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PROBABILITY DISTRIBUTION 
OF THE MULTIVARIATE NONLINEAR 
LEAST SQUARES ESTIMATES 

ANDREJ PAZMAN 

The nonlinear regression model yi = f}t(0u . . . . 0,„) + et with (e1, . . . , eN) ~ Af(0, J)) a r , d 
with //,(.) twice continuously differentiable is considered. Under the assumption that the maximal 
curvature of the mean-values manifold {ii(0) :0eU}cRN is bounded, an approximative proba
bility density for the least squares estimates of (0U . . . , 6m) is proposed. This density depends 
on the first form ( = the information matrix) and on the second form of the mean-values manifold 
(Eq. (9)). The level of approximation depends on the probability that the sample goes beyond 
the nearest center of curvature of the mean-values manifold and it is expressed in the paper 
(Theorem 1). 

1. INTRODUCTION AND MAIN RESULTS 

As in [4], let us consider the gaussian nonlinear regression model 

(1) y = t,{0) + e 

where y := (yu ..., yN)' is the vector of observed variables, 6 := (6U ..., 0„,)' is 
the vector of unknown parameters and E := (eu ...,EN)' is the vector of random 
observations errors. It is supposed that 9 e U <= Rm, U open, and that s is distributed 
normally, N(0, E) with £ known and nonsingular. The functions r\u ..., r\N are defined 
and have continuous second order derivatives d2rjkJdOi d9j on U. Finally, it is supposed 
that the vectors dtijd0u ..., dt]Jd6m are linearly independent for every 9 eU. 

Eq. (1) could be also written in the more common form 

yi = r,Xi(0) + ex,; (i = 1,...,JV) 

where xu ...,xN are the points of the design of the experiment. The dependence 

of E(y() on X; is of no importance in this paper, therefore we prefere the simpler Eq. (l). 

Denote by <o, fa>, \\a\\ the inner product and the norm defined by 

<o, fa> = a"L~lb, \\a\\2 = <o, a). 
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The probability density of y is given by 

(2) ^ ' '"^(D-L-H- '^ 1 ' - *" ' 1 ' 
The least squares ( = 1. s.) estimate for 0 is defined by 

(3) 0 : = 0 ( y ) : = Arg min ||y - i/(0)j|2 

0et/ 

(if it exists). Hence the 1. s. estimate 6 is one of the solutions of the equations 

A||y_#)p = 0 ; (i=l,...,m), 
Of; 

or equivalently of 

(4) / / - # ) , ^ \ = 0 ; (/ = l , . . . , m ) . 

Geometrically it means that the vector y - ^(0) is orthogonal to the mean values 
manifold (the set of potentially possible mean values). 

$ := { i / ( 0 ) : 0eU } , 

at the point ^(0). It means also that the vector y is in the hyperplane x(9) where 

(5) x(0) : = {z : z e RN, <z - ^0), 5ij/5f9,> = 0; (i = 1, . . . , m)} . 

Let us denote by r the minimal radius of curvature of the manifold S. More 
exactly, we denote by r(tj) the minimal radius of curvature of a geodesies which con
tains the point ^ e $ (see Appendix for the properties of geodesies), and we define 

r := inf {r(tj) : J/e <#} 

AS 1: We shall suppose in this paper that r > 0, i.e we consider models with 
bounded curvatures. 

Let XN(PO) be the (1 — p0) quantile of the x2 P-d. with N degrees of freedom. 
If XN(PO) = T-2; w e s ay that (l — p0) is the level of regularity of the model. 

It means that 

P,{y:ye«M|y-9 | |<r} = i - p 0 , 
where P, is the p.d. with the density/(y | i/). 

We shall say that the regression model is with a distant boundary if for any ex
pected ^ = E(y) and any y e RN such that ||y — i}|| < r there is a solution of Eq. (3). 
It means that we suppose that there is a set of expected values of the true vector 0, 
U0 c U, which is sufficiently distant from "the boundary" of U. 

AS 2: We suppose in this paper that the model is with a distant boundary. 

The assumption AS 2 avoid to consider the "edges" of the manifold S. Such an 
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assumption is usually adopted also in tlie linear regression model 

(6) y = F0 + 8 ; (0 e U) 

(F = a given N x m matrix). Here it is commonly supposed that U'= Rm although 
in reality the values of Bu ..., 9m are always bounded a priori. 

The model is called overlapping if for some y e RN there are two solutions 0O ) + 
+ 0(2) of Eqs. (4) such that 

\\y-n(0^)\\<r, \\y - n(0^)\\ < r . 

AS 3: We suppose in this paper that the considered model is not overlapping. 

For any 0 e U let us denote by 

tl\ fMMl - E \8 In f(y\t,(0))d In f(y\n(0))} _ / dr, dn\ . 

(i,j= l , . . . , m ) 

the (local) Fisher information matrix. 
By 

(8) V°: = _\^{M^(0)}kl^-^ 
k,i o9k odl 

we denote the matrix of projection onto the plane which is tangent to the manifold 
S at the point t,(9). Let us denote by q(9 |»/) the function 

det [7{M(0)},., + /(I - P") (,(0) - „), ̂ \ V ] 
(9) ,(0 I ,) : = _ i i \ gO«agj//«j-iJ x 
W V ' ^ (27i)m/2 d e t 1 / 2 M ( 0 ) 

x e x P { - i | | P « ( r / ( 0 ) - , ) | | 2 } . 

