PROBABILITY DISTRIBUTION OF THE MULTIVARIATE NONLINEAR LEAST SQUARES ESTIMATES

ANDREJ PÁZMAN

The nonlinear regression model $y_{i}=\eta_{i}\left(\theta_{1}, \ldots, \theta_{m}\right)+\varepsilon_{i}$ with $\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right) \sim N(0, \Sigma)$ and with $\eta_{i}($.$) twice continuously differentiable is considered. Under the assumption that the maximal$ curvalure of the mean-values manifold $\{\boldsymbol{\eta}(\boldsymbol{\theta}): \boldsymbol{\theta} \in U\} \subset \mathbb{R}^{N}$ is bounded, an approximative probability density for the least squares estimates of $\left(\theta_{1}, \ldots, \theta_{m}\right)$ is proposed. This density depends on the first form ($=$ the information matrix) and on the second form of the mean-values manifold (Eq. (9)). The level of approximation depends on the probability that the sample goes beyond the nearest center of curvature of the mean-values manifold and it is expressed in the paper (Theorem 1).

1. INTRODUCTION AND MAIN RESULTS

As in [4], let us consider the gaussian nonlinear regression model

$$
\begin{equation*}
y=\eta(\theta)+\varepsilon \tag{1}
\end{equation*}
$$

where $\boldsymbol{y}:=\left(y_{1}, \ldots, y_{N}\right)^{\prime}$ is the vector of observed variables, $\boldsymbol{\theta}:=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\prime}$ is the vector of unknown parameters and $\varepsilon:=\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right)^{\prime}$ is the vector of random observations errors. It is supposed that $\boldsymbol{\theta} \in U \subset \mathbb{P}^{m}, U$ open, and that ε is distributed normally, $N(0, \Sigma)$ with $\mathbf{\Sigma}$ known and nonsingular. The functions $\eta_{1}, \ldots, \eta_{N}$ are defined and have continuous second order derivatives $\partial^{2} \eta_{k} / \hat{\partial} \theta_{i} \partial \theta_{j}$ on U. Finally, it is supposed that the vectors $\partial \boldsymbol{\eta} / \partial \theta_{1}, \ldots, \partial \boldsymbol{\eta} / \partial \theta_{m}$ are linearly independent for every $\boldsymbol{\theta} \in U$.

Eq. (1) could be also written in the more common form

$$
y_{i}=\eta_{x_{i}}(\theta)+\varepsilon_{x_{i}} ; \quad(i=1, \ldots, N)
$$

where x_{1}, \ldots, x_{N} are the points of the design of the experiment. The dependence of $\mathrm{E}\left(y_{i}\right)$ on x_{i} is of no importance in this paper, therefore we prefere the simpler Eq. (1).
Denote by $\langle\boldsymbol{a}, \boldsymbol{b}\rangle,\|\boldsymbol{a}\|$ the inner product and the norm defined by

$$
\langle a, b\rangle=a^{\prime} \Sigma^{-1} b, \quad\|a\|^{2}=\langle a, a\rangle
$$

The probability density of \boldsymbol{y} is given by

$$
\begin{equation*}
f(\boldsymbol{y} \mid \boldsymbol{\eta}(\boldsymbol{\theta}))=\frac{1}{(2 \pi)^{N / 2} \operatorname{det}^{1 / 2}(\boldsymbol{\Sigma})} \exp \left\{-\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{\eta}(\boldsymbol{\theta})\|^{2}\right\} . \tag{2}
\end{equation*}
$$

The least squares ($=1$. s.) estimate for $\boldsymbol{\theta}$ is defined by

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}:=\hat{\boldsymbol{\theta}}(\boldsymbol{y}):=\operatorname{Arg} \min _{\boldsymbol{\theta} \in U}\|\boldsymbol{y}-\boldsymbol{\eta}(\boldsymbol{\theta})\|^{2} \tag{3}
\end{equation*}
$$

(if it exists). Hence the l. s. estimate $\hat{\boldsymbol{\theta}}$ is one of the solutions of the equations

$$
\frac{\partial}{\partial \theta_{i}}\|\boldsymbol{y}-\boldsymbol{\eta}(\boldsymbol{\theta})\|^{2}=0 ; \quad(i=1, \ldots, m),
$$

or equivalently of

$$
\begin{equation*}
\left\langle\boldsymbol{y}-\boldsymbol{\eta}(\boldsymbol{\theta}), \frac{\partial \boldsymbol{\eta}}{\partial \theta_{i}}\right\rangle=0 ; \quad(i=1, \ldots, m) . \tag{4}
\end{equation*}
$$

Geometrically it means that the vector $\boldsymbol{y}-\boldsymbol{\eta}(\hat{\boldsymbol{\theta}})$ is orthogonal to the mean values manifold (the set of potentially possible mean values).

