
K Y B E R N E T I K A - V O L U M E 20 (1984), N U M B E R 3

THE CALCULUS OF AN UNNORMALIZED RELATIONAL
MODEL OF DATA

JAROSLAV JANÁK

Recently, much attention has been paid to the semantic extension of the relation data model.
A contribution factor to this field is the calculus that can be interpreted on a semantically extended
relational model of data. This calculus allows the objects of relation and attribute to be used
in a more general sense that it has been the case in the calculuses reported so far in the literature.

0. INTRODUCTION

The relational model of data was first defined by E. F. Codd [2] in the early
seventies. In the years following, this model was given considerable theoretical [5]
and also practical attention [l , 6]. The theoretical elaboration of the model essentially
aimed at the definition and the description of properties that are not explicitly
contained in the relational model, but that follow from relationally organized data
(various types of interdependencies of data).

Already in its very beginnings, the relational model of data was commonly restricted
to relations in the so-called first normal form. The domain of the attribute was
demanded not to consist of relations. As far as the creations of the relations were
concerned, this requirement presented no serious problems. It has always been practi­
cal and also advantageous to create only normalized relations.

However, the first normal form of the relations brings about restrictions in the
communication with the relational model of data. Since, in this case, the relation
cannot be an element of the attribute domain of an other relation, it cannot appear
at the place of the argument of the predicate in the language of predicate calculus,
nor can it be the value of the function in this language. For this reason, it is not
possible, for instance, in the language ot the predicate calculus, to identify a relation
with the aid of the attribute of this relation or to express a function that assigns
the relation itself to an element of the domain of the relation attribute, etc.

Other restrictions in communicating with the relational model of data are due

231

to the position of the attribute in the relational model of data, be it normalized
or unnormalized. In the relational model of data, the attribute is thought to be an
objects distinct from other objects.

This distinctness leads to two complications. Since the attribute cannot be an
element of an other attribute domain of any relation, it does not enable us, in the
relational model of data, to define the relation describing the properties of the
attributes or to write, in the language of the predicate calculus, a predicate having
the attribute as its argument (the corresponding predicate symbol would lack an
interpretation in the relational model). Similarly as in the case of the relation, thus,
the attribute cannot be identified, in the predicate calculus language, with the aid
of attributes of its own and it is not possible to express the function assigning the
attribute itself to an element of the attribute domain, etc.

The domain-oriented relational calculus [8, 9] and the n-tuple oriented relational
calculus [4, 9] are examples of such types of calculuses. The domain-oriented relation­
al calculus employs the attribute in so-called model predicates, while the n-tuple
oriented relational calculus does so in what we call n-tuple variables. However,
in both calculuses the attribute is not expressed by an independent symbol type and
both calculuses do not allow the attribute to be used in its full universality. For
instance, they do not allow the attribute to be expressed as a variable in the formulas.

This article describes the language of a domain-oriented calculus in which the
symbol of the relation or that of the attribute can make up the term in the same
way as any other symbol interpreted by an element of the attribute domain (Section 3).
The rules governing the syntactic and the semantic definitions of this language
respect the rules of the syntactic and semantic definitions of the language of the
predicate calculus of the order k. However, they have been extended to the rules
defining the attribute object. The interpretation structure consists of an un-normalized
relational model of data where the elements of the domain can also be attributes
of the relations.

The basic concepts of the relational model of data are defined in Section 1. The
initial predicate language of the order k is described in Section 2, while Section 4
demonstrates the potential application of the language to a semantically extended
un-normalized relational data base.

1. DEFINITION OF THE RELATIONAL MODEL OF DATA

At the present time, the relational model of data is a theoretically highly developed
field in data base design. In the paper presented, the definitions of the basic concepts
start from the literature [2, 5, 10].

The relation concept is the basic concept of the relational model of data.

Definition. Let A = {Au ..., A,,} be the non-empty set of attributes. Let dom (A;)

232

be the set of values, the so-called attribute domain of the attribute Ah and let it be
uniquely assigned to every attribute A,- e A. Then, the structure defined by:

— a set of attributes A,
— a subset of cartesian product dom(A i) x ... x dom (A„)

we shall call the relation of degree n over the set of attributes A. Such a structure
we shall denote R(A j , ..., A„) or shorter R.