Let/„„(0 11,) be the probability density* of the l.s. estimate 0. The main resuit 
of the paper is expressed in Theorem 1 by tire inequality 

(10) [ fe,(9\r,)á9- f q(0\n)d9 
JB JB 

ѓ2Po 

which is valid for every Borel set B which is a subset of {0 : 0 e U, 3 \\z — »/j| < r, 
l(0) = v[^(z)]} ( = "the region of accessibility"). i e K A 

If follows that q(0 \ if) is an adequate approximative probability density of the l.s. 
estimates, the level of approximation being given by the level of regularity (1 — p0). 

Especially, if r f-* GO (i.e. p0 i-> 0), then we obtain the linear regression model (6). 
In that case 

a2

9(0)/a0 ; 69j - o , p " A [n(0) - i,(ey] = n(d) - r,(0), 

dni(0)ld9j = {F},7 , M(0) = F' E " 1 F . 

* From typographical reasons we use 0", 0~ instead of 0, 0 in superscript and subscript. 
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Thus from (9) we obtain the well known density 

(2*)" 
e x p { - i ( 0 - 0 ) ' ( F ' 2 : - 1 F ) ( 0 - 0)} . 

2. CASE m = 1,JV = 2 (HEURISTIC APPROACH) 

To clarify the ideas we shall construct heuristically the probability density of the l.s. 

estimate in the special case m = 1, N = 2. Without restrictions on generality we shall 

suppose in this section that the parameter 0 is the "natural parameter" ( = the dis

tance measured from some fixed point along the curve 0 6 U i-> tj(6) e K2), i.e. 

that |jdi/(0)/d0|[ = 1. 

Denote by 

(11) cp(t) = Г > ] - ^ e x p { - ř
2 / 2 } , 

Ф ( x ) = Г cp(t)dt, 

the (standarized) normal probability density function and the distribution function. 

By S(0) we shall denote the half plane 

S(8) := L : z e M2, (z - t,(e), ^ \ < oj . 

Take A > 0. It can be seen from Fig. 1 that for a sufficiently small A the set 

[5(0 + A) - 5(0)] u [s(e) - S(6 + A)] 
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is the set of all points y e R2 which have a solution of Eq. (4) in the interval (0, 0 + A). 
Moreover, it can be seen from Fig. 1 that 

(12) P,[S(0 + A) - S(0)] - P,[S(0) - S(0 + A)] = 

= P-[s(0 + -i)] - P,[S(0)1 

where P, is the probability distribution of the sample y if tj is its mean. Further 
evidently 

JЗД] -*[(,«>) -*.«}} 
We shall show that with A -> 0 for y e S(0 + A) - S(0) (resp. for y e S(0) -

— S(0 + J)) the solution of Eq. (4) is a relative minimum (resp. a relative maximum) 
of the function 0 e U i-» ||y - i/(0)||2. 

To this purpose let us consider the second order derivative 

C») ! | j , ( 8 ) - y r _ I + /,M-y,gY 

ö,(0): = 

The expression 

d2* 

d02 

is the radius of curvature of the curve 0 £ U H-> I/(0), and the point 

is its centre of curvature, as known from elementary differential geometry [l] .Let us 
denote by 

e,(0):=e,(0)0 

the unit vector pointing from i/(0) to the centre of curvature. This allows to rewrite 
Eq. (13) as 

(14) \ ~ HO) - y||2 = Q~n\e) {,,(0) + < # ) - y, e,(0)>} . 

As seen from Fig. 1, the point C(A) (— the point of intersection of x(0) with 
x(Q + A)) tends to the centre of curvature if A tends to zero. For A -» 0 form 
y e S(0 + A) - S(9) it follows that <y - J/(0), e,(0)> < QV(6), hence, according 
to Eq. (14), d2/d02||j/(0) — y||2 > 0. Moreover, as supposed, 0 is the solution of Eq. 
(4), hence 0 is a relative minimum of ||i/(0) — y||2. 

We proceed similarly in the case that y e S(9) — S(0 + A). It follows that the 
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limit 

, ) . = l i m
 P " [ 5 ( + à)- S( )] - P,[S(0) - S( + A)] 

A->0 A 

is the probability density of the relative minima minus the probability density of the 
relative maxima of the function 0 e U H-» | , (0) — y||2. 

From (12) it follows 

<15) MK^K^>-
If A -* 0 then [S(0) - S(0 + J ) ] n {y : \\y - ,[ | > r} -» 0. Hence if we neglect 
the set of samples {y : y e W2, ||y - , | | > r}, the probability of which is less than p0, 
we can state that there are no relative maxima of ||,(0) — y||2 and that every relative 
minimum is an absolute minimum, i.e. it is the l.s. estimate 0(y). Hence the expres
sion in Eq. (15) is an approximative expression for the probability density of the l.s. 
estimate 9. To compare it with the expression in Eq. (9) we have just to use that 
in the special considered case M(0) = [|di//d0||2 = 1 and that <djj/d0, d2*//d02> = 0. 

The derivative 

± /„(0) - , , ^ \ = e-\8) [Q(6) + <r,(9) - , , e,(0)>]§(yJ 
d9 \ d9 / Hy) 

is positive (within our regularity assumptions). Hence, using the notation 

(i6) <9y.„(^B)-ntmy 
the approximative probability density q(9 | 17) in (15) can be expressed as 

dv( 
q(9\r,) = (2n)-^exp{-±y(9)} 

It follows that the random variable v(9) is (approximately) distributed N(0, l). 