$$
\mathscr{E}:=\{\boldsymbol{\eta}(\theta): \theta \in U\},
$$

at the point $\boldsymbol{\eta}(\hat{\boldsymbol{\theta}})$. It means also that the vector \boldsymbol{y} is in the hyperplane $\chi(\hat{\boldsymbol{\theta}})$ where

$$
\begin{equation*}
x(\boldsymbol{\theta}):=\left\{\mathbf{z}: \mathbf{z} \in \mathbb{R}^{N},\left\langle\mathbf{z}-\boldsymbol{\eta}(\boldsymbol{\theta}), \partial \boldsymbol{\eta} \mid \partial \theta_{i}\right\rangle=0 ;(i=1, \ldots, m)\right\} \tag{5}
\end{equation*}
$$

Let us denote by r the minimal radius of curvature of the manifold \mathscr{E}. More exactly, we denote by $r(\boldsymbol{\eta})$ the minimal radius of curvature of a geodesics which contains the point $\boldsymbol{\eta} \in \mathscr{E}$ (see Appendix for the properties of geodesics), and we define

$$
r:=\inf \{r(\boldsymbol{\eta}): \boldsymbol{\eta} \in \mathscr{E}\}
$$

AS 1: We shall suppose in this paper that $r>0$, i.e we consider models with bounded curvatures.
Let $\chi_{N}^{2}\left(p_{0}\right)$ be the $\left(1-p_{0}\right)$ quantile of the χ^{2} p.d. with N degrees of freedom. If $\chi_{N}^{2}\left(p_{0}\right)=r^{2}$, we say that $\left(1-p_{0}\right)$ is the level of regularity of the model.
It means that

$$
P_{\boldsymbol{\eta}}\left\{\mathbf{y}: \mathbf{y} \in \mathbb{R}^{N},\|\mathbf{y}-\boldsymbol{\eta}\|<r\right\}=1-p_{0},
$$

where $\mathrm{P}_{\boldsymbol{\eta}}$ is the p.d. with the density $f(\boldsymbol{y} \mid \boldsymbol{\eta})$.
We shall say that the regression model is with a distant boundary if for any expected $\boldsymbol{\eta}=\mathrm{E}(\boldsymbol{y})$ and any $\boldsymbol{y} \in \mathbb{R}^{N}$ such that $\|\boldsymbol{y}-\boldsymbol{\eta}\|<r$ there is a solution of Eq. (3). It means that we suppose that there is a set of expected values of the true vector $\boldsymbol{\theta}$, $U_{0} \subset U$, which is sufficiently distant from "the boundary" of U.

AS 2: We suppose in this paper that the model is with a distant boundary.
The assumption AS 2 avoid to consider the "edges" of the manifold \mathscr{E}. Such an
assumption is usually adopted also in the linear regression model

$$
\begin{equation*}
\mathbf{y}=\mathbf{F} \boldsymbol{\theta}+\varepsilon ; \quad(\boldsymbol{\theta} \in U) \tag{6}
\end{equation*}
$$

($\mathbf{F}=$ a given $N \times m$ matrix $)$. Here it is commonly supposed that $U=\mathbb{R}^{m}$ although in reality the values of $\theta_{1}, \ldots, \theta_{m}$ are always bounded à priori.

The model is called overlapping if for some $\boldsymbol{y} \in \mathbb{R}^{N}$ there are two solutions $\boldsymbol{\theta}^{(1)} \neq$ $\neq \theta^{(2)}$ of Eqs. (4) such that

$$
\left\|\boldsymbol{y}-\boldsymbol{\eta}\left(\boldsymbol{\theta}^{(1)}\right)\right\| \leqq r, \quad\left\|\boldsymbol{y}-\boldsymbol{\eta}\left(\boldsymbol{\theta}^{(2)}\right)\right\| \leqq r
$$

AS 3: We suppose in this paper that the considered model is not overlapping. For any $\boldsymbol{\theta} \in U$ let us denote by

$$
\left\{\begin{array}{c}
\{\mathbf{M}(\theta)\}_{i j}:=\mathrm{E}_{\boldsymbol{\eta}(\boldsymbol{\theta})}\left\{\frac{\partial \ln f(\boldsymbol{y} \mid \boldsymbol{\eta}(\boldsymbol{\theta}))}{\partial \hat{\theta}_{i}} \frac{\partial \ln f(\boldsymbol{y} \mid \boldsymbol{\eta}(\boldsymbol{\theta}))}{\partial \hat{\theta}_{j}}\right\}=\left\langle\frac{\partial \boldsymbol{\eta}}{\partial \theta_{i}}, \frac{\partial \boldsymbol{\eta}}{\partial \theta_{j}}\right\rangle \tag{7}\\
(i, j=1, \ldots, m)
\end{array}\right.
$$

the (local) Fisher information matrix.
By

$$
\begin{equation*}
\mathbf{P}^{\boldsymbol{\theta}}:=\sum_{k, l} \frac{\partial \boldsymbol{\eta}}{\partial \theta_{k}}\left\{\mathbf{M}^{-1}(\boldsymbol{\theta})\right\}_{k l} \frac{\partial \boldsymbol{\eta}}{\partial \theta_{l}} \Sigma^{-1} \tag{8}
\end{equation*}
$$