It follows from the definition that the attributes of a relation are unique, that
means that A; 4= Ay holds for i 4= j .

The attribute domain can also be a set the elements of which are relations. Such
a domain is called a non-simple domain. A non-simple domain can comprise relations
defined on other non-simple domains, etc. The relation is considered to be normalized
or of the first normal form, if it is the subset of a cartesian product of simple domains
only. We also admit that the element of the attribute domain may be attributes
of the relations.

The set of all possible relations is called the relational model of data. If the rela­
tional data model comprises only all normalized relations it is considered to be
a normalized relational model of data. We shall call the subset of the relational
model the relational data base.

2. THE PREDICATE CALCULUS OF HIGHER ORDER

The language basing upon the predicate calculus of first order [4, 8] can be inter­
preted on the normalized relational model of data. However, when admitting un-
normalized relations, we should start from the predicate calculus of higher order
in defining the predicate language.

The types and their ordering

Let T be the set with the following properties:

1. tl,t2
0,...eT,

2. if ? i , . . . , t„ e T, then the ordered n-tuple (tt, •••, ?„) e T,

3. the element of the set T are only elements determined by rules 1 and 2.

In this case, the set T is called the set of types and its elements are called types.

The elements t0, f0, ... form the base of the set of types. Later, the type f0 will
denote any element of the base. As follows immediately from the definition, every
type t =)= t0 (i.e. t + ?0, t 4= to,...) uniquely determines its constituting ordered
n-tuple t = (? l 5 . . . , t„).

A number called the rank of the type can be assigned to every type. Let us put
number 0 as the rank of the type t0. The rank of the type t 4 t0 is represented by the

233

natural number k which is the length of the longest sequence of types tt, ...,tk

with the following properties:

1. tk = t, f. 4= to,

2. for 1 *U i < k, tt is one of the elements of the ordered n-tuple forming the type

t/+i-

The order of types determines the map r from the set of types to the set of integers.
This map defines, on the set T x T, the binary relation denoted <,T (tx S T h <>

o r(tt) <: r(t2)). The relation ^ J i s obviously reflexive, antisymmetric, and transitive
and, therefore, it is the total ordering of the set of types T.

The syntax of the language of the predicate caiculus of order k

The language of the predicate calculus is determined by the set of the basic symbols
and the elements of the language are called formulas. A formula is defined by way
of induction using the auxiliary concepts terms and the atomic formula (n-ary
predicate).

We shall denote Lk the language of the predicate calculus of order k. Every basic
symbol of the language Lk has a type assigned to it. We shall admit several types
to be assigned to the predicate and functional symbols. The basic symbols of the
language Lk involve the following kinds of symbols:

1. constants A, a, Au au ... of the type f0,
2. constants P, P 1 (. . . of the types t, where 1 <; r(t) ^ k,
3. variables x, xu . . . of the types t, where 0 <. r(t) <. k,
4. n-ary functional constants F, F l 5 . . . of the types (t, tu ..., tn) where 0 S r(t),

r(fj), ..., r(tn) <. k, n «£ 1. The value of the interpreting function is of the type
t, the n of the arguments is of the types tu ..., tn.

5. logical joints ~l A V => <=>
quantifiers V 3
delimiters , ()

The sets of all kinds and types of the basic symbols of the language Lk should be
pairwise disjoint. They can be empty or infinite. The variable or constants of the type
t0 will be called individual variables or individual constants. The variables or constants
of the type (i^ , . . . , t„) will be called n-ary predicate variables or n-ary predicate
constants. The unary predicate symbols are called sets.

The set of the terms of the language Lk is divided into sets of terms of various
types. The terms of the type t (0 <. r(t) <. k) consist of:

1. constants of the type t and variables of the type t,
2. the expression of the form F(T1, ..., Tn), where Tu ..., Tn are terms of the types

<j , t„ and F is the n-ary functional constant of the type (t, tu ..., tn).