Therefore, the interval 

{•((л-^Ioi (P) 

is a confidence interval for the true value of 0, with the confidence level depending 
on /? and on p0. 

Finally, let us compare the obtained probability density with the result in [4]. 
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If |<r/(0) - J/,e,(0)>| is much smaller than Qn(9), then |dt>(0)/d0| = 1, and from 
(15) we obtain 

q(e I n) = (2K)" 1/2 exp { - K # ) - n, dtijdey2} 

which is the expression in Eq. (26) in [4] for the considered case that ||dr//d0| = 1. 

3. THE MULTIVARIATE PROBABILITY DENSITY OF 0 

In this section we proceed to the general case of arbitrary m, N, N > m. We 
define by r/ the (fixed) mean of the sample y. We denote by 

(17) ^„ :={ r / [0 (y ) ] : | | y - r / | | < r} 

the region of accessibility (cf. Eq. (A 13) and the assumption AS 2 in Section 1). 
We are interested in the probability density jflA(0 | r/) of the l.s. estimate 0. We shall 
show that it can be well approximated on the set {0 : r/(0) e ja/,} by the function 
q(6 | tj) expressed in Eq. (9). The main aim of this section is to prove the following. 

Theorem 1. Let B be a measurable subset of the set {0 : 0 e U, r/(0) e s/n}. Then 

f f . * ( o \ n ) w - I q(o\v)do\ S 2 P o . 
\JB JB I 

To prove Theorem 1 it is necessary to do a stepwise approximation of fg,(9 | IJ) 
by q(0 | r/). 

Take a fixed point B e U such that r/(0) e sfn. According to Proposition A 5, 
there is a neighbourhood of 0, Ue- c U, such that r/[U„-] c s/r As explained 
in Appendix, if a neighbourhood Ve- c Ug- is adequately chosen, we can introduce 
new local coordinates tv ..., tm in V„- and two sets of local coordinates xu ..., xN 

and z,, ..., zN in the set <Sr : = {y : y £ RN, y e x(0), 0 e Vg-} as follows. We take 
m geodesies in S, yw,..., y(m) such that y(,)(0) = r/(0); (i = 1, ..., m) and that 
<y(i)(0), y(j)(0)> = 0 if i 4= j (cf. Appendix for geodesies in £). The coordinates 
t1 ;= T, (0) , ..., f„, := tm(0) are defined by 

(is) <Mp) - y(i,(t,), y(i,0.')> = o ; (. = 1, . . . , m) 

i.e. by projecting J;(0) onto the curves y(1), ..., y(m). We define further 

(19) x, = ^(x) =- T«[«*(y)]; 0 = i , . . . , m ) , 

where 0*(y) is the (unique) solution of Eqs. (4) which is in Ve-. The coordinates 
xm + i = £m+i(y)> •••; XN = Sjv(y) a r e complementary orthogonal coordinates defined 
by Eq. (A 22). 

Projecting y onto y(1), ..., y(m), i.e. by the equations 

(20) <y - y(i)(z,.), y(i)(z;)> = 0 ; (i = 1 , . . . , m) 
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we define the coordinates z, = d ( y ) , . . . , zm = Cm(y). T h e coordinates zm + 1 = 
= Cm + i(y). ••-,zN = Cjv(y)are again complementary orthogonal coordinates (cf. Eqs. 
(A 24)). 

If L = I, and if 0*(y) = 9, the coordinates xx, . . . , % and zu ..., zN are essen
tially the same. In that case we have namely: xt = z,; (i = \, ...,N) and dztjdxj = 0; 
(i 4= j ) , dztJdxt = 1 (cf. Eqs. (A 25) and Proposition A 7). 

Let us introduce the notations 

(21) vt(zt): = <y(i'(z,-) - ?, y(0(z,.)> ; (i - 1, . . . , m) 

and 

Qf(z):={Y:YeRN,vi[Ci(Y)]<^)} 
(cf. Eq. (A 17)). 

Denote by £(y) the random vector 

C (y) :=(Ci (y) , . . . ,Uy) ) , 

and by E* (zu ..., zm) its distribution function induced from the density of y given 
by Eq. (2), and restricted to the set 'Sg-. Because the functions vu •••,vm defined 
in Eqs. (21) are increasing (see Proposition A 3), the increase of E* is given by 

(22) < > . . . A™ Ff(zu ..., zm) = P,[ n (Qf(zt) - Qf(zt -«,))] • 
i = 1 

Here we used the notation 

Af^h(zu...,zm):= h(zu...,zm) - h(zu ..., zk_u zk - ek, zk + u ..., zm), 

(cf. [6], chpt. IV. 3). The density of f(y) is then 

(23) ff(zu ..., zm) : = — * L - Ff(zu ...,zm) = 
oz1 ... ozm 

p,[n(er(*.)-Gr(*.-«..))] 
= lim .. . lim '—^ . 