we denote the matrix of projection onto the plane which is tangent to the manifold \mathscr{E} at the point $\boldsymbol{\eta}(\boldsymbol{\theta})$. Let us denote by $q(\boldsymbol{\theta} \mid \boldsymbol{\eta})$ the function

$$
\begin{equation*}
q(\boldsymbol{\theta} \mid \boldsymbol{\eta}):=\frac{\operatorname{det}\left[\left(\{\mathbf{M}(\boldsymbol{\theta})\}_{i j}+\left\langle\left(\mathbf{I}-\mathbf{P}^{\theta}\right)(\eta(\theta)-\boldsymbol{\eta}), \frac{\partial^{2} \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right\rangle\right)_{i, j=1}^{m}\right]}{(2 \pi)^{m / 2} \operatorname{det}^{1 / 2} \mathbf{M}(\boldsymbol{\theta})} \times \tag{9}
\end{equation*}
$$

Let $f_{\boldsymbol{\theta}}(\boldsymbol{\theta} \mid \boldsymbol{\eta})$ be the probability density* of the 1.s. estimate $\hat{\boldsymbol{\theta}}$. The main result of the paper is expressed in Theorem 1 by the inequality

$$
\begin{equation*}
\left|\int_{B} f_{\boldsymbol{\theta}}(\boldsymbol{\theta} \mid \boldsymbol{\eta}) \mathrm{d} \boldsymbol{\theta}-\int_{B} q(\boldsymbol{\theta} \mid \boldsymbol{\eta}) \mathrm{d} \boldsymbol{\theta}\right| \leqq 2 p_{0} \tag{10}
\end{equation*}
$$

which is valid for every Borel set B which is a subset of $\left\{\boldsymbol{\theta}: \boldsymbol{\theta} \in U, \underset{\mathbf{z} \in \mathbb{R}^{N}}{\exists}\|\mathbf{z}-\boldsymbol{\eta}\|<r\right.$, $\eta(\theta)=\eta[\hat{\theta}(\mathbf{z})]\}$ ($=$ "the region of accessibility").

If follows that $q(\boldsymbol{\theta} \mid \boldsymbol{\eta})$ is an adequate approximative probability density of the l.s. estimates, the level of approximation being given by the level of regularity $\left(1-p_{0}\right)$.

Especially, if $r \mapsto \infty$ (i.e. $p_{0} \mapsto 0$), then we obtain the linear regression model (6). In that case

$$
\begin{gathered}
\partial^{2} \boldsymbol{\eta}(\boldsymbol{\theta}) / \partial \theta_{i} \partial \theta_{j}=0, \quad \mathbf{P}^{\boldsymbol{\theta}}[\boldsymbol{\eta}(\hat{\boldsymbol{\theta}})-\boldsymbol{\eta}(\boldsymbol{\theta})]=\boldsymbol{\eta}(\hat{\boldsymbol{\theta}})-\eta(\boldsymbol{\theta}) \\
\partial \eta_{i}(\boldsymbol{\theta}) / \partial \theta_{j}=\{\mathbf{F}\}_{i j}, \quad \mathbf{M}(\boldsymbol{\theta})=\mathbf{F}^{\prime} \boldsymbol{\Sigma}^{-\boldsymbol{1}} \mathbf{F}
\end{gathered}
$$

* From typographical reasons we use $\boldsymbol{\theta}^{\wedge}, \boldsymbol{\theta}^{-}$instead of $\hat{\boldsymbol{\theta}}, \overrightarrow{\boldsymbol{\theta}}$ in superscript and subscript.

Thus from (9) we obtain the well known density

$$
q(\hat{\boldsymbol{\theta}} \mid \boldsymbol{\eta}(\boldsymbol{\theta}))=\frac{\operatorname{det}^{1 / 2}\left(\mathbf{F}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{F}\right)}{(2 \pi)^{m / 2}} \exp \left\{-\frac{1}{2}(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta})^{\prime}\left(\mathbf{F}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{F}\right)(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta})\right\}
$$

2. CASE $m=1, N=2$ (HEURISTIC APPROACH)

To clarify the ideas we shall construct heuristically the probability density of the 1.s. estimate in the special case $m=1, N=2$. Without restrictions on generality we shall suppose in this section that the parameter θ is the "natural parameter" $(=$ the distance measured from some fixed point along the curve $\theta \in U \mapsto \eta(\theta) \in \mathbb{R}^{2}$), i.e. that $\|\mathrm{d} \boldsymbol{\eta}(\theta) / \mathrm{d} \theta\|=1$.

