designed controller. 
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By the process of elimination, we can also see that the control sequences (7) are the 

only candidates for the time optimal control of this case. 

When a = 0, the system (l) becomes linear. The cases b > 0 and b < 0 have been 

respectively treated in [ l ] and [6]. Figure 6 shows the relay controlled plant with 

designed controller. 

5. CONCLUSION 

In this paper the time optimal control oi a second order nonlinear plant was 

discussed. The equation of the switching curve was derived. If r(t) = 0, the designed 

controller will bring any output c(t) and output derivative c(t) to zero simultaneously 

and in the shortest possible time with atmost one switching reversal of the relay. 

The same conclusion was obtained for unstable case provided that the error and its 

derivative tall in the controllable region. It is interesting to note that as a -» 0, the 

plant is stable if a > 0 and unstable if a < 0; in this case, the equation of the switch

ing curve can be made independent of the values of constant gain (K) and the co

efficient of nonlinearity (a) of the plant. The stable case has been fully treated in[7]. 

(Received May 16, 1983.) 
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