The atomic formula (or the n-ary predicate) of the language Lk is an expression
of one of the following forms:

234

1. P(T1; ..., T„) where T1; ..., T„ are terms of the types tt, ..., t„ and P is the rc-ary
predicate constant of the type (tt,..., t„),

2. x(Tu ..., T„), where Tu ..., T„ are terms of the types tu ..., t„ and x is the n-ary
predicate variable of the type (tt, ..., t„).

The formulas of the language Lk are defined with the aid of atomic formulas.
The latter are constituted by:

1. any atomic formula,
2. the expressions ~1 &, (& A J5", A .. . A #'„),(#" v ^ v . . . v &n), (:F => JFJ ,

(J*" <*. J ^ J where SF, # \ , • •., 2Fn are formulas,
3. the expressions VxJ^, 3xJ*" where J* is the formula and x is a variable.

The semantics of the language of the predicate calculus of the order k

The semantic of the language of the predicate calculus imply the interpretation
of all kinds and types of constants and variables in a certain structure, the interpreta­
tion of all functional symbols in this structure and the unique assignment of values
from the set {TRUE, FALSE} to all formulas of the language.

The interpretation structure Sk of the language Lk is composed of:
1. non-empty, pairwise disjoint sets U'1, U'2, ..., the so-called interpretation domains

of the types tu t2, ••-,
2. n-ary functions mapping U'1 x . . . x U'" to U' for every functional constant

of the type (r, f., t„).
The functional constant of the language Lk is interpreted, on the structure Sk,

by the corresponding function of the structure Sk. The predicate constant of the type
t(\ rg r(t) 5= k) is interpreted as an element of the interpretation domain U' of the
structure Sk, the so-called relation, and the individual constant is interpreted as an
element from the interpretation domain U'°. The variables of the type t (0 :g r(t) :g fc)
are interpreted by the map /;. from the set of the variables of the type t to the inter­
pretation domain of type t, that means again by relations or elements of the inter­
pretation domain U'°.

The interpretation of terms given by the map h makes possible, in the ordinary
way, to assign a value to every formula (with a certain interpretation of the variables
h). For instance, the value TRUE is assigned to the atomic formula P(T1; ..., T„)
if the ordered n-tuple of the interpretations of the terms (/"(Ti), • •., !(T„)) is an element
of the relation interpreting the predicate symbol P. In the opposite case, the value
FALSE is assigned to the formula P(Ti, ..., T„). Thus, the value assigned to the formu­
la depends not only on the formula itself, but also on the interpretation of the terms
and, therefore, it can also depend on the map h of the variables of this formula.
A detailed description of how to assign values to formulas is given in the literature
(see [7, 9], for instance).

Both the interpretation of predicate constants and that of predicate variables
given by the map h should comply with the axiom of extensionality. According

235

to this axiom, the interpretation of the terms of the atomic formula is determined
by means of the interpretation of the predicate symbol in this formula. The axiom
of extensionality is applied with the aid of the predicates a> of the type ((f j , f„),
f,,..., t„), where (f.,..., t„) is the type of the predicate symbol in the atomic formula
and fls ..., f„ are the types of the terms in this formula. Any interpretation of the
constants and variables should assign the TRUE value to the corresponding
predicates a>.

3. THE CALCULUS OF THE UNNORMALIZED RELATIONAL
MODEL OF DATA

The interpretation of the language Lk on an unnormalized relational model
of data requires to restrict the rules of the inductive formula definitions. We shall
call this restructed language the language of the calculus of the unnormalized
relational data model and denote it LR. The intended interpretation of the individual
variables and constants on the attribute domains can characterize this calculus as
being domain-oriented.

The definition of the calculus of the unnormalized relational data model does
not comprise n-ary functional constants. We can completely take over the other
rules defining the predicate calculus of the order k but permitted only for the follow­
ing types:

1. the type of the elements of the simple domains t0,

2. the type of the relations tR = (tx, ..., tx), where tx s [t0, tR).

The following interpretation domains correspond to the types of the terms of this
calculus in the relational model of data:

1. the interpretation domain U'° of the type t0 which is the union of simple attribute

domains IJ (J dom (Atj) where the index i passes through all relations of the
.' J = I

relational data model and where nt is the degree of the relation R;,

2. the interpretation domain U'R of the type tR which consists of the relations of the
relational data model.