Denote by
(11)

$$
\begin{aligned}
& \varphi(t)=[2 \pi]^{-1 / 2} \exp \left\{-t^{2} / 2\right\} \\
& \Phi(x)=\int_{-\infty}^{x} \varphi(t) \mathrm{d} t
\end{aligned}
$$

the (standarized) normal probability density function and the distribution function. By $S(\theta)$ we shall denote the half plane

$$
S(\theta):=\left\{\boldsymbol{z}: \mathbf{z} \in \mathbb{R}^{2},\left\langle\mathbf{z}-\boldsymbol{\eta}(\theta), \frac{\mathrm{d} \boldsymbol{\eta}(\theta)}{\mathrm{d} \theta}\right\rangle<0\right\}
$$

Take $\Delta>0$. It can be seen from Fig. 1 that for a sufficiently small Δ the set

$$
[S(\theta+\Delta)-S(\theta)] \cup[S(\theta)-S(\theta+\Delta)]
$$

is the set of all points $\boldsymbol{y} \in \mathbb{R}^{2}$ which have a solution of Eq. (4) in the interval $(\theta, \theta+\Delta)$. Moreover, it can be seen from Fig. 1 that

$$
\begin{gather*}
\mathrm{P}_{\eta}[S(\theta+\Delta)-S(\theta)]-\mathrm{P}_{\eta}[S(\theta)-S(\theta+\Delta)]= \tag{12}\\
=\mathrm{P}_{\eta}[S(\theta+\Delta)]-\mathrm{P}_{\eta}[S(\theta)]
\end{gather*}
$$

where P_{η} is the probability distribution of the sample \boldsymbol{y} if $\boldsymbol{\eta}$ is its mean. Further evidently

$$
\mathrm{P}_{\boldsymbol{\eta}}[\boldsymbol{S}(\theta)]=\Phi\left[\left\langle\boldsymbol{\eta}(\theta)-\boldsymbol{\eta}, \frac{\mathrm{d} \boldsymbol{\eta}(\theta)}{\mathrm{d} \theta}\right\rangle\right] .
$$

We shall show that with $\Delta \rightarrow 0$ for $\boldsymbol{y} \in S(\theta+\Delta)-S(\theta)$ (resp. for $\boldsymbol{y} \in S(\theta)-$ $-S(\theta+\Delta)$) the solution of Eq. (4) is a relative minimum (resp. a relative maximum) of the function $\theta \in U \mapsto\|\boldsymbol{y}-\boldsymbol{\eta}(\theta)\|^{2}$.
To this purpose let us consider the second order derivative

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \theta^{2}}\|\boldsymbol{\eta}(\theta)-\boldsymbol{y}\|^{2}=1+\left\langle\boldsymbol{\eta}(\theta)-\boldsymbol{y}, \frac{\mathrm{d}^{2} \boldsymbol{\eta}}{\mathrm{~d} \theta^{2}}\right\rangle \tag{13}
\end{equation*}
$$

The expression

$$
\varrho_{\eta}(\theta):=\left\|\frac{\mathrm{d}^{2} \eta}{\mathrm{~d} \theta^{2}}\right\|^{-1}
$$

is the radius of curvature of the curve $\theta \in U \mapsto \boldsymbol{\eta}(\theta)$, and the point

$$
\boldsymbol{\eta}(\theta)+\frac{\mathrm{d}^{2} \boldsymbol{\eta}}{\mathrm{~d} \theta^{2}}
$$

is its centre of curvature, as known from elementary differential geometry [1]. Let us denote by

$$
\mathbf{e}_{\eta}(\theta):=\varrho_{\eta}(\theta) \frac{\mathrm{d}^{2} \boldsymbol{\eta}}{\mathrm{~d} \theta^{2}}
$$

the unit vector pointing from $\boldsymbol{\eta}(\theta)$ to the centre of curvature. This allows to rewrite Eq. (13) as

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \theta^{2}}\|\boldsymbol{\eta}(\theta)-\boldsymbol{y}\|^{2}=\varrho_{\eta}^{-1}(\theta)\left\{\varrho_{\eta}(\theta)+\left\langle\boldsymbol{\eta}(\theta)-\boldsymbol{y}, e_{\eta}(\theta)\right\rangle\right\} \tag{14}
\end{equation*}
$$

As seen from Fig. 1, the point $C(\Delta)(=$ the point of intersection of $x(\theta)$ with $\chi(\theta+\Delta))$ tends to the centre of curvature if Δ tends to zero. For $\Delta \rightarrow 0$ form $\boldsymbol{y} \in S(\theta+\Delta)-S(\theta)$ it follows that $\left\langle\boldsymbol{y}-\boldsymbol{\eta}(\theta), \mathbf{e}_{\boldsymbol{\eta}}(\theta)\right\rangle\left\langle\varrho_{\boldsymbol{\eta}}(\theta)\right.$, hence, according to Eq. (14), $\mathrm{d}^{2} / \mathrm{d} \theta^{2}\|\boldsymbol{\eta}(\theta)-\boldsymbol{y}\|^{2}>0$. Moreover, as supposed, θ is the solution of Eq. (4), hence θ is a relative minimum of $\|\boldsymbol{\eta}(\theta)-\boldsymbol{y}\|^{2}$.

We proceed similarly in the case that $\mathbf{y} \in S(\theta)-S(\theta+\Delta)$. It follows that the
limit

$$
q(\theta \mid \eta):=\lim _{\Delta \rightarrow 0} \frac{P_{\eta}[S(\theta+\Delta)-S(\theta)]-P_{\eta}[S(\theta)-S(\theta+\Delta)]}{\Delta}
$$

is the probability density of the relative minima minus the probability density of the relative maxima of the function $\theta \in U \mapsto\|\boldsymbol{\eta}(\theta)-\boldsymbol{y}\|^{2}$.