£,-»o cm-*o e1 ... sm 

Denote by g(zm+u . . . . zN | zu ,.., zm) the conditional probability density of 
£m+i(y)> •••> Civ(y) (induced again from f(y j >/) in Eq. (2)). The joint density ff . 
. (zu ..., zm)g(zm + u ..., zN | zu ..., zm) is transformed by the mapping (the change 
of coordinates) (zu ..., zN) \~* (xu ..., xN) into the joint density of ( ^ ( y ) , . . . 
. . . , £N(Y))- Denote by / | (x 1 , . . . ,x m ) the corresponding marginal density of the 
random vector 

£(y):=(£i(y)>---,ay))-

Then finally, according to Eqs. (19), 

(24) / , . ( « | V) = / ! > ! , . . . , xM) |de t ({^M-}r ,y=i ) | 
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This complicated way to deduce fg„(B | rj) from J(y 117) was chosen to make easy 
the comparison with q(B | */). Namely, we shall show that q(B | tj) can be deduced 
in an analogical way, but from the distribution 

(25) Ff(z1,...,zm):=P,['?)Sr(zi)'] 
, = i 

where 
(26) Sr(z;) : = {y : y e R», <y - /"(z,.), y<"(z,.)> < 0} 

(cf. Eq. (A 16)). The corresponding density is given by 

p,[n(sr(z,)-s?>. -«..))] 
(27) j^(z1,...,zm) = l im. . . l im 

£,->0 6„,^0 t j . . . t„, 

Again, the joint density jc" (z t , ..., zm) g(z,„+1, ..., zA | zx, ..., z,„) is transformed 
by the coordinate mapping (z1; ..., zv)i-»(x1 , ..., xN) into a joint density of (^(y), ••• 
••-, ^w(y))- Denote by Jf(xt,..., xm) the corresponding marginal distribution of 
£(y). We have the following important auxiliary proposition 

Proposition 1. Let be £ = /. 
Then 

a) jno)=jr(o)jr(o)=jr(o) 
b) tf~(°) = 7~^-2

 exP 1 - K # ) - 9)' I 7(i)(o) y(;"(0) ( # ) - 1)} x 
(-«r ;=i 

(28) 
xIKi + (#)-«/)' v("(o)] 

, = 1 

(29) c) #| f7)=jn0)|det({3T,.(9)K.}'/; ;=1)| , 

(30) /#A(fl I 7) = jf-(0) |det ({dTfflldOjftj. 0| . 

Proof. The statement a) follows from Eqs. (A 25) and from Proposition A 7 
in Appendix. 

From Eqs. (25), (26) and (21) it follows that 

where 
{ K } , , : = < ^ ( z , . ) , ^ ' ( z ; ) > . 

Therefore the corresponding density is 

(31) 

//-(.,,...,,„) - (2ii).,4,)iK «p{-i !;,(--,) M , * ) i n w , ) N -
From (31) we obtain the expression in Eq. (28). 
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The equality in Eq. (30) follows directly from Eq. (24). It remains to prove Eq. (29). 
First we can state that 

(32) P«- = £y«>(0)y«>'(0). 
i = i 

To verify (32), put Pe~ according to Eq. (8) (for £ = I), and multiply Eq. (32) by 
dri'(9)]89_ from the left, and by dti(B)jdOh from the right (q, h = 1,..., TO). 

In the right side of Eq. (29) let us express ff(0) using Eq. (28), and 8x,(B)]80} 

using Eq. (A 27). We can write, according to Eq. (32), 

(33) [ # ) - , ] ' t y(il(0) y"->'(0) [ # ) - , ] - | |P»T#) - * ] | | 2 • 
i = l 

Using Eq. (32) again, we obtain 

(34) ft [1 + ( # ) - «/)' V(i)(0)] |det ({3t,.(0)/50,}'/;, = 1)| = 
i = i 

= det ( I f [(/''>(0 - „)' £ f%t_) f* (Ol-o 8jPf 
\{8tt k=i odj J,.J=1 

= det (jM,,(0) + [#) - „]' (I - P"-) £^)J" _ J x 

x|det-'({5T,.(5)/50,}L = 1 ) | . 

From Eq. (A 27) we have 

(35) det2 ({8^(9)186j}lJ=1) = det M(0). 

The validity of Eq. (29) follows from Eqs. (33)-(35). __ 

From Proposition 1 it follows that the comparison of f0*(B | , ) with q(B | , ) , needed 
in Theorem 1, reduces to the comparison of/* (0) with/" (0). 

Proposition 2. For sufficiently small et > 0,..., em > 0 we have the inequality 

(36) |4J>... A<i\\Ff(z_, ..., zm) - Ff(z_, ..., z,„)]| <_ 

_• p„[(w» - »;) n (Q?>,) - CT(-. - *.))] + 
i = 1 

+ p,[(»Y - ^) n (sr(*.) - sf(Zi - £;)) 
i = l 

where 

w,:={y:yeRN,\\y-n\\ <?}. 
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Proof. From (25) we obtain 

A™ ...A™ Ff(zu ..., zm) = P,[(«" - Wr) fi (Sf"(z;) - Sf"(z; - et))] + 
i = 1 

+ p,[w;n(Sr(z,.)-Sr(z;-f,))]. 
i = i 

Analogically, from (22) we obtain 

4 » . . . 4 ->f ( ^i - - . , ~J - P-[(H" - * ) n(er(-.) - e?>. - «,))] + 
i = l 

+ p-[mn(er(-,)-er(-« -«.))]• 
< = i 

Hence, we prove the inequality (36) if we use that, according to Proposition A 6, 

wr n [en*,) - eu*. - -0] = ̂  n [sr^,) - s r k - *.)]. 
i = 1 i = 1 

for £ j , . . . , £,„ sufficiently small. • 

P r o o f of T h e o r e m 1. We shall write 0 instead of 0 in this proof. Without lack 
of generality we shall do the proof for £ = I. 