In the language of the predicate calculus, the location of the term in the n-ary
predicate is conditioned by its position j (1 Sa j gj n). In query languages basing on
the predicate calculus of the first order (cf. [8], for instance), the term position in the
predicate can be expressed by means of the attribute in accordance with certain
rules. For instance, the n-ary predicate P(T1; x, T2, x, ..., x) interpreted on a relation
whose first attribute is A and the third attribute is B, can be written as P(A : Tu

B : T2) according to these rules.

In the calculus of the un-normalized relational model of data, however, the attribute

236

can appear as a more general object. The following re-arrangements will be sufficient:
1. adding the attribute type tA,
2. re-defining the relational type as tR = (tA : tx, ..., tA : tx), where tx e {t0, tA, tR}.

All attributes of the relational data'model make up the interpretation domain
UA of the type tA.The syntax and the semantics of the language LR remain fully valid,
but the extensionality axiom has to be applied when interpreting. The interpretation
of the terms (of the type tx) should be determined by the interpretation of the attri­
butes (of the type tA), and the interpretation of the attribute should be determined
by the interpretation of the predicate symbol.

Conventions simplifying the writing of atomic formulas may be accepted. When
writing a formula, the position of the pair tA : tx within the predicate is of no
importance. The validity of the extensionality axiom and the uniqueness of the attri­
bute in the relation allows this position to be determined during the interpretation
only. The axiom of extensionality allows to accept another convention to shorten
the writting. Due to this convention it is not necessary to write all free variables.
Missing free variables can automatically be added during the interpretation. If,
for instance, the /i-ary predicate symbol P is interpreted as the n-ary relation
R(A l5 ..., A„), then the following notations of the atomic formula are equivalent:

P(.. . , A; : au Aj : ajt ...) = P(. . . , A; : a„ A*+1 : x*+1, .., A*_, : x*_u Aj : a}, ...)

where i'< j and the asterisk symbols can be added during the interpretation.

4. SEMANTIC EXTENSION AND QUERIES ON THE RELATION
DATA BASE

The possible semantic extension of the relational data base is going to be exempli­
fied for the catalogue relations taken over in free form from the model RM/T [3].
Let us assume that, in addition to other relation, there exist relations defined on
relations, attributes and domains:
CATR (R, RELRANGE)
CATA (A,R, USERKEY)
CATD (D, VTYPE)
The data base relations are the domain of the attribute R, the ranges concerned

with the relations are the domain of the attribute RELRANGE, the data base attri­
butes are the domain of the attribute A, the values YESjNO are the domain of the
attribute USERKEY depending upon whether the attribute is or is not a keyword
attribute, the attribute domains are the domain of the attribute D, and the domain
types are the domain of the attribute VTYPE.

The reiations interpreting the predicates ensuring the validity of the extensionality
axiom have to be defined on every relational data base. In the given case, let this be
all relations determining the reference between a relation and its attributes, and the
relation

237

CATRAD (R, A, D)
determining the reference between an attribute and its attribute domain.

In order to simplify the queries, the binary relations = , < , Si, < , < , #= defined
on the cartesian product Ux x Ux where Ux e {U'°, U'», U'R}, are commonly defined
in the relational data base.

In the language of the predicate calculus, the query can be of the form ^(xt,..., x„),
where SF(xx,..., x„) is the formula with the free variables xx,..., x„. The response
to this query is given by the set of all ordered n-tuples of the interpretations (/ (x j
...,I(x„)) for which the formula SF(xu ...,x„) is true (in the case of existentially
bound variables the response can also comprise the interpretation of these variables).
If the formula #"(xi> • • •» xn) lacks free variables, that menas n — 0, then the response
is of the YESjNO type.