From (12) it follows

$$
q(\theta \mid \boldsymbol{\eta})=\lim _{\Delta \rightarrow 0} \frac{\Phi\left[\left\langle\boldsymbol{\eta}(\theta+\Delta)-\boldsymbol{\eta}, \frac{\mathrm{d} \boldsymbol{\eta}(\theta+\Delta)}{\mathrm{d} \theta}\right\rangle\right]-\Phi\left[\left\langle\boldsymbol{\eta}(\theta)-\boldsymbol{\eta}, \frac{\mathrm{d} \boldsymbol{\eta}(\theta)}{\mathrm{d} \theta}\right\rangle\right.}{\Delta}=
$$

$$
\begin{equation*}
=\varphi\left(\left\langle\boldsymbol{\eta}(\theta)-\boldsymbol{\eta}, \frac{\mathrm{d} \boldsymbol{\eta}(\theta)}{\mathrm{d} \theta}\right\rangle\right) \frac{\mathrm{d}}{\mathrm{~d} \theta}\left\langle\boldsymbol{\eta}(\theta)-\boldsymbol{\eta}, \frac{\mathrm{d} \boldsymbol{\eta}(\theta)}{\mathrm{d} \theta}\right\rangle . \tag{15}
\end{equation*}
$$

If $\Delta \rightarrow 0$ then $[S(\theta)-S(\theta+\Delta)] \cap\{\boldsymbol{y}:\|\boldsymbol{y}-\boldsymbol{\eta}\|>r\} \rightarrow \emptyset$. Hence if we neglect the set of samples $\left\{\mathbf{y}: \mathbf{y} \in \mathbb{R}^{2},\|\boldsymbol{y}-\boldsymbol{\eta}\|>r\right\}$, the probability of which is less than p_{0}, we can state that there are no relative maxima of $\|\boldsymbol{\eta}(\theta)-\boldsymbol{y}\|^{2}$ and that every relative minimum is an absolute minimum, i.e. it is the 1.s. estimate $\hat{\theta}(\mathbf{y})$. Hence the expression in Eq. (15) is an approximative expression for the probability density of the 1.s. estimate $\hat{\theta}$. To compare it with the expression in Eq. (9) we have just to use that in the special considered case $\mathbf{M}(\theta)=\|\mathrm{d} \boldsymbol{\eta} / \mathrm{d} \theta\|^{2}=1$ and that $\left\langle\mathrm{d} \boldsymbol{\eta} / \mathrm{d} \theta, \mathrm{d}^{2} \boldsymbol{\eta} / \mathrm{d} \theta^{2}\right\rangle=0$.

The derivative

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta}\left\langle\boldsymbol{\eta}(\theta)-\boldsymbol{\eta}, \frac{\mathrm{d} \boldsymbol{\eta}(\theta)}{\mathrm{d} \theta}\right\rangle_{\partial(\boldsymbol{y})}=\varrho^{-1}(\theta)\left[\varrho(\theta)+\left\langle\boldsymbol{\eta}(\theta)-\boldsymbol{\eta}, e_{\boldsymbol{\eta}}(\theta)\right\rangle\right]_{\theta(\boldsymbol{\eta})}
$$

is positive (within our regularity assumptions). Hence, using the notation

$$
\begin{equation*}
v(\theta):=\left\langle\boldsymbol{\eta}(\theta)-\boldsymbol{\eta}, \frac{\mathrm{d} \boldsymbol{\eta}(\theta)}{\mathrm{d} \theta}\right\rangle \tag{16}
\end{equation*}
$$

the approximative probability density $q(\theta \mid \boldsymbol{\eta})$ in (15) can be expressed as

$$
q(\theta \mid \boldsymbol{\eta})=(2 \pi)^{-1 / 2} \exp \left\{-\frac{1}{2} v^{2}(\theta)\right\}\left|\frac{\mathrm{d} v(\theta)}{\mathrm{d} \theta}\right| .
$$

It follows that the random variable $v(\hat{\theta})$ is (approximately) distributed $N(0,1)$. Therefore, the interval

$$
\left\{\theta:\left[\left\langle\boldsymbol{\eta}(\hat{\theta})-\boldsymbol{\eta}(\theta), \frac{\mathrm{d} \boldsymbol{\eta}(\hat{\theta})}{\mathrm{d} \theta}\right\rangle\right]^{2}<\chi_{1}^{2}(\beta)\right\}
$$

is a confidence interval for the true value of θ, with the confidence level depending on β and on p_{0}.

Finally, let us compare the obtained probability density with the result in [4].