According to Proposition 1 we have 

->:-= [/•»(* | l)<W- f g(0|i/)d0 < 
JB J B 

£ £|j?(o) - #(0)| |det({«rl/afly}IJ.1)| d0 . 

Hence, using Proposition 2, we obtain 

D < 
Ő Z j . . . 

{P,[(ß* - Wr) П Sf(z;)] + (37) 

) B 5 z j . . . dzm jin"-Wr 

dP,(y)|,..|det({5t,/5^}rJ.,)|(W 

where x(y; T) denotes the indicator of a set T 
For fixed y, 0 the functions z; h-» ^(y; Sf(z;)); (i = 1, ..., m) have unit jumps 

at z = 0 iff 0 = 0*(y). As a consequence, from (37) it follows 

+ P,[(W" - ИØП ßf(гí)]}ï.0|dЄt({őтi/ðØy}^=1)|dð = 

ПWy;Sf(z ;)) + z(y:ßf(z ŕ))]x 

x(0*(y);Я)dT,(y):g2P o. 
'-wr 

G 
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Corollary. Let A be an arbitrary measurable subset of U. Then 

S3p0 
[ f ,( \щ)å - [ q( \щ)d 

JA J ^ ч 

where ^ , : = {0 : »/(0) e stn} . 

Proof. We have 

f f„„(o\n)do- [ fe,(e\n)do s [ f(y\n)dY = p0 

J A U«*n JR"-wr 

4. CONFIDENCE REGIONS FOR 0 

Let us choose for every 0 e U0 a set Ie- p {0 : ij(9) e ^ , ( e -)} such that 

I* q(O\n(B))d0^ I -p. 
J'e 

П 

Then, according to Theorem 1, 

ľ f ,( \щ(B))d ì ţ l - ß-2p0 

J'5 
Hence the set 

/ , . : = { 0 : 0 e U o , 0 6 / f l } 

is a confidence region with the level of significance equal at least to 1 — /? — 2p0. 

Theorem 2. If for every 0 e U th:re is a (differentiable) orthonormal basis /1(0), .. . 
..., Im(9) of the tangent space to $ at the point tj(6), such that 

(38) dM,k{0) = O; {iJ)k . i , . . . , m ) 

then we can take 

/ . . = { 0 : 0 6 U0> | |p"[,(0) - n(e)W < xl(p)} 

where xm(P) is t r i e (1 ~ P) quantile of the x2 probability distribution with m degrees 
of freedom. 

Proof. Take 2 = 1. The expression in Eq. (9) can be written as 

(39) A„J[dn' d 
1 

det 

^\n) = 7^~2^v(-^e\n(e)-n\ i Wk Jj,k=l 

det1 

ô . д , 
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Define 
^(0):=/';(0) [ # ) - * ] ; (/= t,...,m). 

Evidently 

(40) iv2(0) = mm~nw-
i= 1 

Further, from (38) it follows that 

f = ';(^(n#)-»]). 
ovk dt)k 

Hence 

(4i) ^ ( p w ) - , ] ) = z ^ , ^ ( p » [ # ) ^ ] ) = i ^ , - | . 
d6jd9k i=i86j dOk < = itf0j <30fc 

From Eqs. (39)-(41) we obtain that 

hence the random vector (vu ..., i>m) is distributed N(0,1). The needed statement 
follows. • 

Example l .Takem = 1, 

1(0) = _d#)/d0_ 
1 ' |d#)/d0|| ' 

Then 

0 = -1(1'.) = 2 - ^ 1 , 
d 0 V 7 d0 

hence the assumption (38) is valid. 

Example 2. Take c? a subset of the cylinder 

{z:zeRN,z{ = 1} . 

Evidently Eq. (38) can be satisfied. 

APPENDIX A 

In this section we present some necessary geometrical statements. We start by some 
definitions. 

A (regular) curve in U is a mapping 

g:te(a,b)t-* g(t) e U 

such that the vector of second order derivatives d2gjdt2 exists and it is continuous 
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on (a, b). To the curve g we can associate a curve 

y : t e (a, b) i-> 7(f) e (f 
according to 

(A 1) y(0 = »[f(0] • 
The curve 7 is called a geodesies in the manifold S (and correspondingly g is called 
a geodesies in U) iff 

a) the parameter f is normed so that 

5 j = l ; (ř 6 (_,_)) 
dí 

(A 2) 

b) the vector of curvature d2y\dt2 is orthogonal to _°i.e. 

(A3) ' « M _ i \ = 0 ; (.-_,...,») 
v ; \ d.2 a., / v ; 

As known from differential geometry [3, 7], every nonzero solution g of the differen
tial equations (A 3) ( = theEuler-Lagrange equations) is a geodesies in U. Moreover, 
for every point 9 e U and every nonzero vector u e Rm there is a geodesies g such 
that for some t 
(A 4) g(t) = 9- dg(l)jdt « u . 

Correspondingly, to every point tj(B) e S and to every unit vector w e KN which 
is tangent to S at t}(9) (i.e. w i s a linear combination of the vectors dti(B)jdd1, . . . 
..., dt](B)ld9m) there is a geodesies 7 such that 

(A 5) V(l) = l(9), dy(l)ldt = w .' 