The relational data base described above aids in illustrating the application of the
language LR. Instead of the constants of this language, we shall directly write their
interpretation in the formulas of the query. The potentials of the language LR can
be demonstrated, for instance, for the query that would read as follows in the natural
language: "Does any key attribute of the relation in the PERSONALITY range
contain a key the value of which is a? If yes, write all the data concerning this key!"
This query is expressed as follows in the language LR:

(CATR (R:xR, RELRANGE : PERSONALITY) A

CATA (A : xA, R : xR, USERKEY: YES) A XR(XA : a))

or shorter:

(CATR (: xR, RELRANGE : PERSONALITY) A

CATA (: xA, : xR, USERKEY: YES) A XR(XA : a))

or even shorter:

((: xR, RELRANGE : PERSONALITY) A(:XA, : xR, USERKEY: YES) A XR(XA : a))

A further reduction in writing the query could substantially increase the possibility
of an unexpected interpretation of the query.

5. CONCLUSION

The article describes the language LR of the calculus of the un-normalized relational
model of data. The contribution of this language consists in the more general concept
of the objects of the structure of the relational data base. Every relation or attribute
can be appear as a variable in this language, it can be quantified or even qualified
by other properties of its own. This is an extension if compared to the calculuses
known from the literature [4, 8] where these objects are denoted only by their names.

The predicate calculus of the order k > 1 is the theoretical starting point of the
calculus of the un-normalized relational data model. Contrary to the predicate
calculus of the first order, the predicate calculuses of higher order have not yet been

238

paid systematic attention. Therefore, the basic rules of such a calculus had to be
defined in the paper presented. As compared to the definition reported in the litera­
ture [7], this paper defines other extending concepts and rules. The base of types was
introduced, the assignment of several types to certain symbols was permitted, and
the conception of the function was generalized.

The calculus of the un-normalized relational model of data fully respect the rules
of the predicate calculus of the order k > 1. It was found necessary, however, to
extend it to the rules defining a new type — the attribute type. In this calculus, the
attribute type is comprehended in a more general way than it does in the calculuses
known from the literature [4, 8].

The formulas of the language LR are interpreted on an un-normalized relational
model of data. The structure of the un-normalized relational model of data was fully
suited for this purpose, it was only necessary to permit the attributes to be elements
of the attribute domain.

The language LR is a formal language suitable to the interpretation on a semantic-
ally extended relational data base. Thus, it also is a contribution to the topical
problems associated with the relational model that have also been investigated by
the Research Institute of Mathematical Machines.

(Received May 18, 1983.)

R E F E R E N C E S

[1] D. D. Chamberlin, A. M. Gilbert and R. A. Yost: A history of System R and SQL/data
system. In: Proceedings of Very Large Data-Bases Conf., IEEE Computer Society Press
1981, pp. 7 0 - 9 4 .

[2] E. F. Codd: A relational model of data for very large shared data banks. Comm. ACM 13
(1970), 6, 377-387.

[3] E. F. Codd: Extending the database relational model to capture more meaning. ACM
Trans. Database Systems 4 (1979), 4, 397—434.

[4] E. F. Codd: Relational completeness of database relational model. In: Courant Computer
Science Symposium 6 in Data Base Systems. Prentice Hall, Englewood Cliffs 1972, pp.
6 5 - 9 8 .

[5] C. Delobel: An overview of the relational data theory. In: Information Processing, North-
Holland, Amsterdam 1980, pp. 413-426.

[6] J. Janak: Relacni system fizeni baze dat — System R (Relational Data Base Management
System— System R). Informacne systemy 11 (1982), 4, 345-358.

[7] G. Kreisel and J. L. Krivine: Elements of Mathematical Logic. North Holland, Amsterdam
1967.

[8] A. Pirotte: Explicit Description of Entities and their Manipulation in Languages for the
Relational Data Base Model. Report R 336, M. B. L. E. 1976.

[9] J. Pokorny: Dotazy a odpovedi v databazovych systemech (Queries and Responses in Data­
base Systems). CVUT, Praha 1980.

[10] J. Pokorny and S. Machova: Databazove modely (Database models). Vypocetni centrum
Univerzity Karlovy, Praha 1982.

RNDr. Jaroslav Janak, Vyzkumny tistav matematickych strojit, koncernovd ucelovd organizace
(Research Institute of Mathematical Machines), Loretdnske nam. 3, 100 000 Praha 1. Czecho­
slovakia.

239