If $\left|\left\langle\boldsymbol{\eta}(\theta)-\boldsymbol{\eta}, \mathbf{e}_{\boldsymbol{\eta}}(\theta)\right\rangle\right|$ is much smaller than $\varrho_{\boldsymbol{\eta}}(\theta)$, then $|\mathrm{d} v(\theta) / \mathrm{d} \theta| \doteq 1$, and from (15) we obtain

$$
q(\theta \mid \boldsymbol{\eta}) \doteq(2 \pi)^{-1 / 2} \exp \left\{-\frac{1}{2}\langle\boldsymbol{\eta}(\theta)-\boldsymbol{\eta}, \mathrm{d} \boldsymbol{\eta} / \mathrm{d} \theta\rangle^{2}\right\}
$$

which is the expression in Eq. (26) in [4] for the considered case that $\|\mathrm{d} \boldsymbol{\eta} / \mathrm{d} \theta\|=1$.

3. THE MULTIVARIATE PROBABILITY DENSITY OF $\hat{\boldsymbol{\theta}}$

In this section we proceed to the general case of arbitrary $m, N, N>m$. We define by $\boldsymbol{\eta}$ the (fixed) mean of the sample \boldsymbol{y}. We denote by

$$
\begin{equation*}
\mathscr{A}_{\boldsymbol{\eta}}:=\{\boldsymbol{\eta}[\hat{\boldsymbol{\theta}}(\boldsymbol{y})]:\|\boldsymbol{y}-\boldsymbol{\eta}\|<r\} \tag{17}
\end{equation*}
$$

the region of accessibility (cf. Eq. (A 13) and the assumption AS 2 in Section 1). We are interested in the probability density $f_{\boldsymbol{\theta}^{\wedge}}(\boldsymbol{\theta} \mid \boldsymbol{\eta})$ of the l.s. estimate $\hat{\boldsymbol{\theta}}$. We shall show that it can be well approximated on the set $\left\{\theta: \eta(\theta) \in \mathscr{A}_{\eta}\right\}$ by the function $q(\boldsymbol{\theta} \mid \boldsymbol{\eta})$ expressed in Eq. (9). The main aim of this section is to prove the following.

Theorem 1. Let B be a measurable subset of the set $\left\{\boldsymbol{\theta}: \boldsymbol{\theta} \in U, \boldsymbol{\eta}(\boldsymbol{\theta}) \in \mathscr{A}_{\boldsymbol{n}}\right\}$. Then

$$
\left|\int_{\boldsymbol{B}} f_{\boldsymbol{\theta}}(\boldsymbol{\theta} \mid \boldsymbol{\eta}) \mathrm{d} \boldsymbol{\theta}-\int_{\boldsymbol{B}} q(\boldsymbol{\theta} \mid \boldsymbol{\eta}) \mathrm{d} \boldsymbol{\theta}\right| \leqq 2 p_{0}
$$

To prove Theorem 1 it is necessary to do a stepwise approximation of $f_{\boldsymbol{\theta}},(\boldsymbol{\theta} \mid \boldsymbol{\eta})$ by $g(\boldsymbol{0} \mid \boldsymbol{\eta})$.

Take a fixed point $\bar{\theta} \in U$ such that $\eta(\overline{\boldsymbol{\theta}}) \in \mathscr{A}_{\boldsymbol{\eta}}$. According to Proposition A 5, there is a neighbourhood of $\overline{\boldsymbol{\theta}}, U_{\boldsymbol{\theta}^{-}} \subset U$, such that $\eta\left[U_{\boldsymbol{\theta}^{-}}\right] \subset \mathscr{A}_{\boldsymbol{\eta}^{\prime}}$. As explained in Appendix, if a neighbourhood $V_{\boldsymbol{\theta}^{-}} \subset U_{\boldsymbol{\theta}^{-}}$is adequately chosen, we can introduce new local coordinates t_{1}, \ldots, t_{m} in $V_{\theta^{-}}$and two sets of local coordinates x_{1}, \ldots, x_{N} and z_{1}, \ldots, z_{N} in the set $\mathscr{G}_{\boldsymbol{\theta}^{-}}:=\left\{\boldsymbol{y}: \boldsymbol{y} \in \mathbb{R}^{N}, \boldsymbol{y} \in \mathcal{X}(\boldsymbol{\theta}), \boldsymbol{\theta} \in V_{\boldsymbol{\theta}^{-}}\right\}$as follows. We take m geodesics in $\mathscr{E}, \gamma^{(1)}, \ldots, \gamma^{(m)}$ such that $\gamma^{(1)}(0)=\boldsymbol{\eta}(\bar{\theta}) ;(i=1, \ldots, m)$ and that $\left\langle\dot{\gamma}^{(i)}(0), \dot{\gamma}^{(j)}(0)\right\rangle=0$ if $i \neq j$ (cf. Appendix for geodesics in \mathscr{E}). The coordinates $t_{1}:=\tau_{1}(\theta), \ldots, t_{m}:=\tau_{m}(\theta)$ are defined by

$$
\begin{equation*}
\left\langle\boldsymbol{\eta}(\theta)-\gamma^{(i)}\left(t_{i}\right), \dot{\gamma}^{(i)}\left(t_{i}\right)\right\rangle=0 ; \quad(i=1, \ldots, m) \tag{18}
\end{equation*}
$$