We shall use the abbreviated notations 

y(.) = dy(.)/d.|.= i 

7(F) = d2y(t)]dt%-t 

We denote further 

(A 6) . oM-.-im-1 

ev(i):=K0er(t) 
the radius of curvature and the unit vector oriented from the point 7(f) toward 
the centre of curvature. By 

(A 7) xr(t) : = {y : y e RN, <y(r) - y, y(t)> = 0} 

we denote the hyperplane orthogonal to the curve 7. 
Denote by B(0, y) (or simply by B) the m x m symmetric matrix with the entries 

(A8) _ ^ . ) . _ / & * \ + / « , , _ - _ & . 
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Proposition A1 . Let be y e RN and let 0 be a solution of Eqs.(4). B(8, y) is positive 
semidefinite ( = p.s.) iff for every geodesies y such that y(t) = t,(8) for some t, we 
have the inequality 

(A 9) <y - # ) , e?(t) < Qr(t) . 

There is the equality sign in (A 9) for some geodesies y iff det B(B, y) = 0. 

Proof. Let y = t, o g be a geodesies and let us denote c := g(t). From (A 8) 

we obtain 

(A 10) c'Bc = 1 - <y - # ) , ey(l)> e;\i). 

i) If B is p.s. then from Eq. (A 10) follows Eq. (A 9). Conversely, if Eq. (A 9) is valid 
for every geodesies y then Eq. (A 10) implies that c' Be ^ 0 for every c e R", such 
that c = g(t) for some geodesies g. That means, according to Eqs. (A 2) and (A 4), 
c' Be ;> 0 for every c which is a solution of 

( A l l ) c 'M(0)c = 1 . 

Since M(0) is positive definite it follows that B is p.s. 
ii) If det B = 0 then Be = 0 for some c e Rm, c =f= 0. Leg g be the geodesies in U, 

such that g(t) = 0 and that g(t) » c. Take y = t, o g. From (A 10) it follows that 

<y-#),er(0> = er(0-
Conversely, if this equality is valid for some geodesies y = t] ° g then, according 

to (A 10), c' Be = 0 for some c =j= 0. Since B is p.s. there is a matrix A such that 
B = A'A. Therefore ||Ac|j2 = c' Be = 0. Thus Be = 0, and det B = 0. Q 

Corollary A1 . Let 0 be a solution of Eqs. (4) and let \\y - ?/(0)|| < r. Then 0 is 
the l.s. estimate 0(y). 

Proof. We have 

< y - # ) , e v ( 0 > < . [ | y - # ) | | < r < e v ( 0 . 

Hence the matrix with entries 

- ^ - l l # ) - y j | 2 = 2Bo-(e.y) 

is p.d. and 0 is a relative minimum. The equality 0 = 0(y) then follows from the 
assumption AS 3. • 

Let us fix a point tjeS. Let us denote 

(A 12) Wr := {y : y e RN, \y - z/jj < r} , 

I ? . : { y : y e f f " , | | y - r / | | g r] . 

Cf. Eqs. (5), (A 7) and (17) for the definitions of x(0), xy(t) and J</„. From Corollary 
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A 1 and from the assumptions AS 2, AS 3 it follows that we can write 

(A 13) stn = {1,(0) :0eU, 3 z e x(0), ||z - 9 | | < r, ||z - //(0)|| < r} . 

Proposition A 2. If y e Wr n x(0) and t\(B) e s#n then \\y - t\(B)\\ < r. 

Proof. According to (A 13) there is a point z e x(0) n Wr such that j|z — t,(&)\\ < r. 
Suppose that ||y — i/(0)|| jS r. Consider the N-dimensional open sphere 

y : = {w : weRN, flw - c | < r} 

which is tangent to $ at the point t\(B) and is such that c is on the straight line connect
ing y with z. Evidently c is on the abscissa with the endpoints y, z, hence || c — //1| < r. 
It follows that t, e £f. But 5^ n ,$/„ = 0. This is a contradiction to // e j</ r • 

'Proposition A 3. Let y be a geodesies and y(t) e $$n for some f. Then 

d?2 

Proof. Take 0 e U such that //(0) = y(t). Denote by t\e the point of projection 
of// onto x(0). From Eqs. (5) and (A 3) we obtain 

(A 14) <i,e-n,7(t)}=0 

According to (A 13) take y e f i " such that | y - z/|| < r, ||y - r/(0)| < r, y e x(0). 
We have |// — t,0\\ g ||i/ — y|| < r, hence from Proposition A 2 we obtain 
||9. — v(01 < r- Therefore using (A 14) we can write 

\ % IWO - nf = i + <K0 - </., r(0> = i - Ik - K0IIK(0 > o. p 

Proposition A 4. Let be i\(6(1)) e s4n, t\(0(2)) e s/„. Then x(9(1)) n x(0(2)) nWr = 0. 

Proof. According to the assumption AS 3, z e x(0(1)) n x(0(2)) implies ||z — 
— t](0(1>)\\ > r or ||z — !/(0(2))|| > r. Hence, according to Proposition A 2, z $ Wr. Q 

Proposition A2. Let y be a geodesies, y(f) = t\(B)esJn. Then there is a neighbourhood 
of 0, Ug- c U, such that //(U0-) c s4„. 

Proof. Let t\e be the point of projection of t, onto x(0), i.e. the solution of the 
equations 

ne~n(0),d±) = 0 ; ( f = l , . . . , m ) , 

which satisfies the equality 
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for some k\e),..., k^. Using the implicit function theorem (cf. [2], Theorem 211) 
we may verify that the mapping 9h->tjg is continuous in a neighbourhood Ve- of 9. 

We have \\tj - -e~\\ = min {||»j - z|| :zex(B)} < r, because i0)esifn. Hence 
\no~ ~~ 1(9)1 < r (Proposition A 2). From the continuity of the mappings 9 t-+ ~(9), 
9 i—» "0 we have a neighbourhood Ug- <z Vg- such that 

ho - n\ < r, \\"o - ~(0)\\ <r; (9 e U0-). 

Therefore, according to (A 13) we have ^(9) e s4n; (9 e U0-). ~~ 

Let us denote 

(A 15) t(y):= Arg min ||y(f) - y\\ , 

(A 16) Sr(0:=|y:y6^,l||y(0-y|!2>o} 

(A 17) Qy(t) :=\Y:ye If, 1 \\y(t) - n\&y) < 1 \\y(t) - -\ 
( at at 

Proposition A 6. Let y be a geodesies, y(t) = tj(9) e s4n, ~(Ug-) <= s4n, y(r) e (Ue~), 
t < t. 

Then 

(A 18) Wr n iS.il) - Sy(tj\ = Wr n [^(f) - Qv(t)] . 

Proof. From Proposition A 3 it follows that the function t H* (d/df) jjy(f) - i/||2 

is increasing as long as y(t)eUg-. Evidently (d/df) |y(t)— y||?(y) = 0. Hence, for 
t < t, y(t) e Ug- we have 

(A 19) YeOy(t)~ Qy(t)ot<t(y)<t. 

The halfspaces Sy(t), resp. Sv(f), are limited by the hyperplanes x7(t), resp. y.y(t). 
Therefore from Proposition A 4 it follows that 

<M) = { t(y):y6w:n[Sy(0-S . /( t) ]} . 

Comparing this with Eq. (A 19) we obtain Eq. (A 18). ~~ 

Take a point 9 e U such that t}(9) e s4n. In the remaining part of the Appendix 
we shall introduce adequate local coordinates on S and local coordinates on RN 

in a neighbourhood of the point tj(9). 

Take m geodesies y(1), . . . ,y (m) such that 

(A 20) y^(0) = t,(9); (i=l,...,m). 

f(;,(o)>y°',(o)> = o ; ( . * / ) . 

We introduce new local coordinates on S, tt = ~i(0), ...,/,„ = ~m(9) by the 
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equations 

(A 21) < # ) - /'Xt,-),y(0(j,)> = 0 ; (( = 1, . . . , m). 

From the implicit function theorem (cf. [2]) it follows that the functions Tt(0), . . . 
...,Tm(0) are one-to-one and differentiable in a neighbourhood Ve- <= U0-. 

Analogically, we define new coordinates x1 = ^(y),..., xN = £N(y) in the set 
<g0-:= {y :yeRN,ye x(0), 0 e Ve-} by the equations 

(A 22) <n[0*(y)] - yU)(xt), }V>(Xi)) = 0 ; (/ = 1, ..., m) 

Qt(y): = <y - l[0*(Y)l " (O[0*(y)]> ; (i = m + 1,...,N), 

where w('" + 1)(6),..., w<A)(0) is an orthonormal- basis of {y — tj(0) . yex(0)} and 
0*(y) is the solution of Eq. (4) which is in V0-. 

Other coordinates zx = Ci(y),. •., zN = £N(y) can be introduced as follows. 
First we define z{ zm by 

(A 23) <y - / ; ,(z,.), f(i)(z;)> = 0 ; (i = 1, . . . , m). 

Further we denote by 0(y) e U the vector defined by 

M0(y)]} = ^nn^ . [ ay ) ] 
1 = 1 

(cf. Eq. (A 7) for the definition of xt(t) : = y.yW(t)). Denote by r(m+D(y) ; . , . , r(,V)(y) 
an orthonormal basis of f) «,[f.(y)]- Let us define 

;= I 

(A 24) c/y) := <y - fi[d(y)l ' a )(y)> ; 0' = m + 1, . . . , i v ) . 

Evidently 

(A 25) 0*(y) = 0^ 0(y) = 0, -^ (y) = wu> [0(y)] = w°>(0) , 

Xy = . . . = Xm = 0 , Zj = . . . = Zm = 0 Xm + ! = Z,„+ j , . . ., Xjv = ZJV . 

The functions d , •••, CN a r e one-to-one and differentiable in the set $„- with Ve-
choosen adequatelly. Evidently 

( A 26) UY) = i,[o*(y)-], 

UY) = ^[0(Y)1; (i = i,.-,m) 

We shall compute the Jacobi matrices of the mappings 01-> t, x h-> y y ,_* z 

Differentiating Eqs. (A 21) with respect to Q} we obtain 

(^Г' ^ / + Ž г <#) - Ѓ W *(i)(<<)> = o • 
\ 3(9, / *- i Зŕfc З ; Hence 

(A 27) 
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Analogous!}', from Eqs. (A 23) we obtain 

(A 
#>(<>) 

1 d 
; (i = l,..., m, j = l,...,N) 

« - ) - . І І L | | ľ c o ( ř ) _ y | | 2 = o 

2 dř 

From (A 24) and (A 26) we obtain 

UY) - </ - »[*" '(..(y). • • -. a y ) ) ] . r(0(y)>; (. - m + 1,..., AT) . 
Hence 

(A 29) 

where 

Ş -^W + f ß<.^--Ц0; 

(Í = m + l,.-.,N,j = 1, ...,JV) 

Qu : = — <y - ^ T ' 1 ^ , . . . . zM), w ( ^ ) > | Z l = . _ m = 0 = 0 . 