i.e. by projecting $\eta(\boldsymbol{\theta})$ onto the curves $\gamma^{(1)}, \ldots, \gamma^{(m)}$. We define further

$$
\begin{equation*}
x_{i}=\xi_{i}(\boldsymbol{y}):=\tau_{i}\left[\theta^{*}(\boldsymbol{y})\right] ; \quad(i=1, \ldots, m) \tag{19}
\end{equation*}
$$

where $\theta^{*}(\boldsymbol{y})$ is the (unique) solution of Eqs. (4) which is in $V_{\theta^{-}}$. The coordinates $x_{m+1}=\xi_{m+1}(\boldsymbol{y}), \ldots, x_{N}=\xi_{N}(\boldsymbol{y})$ are complementary orthogonal coordinates defined by Eq. (A 22).
Projecting y onto $\gamma^{(1)}, \ldots, \gamma^{(m)}$, i.e. by the equations

$$
\begin{equation*}
\left\langle y-\gamma^{(i)}\left(z_{i}\right), \dot{\gamma}^{(i)}\left(z_{i}\right)\right\rangle=0 ; \quad(i=1, \ldots, m) \tag{20}
\end{equation*}
$$

we define the coordinates $z_{i}=\zeta_{1}(\mathbf{y}), \ldots, z_{m}=\zeta_{m}(\mathbf{y})$. The coordinates $z_{m+1}=$ $=\zeta_{m+1}(\mathbf{y}), \ldots, z_{N}=\zeta_{N}(\mathbf{y})$ are again complementary orthogonal coordinates (cf. Eqs. (A 24)).

If $\boldsymbol{\Sigma}=\mathbf{I}$, and if $\boldsymbol{\theta}^{*}(\boldsymbol{y})=\overline{\boldsymbol{\theta}}$, the coordinates x_{1}, \ldots, x_{N} and z_{1}, \ldots, z_{N} are essentially the same. In that case we have namely: $x_{i}=z_{i} ;(i=1, \ldots, N)$ and $\partial z_{i} / \partial x_{j}=0$; $(i \neq j), \partial z_{i} / \partial x_{i}=1$ (cf. Eqs. (A 25) and Proposition A 7).

Let us introduce the notations

$$
\begin{equation*}
v_{i}\left(z_{i}\right):=\left\langle\gamma^{(i)}\left(z_{i}\right)-\boldsymbol{\eta}, \dot{\gamma}^{(i)}\left(z_{i}\right)\right\rangle ; \quad\left(i=1, \ldots, m_{i}\right) \tag{21}
\end{equation*}
$$

and

$$
Q_{i}^{\boldsymbol{\theta}}(\mathbf{z}):=\left\{\boldsymbol{y}: \mathbf{y} \in \mathbb{R}^{N}, v_{i}\left[\zeta_{i}(\mathbf{y})\right]<v_{i}(\mathbf{z})\right\}
$$

(cf. Eq. (A 17)).
Denote by $\zeta(\boldsymbol{y})$ the random vector

$$
\zeta(\boldsymbol{y}):=\left(\zeta_{1}(\boldsymbol{y}), \ldots, \zeta_{m}(\boldsymbol{y})\right),
$$

and by $F_{5}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right)$ its distribution function induced from the density of \boldsymbol{y} given by Eq. (2), and restricted to the set $\mathscr{G}_{\boldsymbol{\theta}^{-}}$. Because the functions v_{1}, \ldots, v_{m} defined in Eqs. (21) are increasing (see Proposition A 3), the increase of $F_{5}^{\theta^{-}}$is given by

$$
\begin{equation*}
\Delta_{\varepsilon_{1}}^{(1)} \ldots \Delta_{\varepsilon_{m}}^{(m)} F_{\xi}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right)=\mathrm{P}_{\eta}\left[\bigcap_{i=1}^{m}\left(Q_{i}^{\theta^{-}}\left(z_{i}\right)-Q_{i}^{\theta^{-}}\left(z_{i}-\varepsilon_{i}\right)\right)\right] . \tag{22}
\end{equation*}
$$

Here we used the notation

$$
A_{\varepsilon_{k}}^{(k)} h\left(z_{1}, \ldots, z_{m}\right):=h\left(z_{1}, \ldots, z_{m}\right)-h\left(z_{1}, \ldots, z_{k-1}, z_{k}-\varepsilon_{k}, z_{k+1}, \ldots, z_{m}\right),
$$

(cf. [6], chpt. IV. 3). The density of $\zeta(\boldsymbol{y})$ is then

$$
\begin{align*}
& f_{\xi}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right):=\frac{\partial^{m}}{\partial z_{1} \ldots \partial z_{m}} F_{\xi}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right)= \tag{23}\\
& =\lim _{\varepsilon_{1} \rightarrow 0} \ldots \lim _{\varepsilon_{m} \rightarrow 0} \frac{P_{\eta}\left[\bigcap_{i=1}^{m}\left(Q_{i}^{\theta^{-}}\left(z_{i}\right)-Q_{i}^{\theta^{-}}\left(z_{i}-\varepsilon_{i}\right)\right)\right]}{\varepsilon_{1} \ldots \varepsilon_{m}} .
\end{align*}
$$