From Eqs. (A 22) and (A 26) we obtain 

y = n[x-\Xl,..., xm) + J x>tn[T-i(Xif ; Xm)] , 
y-m+i 

It follows that for i = 1, . . . , TV 

(A30) 
ðv, = 5ЛŁ. '(Xl'---'Xm)] 

Kj dxj\e>(y) = o 3XJ 

= wl
U)(3); (j=m + l,...,N). 

Proposition A 7. If X. = I then 

; (j = i , . . . , ш ) 

Wu--* 
dzt | = 1 ; i = j , 

3 - i x l . ^ x . - o l - o ; t * i ; (i,; = i , . . . , N ) . 

Proof. Let us denote d(; ) : = y(;)(0)/l(d2/d22) \\y^(t) - y||g. 

We have { J } y = £ (dztJdyk) (dyk\dx}). Hence from Eqs. (A 28 ) - (A 30) we obtain 

(A 31) 

J = 

d(1>' 

d(mУ 

< + l ( ð ) 

w;,(ø) 

M*_1W] 
дxt 

5xm 

, w m + 1 (0),. . . ,w л <0)) = I 

since, if 0*(y) = 0 then d j / | V ' ( x ) ] / ^ = 7 ( 0 '(0) . • 
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APPENDIX B (COMPUTATION) 

It may be useful to consider the computational aspect when computing the density 
q(Q | 0) and the level of regularity 1 — p0. To be concrete, let us consider the follow
ing example. 

Take 

tfjfi) = e9'x sin e2x ; 0! 6 (0, 10) 

02 e (0, 2K) , 

take £ = I, and take 4 design points xt = 1, x2 = 2, x3 = 3, x4 = 4. 

The program for the computation of f(d\ 0): 

Input variables: 0 t , 02, 0\, 02 (4 numbers) 
Subroutines: -

(A) ril0) = ei8' sin i02 ; (i = 1, 2, 3, 4) 

(B) ^ = . e » ' s i n . 0 2 

50j 

(C) ^ = .e»'cosi0a 

302 

(D) - ^ = Pe»'sin.0 a 

(E) ^ M = ^ e ^ c o s ! - 0 2 
' 50,S02 

(F) ^ = - i V * s i n . 0 2 

oo2 

Subroutines for matrices: 

(o) «,«4'ff;0.* = U) 
(=j 38j dOk 

(H) M ( 0 ) h ^ M - 1 ( 0 ) 

(» i^i^iM-wu^ 
P,«=I 30p 36q 

Use the subroutines (A) - ( I ) for 0 = (0\, 02), the subroutine (A) for 0 = (0,, 02) 

and compute Eq. (9) for different inputs 0 t , 02, 0\, 02. 

The program for the computation of (l — p0): 

The main idea of the algorithm is that through any point 0 = (0 t , 02)e(O, 10) x 
x (0, 2K) and in any direction given by 6 : — dOjdt we can draw a unique geodesies 
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which is a solution if Eqs. (A 3), but for the natural parameter rn a l, where dfnat/df = 
= ||di//dr|| (cf. Eq. (A 2)). 

Input: 0j, 02, 0j, 0"2 (4 numbers) 
Subroutines: ( B ) - ( F ) 
Subroutine "derivatives": 

(j) *Lmm6l + *®62 

dt dd1 d02 

(K) d ^ [ , , w ] = « ( ^ ) 2

 + 2«)M2 + 
K ' d/2 L J dd\ V iJ 30j 302 

+ 5__0) i 6 2 r + m0 + m w 

d6\ v 7 30, 302 

where v, w are unknown input variables (interpreted as v = 0,, w = 02), 

di/ __ di/ / |di | | | 

d i ~ ~ d./ |d7|| 
(L) 

(M) 

fч ,- - , _ d _ / d d _ \ / 

12*/[Ľ,W] _ dř2 ăt \dt dt Jl 

d t 2
a t 

Linear equations: Compute v, w as the solution of the linear equations 

(EQ) V ÉMfiľ] Ы ) _ o 
,fi dř 2

a t ðØj 

* d't-.-frw] _ _ _ ) _ Q 

i_i dt2
at a02 

(cf. Eqs. (A 3)) 
Put v, w into (K), (M) and compute 

n(n n A , ) \ - |_M___ir1 

Q\Pi> y 2 5
y i » 0 2 J = — 7 1 

II d t n a . II 
For different inputs 0j, 02, 0 u 02 compute 

r = min {Q(61, 02, 0,, 62) : 0j e (0, 10), 02 e (0, 2m), 

0. G <0, 1>, 02 6 <0, 1>, 02 + 02 = 1} • 
Compute p0 from 

rf(Po) = r2 

where ^(po) is the (l - p0) quantile of the x2 p.d. with 4 degrees of freedom. 

(Received July 18, 1983.) 
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