Denote by $g\left(z_{m+1}, \ldots, z_{N} \mid z_{1}, \ldots, z_{m}\right)$ the conditional probability density of $\zeta_{m+1}(\mathbf{y}), \ldots, \zeta_{N}(\boldsymbol{y})$ (induced again from $f(\boldsymbol{y} \mid \boldsymbol{\eta})$ in Eq. (2)). The joint density $f_{5}^{\theta^{-}}$. . $\left(z_{1}, \ldots, z_{m}\right) g\left(z_{m+1}, \ldots, z_{N} \mid z_{1}, \ldots, z_{m}\right)$ is transformed by the mapping (the change of coordinates) $\left(z_{1}, \ldots, z_{N}\right) \mapsto\left(x_{1}, \ldots, x_{N}\right)$ into the joint density of $\left(\xi_{1}(\boldsymbol{y}), \ldots\right.$ $\ldots, \xi_{N}(\boldsymbol{y})$). Denote by $f_{\xi}^{\theta^{-}}\left(x_{1}, \ldots, x_{m}\right)$ the corresponding marginal density of the random vector

$$
\xi(\boldsymbol{y}):=\left(\xi_{1}(\boldsymbol{y}), \ldots, \zeta_{m}(\boldsymbol{y})\right) .
$$

Then finally, according to Eqs. (19),

$$
\begin{equation*}
f_{\boldsymbol{\theta}^{n}}(\overline{\boldsymbol{\theta}} \mid \boldsymbol{\eta})=f_{\boldsymbol{\xi}}^{\boldsymbol{\theta}^{-}}\left(x_{1}, \ldots, x_{m}\right)\left|\operatorname{det}\left(\left\{\partial \tau_{i} / \partial \theta_{j}\right\}_{i, j=1}^{m}\right)\right| \tag{24}
\end{equation*}
$$

This complicated way to dこduce $f_{\boldsymbol{\theta} \wedge}(\overline{\boldsymbol{\theta}} \mid \boldsymbol{\eta})$ from $f(\boldsymbol{y} \mid \boldsymbol{\eta})$ was chosen to make easy the comparison with $q(\overline{\boldsymbol{\theta}} \mid \boldsymbol{\eta})$. Namely, we shall show that $q(\overline{\boldsymbol{\theta}} \mid \boldsymbol{\eta})$ can be deduced in an analogical way, but from the distribution

$$
\begin{equation*}
\tilde{F}_{\zeta}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right):=P_{\eta}\left[\bigcap_{i=1}^{m} S_{i}^{\theta^{-}}\left(z_{i}\right)\right] \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{i}^{\theta^{-}}\left(z_{i}\right):=\left\{\boldsymbol{y}: \mathbf{y} \in \mathbb{R}^{N},\left\langle\boldsymbol{y}-\gamma^{(i)}\left(z_{i}\right), \dot{\gamma}^{(i)}\left(z_{i}\right)\right\rangle<0\right\} \tag{26}
\end{equation*}
$$

(cf. Eq. (A 16)). The corresponding density is given by

$$
\begin{equation*}
\tilde{f}_{\zeta}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right)=\lim _{\varepsilon_{1} \rightarrow 0} \ldots \lim _{\varepsilon_{m} \rightarrow 0} \frac{\mathrm{P}_{\eta}\left[\bigcap_{i=1}^{m}\left(S_{i}^{\theta^{-}}\left(z_{i}\right)-S_{i}^{\theta^{-}}\left(z_{i}-\varepsilon_{i}\right)\right)\right]}{\varepsilon_{1} \ldots \varepsilon_{m}} \tag{27}
\end{equation*}
$$

Again, the joint density $\tilde{f}_{\zeta}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right) g\left(z_{m+1}, \ldots, z_{N} \mid z_{1}, \ldots, z_{m}\right)$ is transformed by the coordinate mapping $\left(z_{1}, \ldots, z_{N}\right) \mapsto\left(x_{1}, \ldots, x_{N}\right)$ into a joint density of $\left(\xi_{1}(\boldsymbol{y}), \ldots\right.$ $\left.\ldots, \xi_{N}(\boldsymbol{y})\right)$. Dinote by $\tilde{f}_{\xi}^{\theta^{-}}\left(x_{1}, \ldots, x_{m}\right)$ the corresponding marginal distribution of $\xi(\boldsymbol{y})$. We have the following important auxiliary proposition

Proposition 1. Let be $\mathbf{\Sigma}=\boldsymbol{I}$.

Then
a)

$$
f_{\xi}^{\theta^{-}}(0)=f_{\zeta}^{\theta^{-}}(0), \tilde{f}_{\xi}^{\theta^{-}}(0)=\tilde{f}_{\zeta}^{\theta^{-}}(0)
$$

b) $\quad \tilde{f}_{\xi}^{\theta^{-}}(0)=\frac{1}{(2 \pi)^{m / 2}} \exp \left\{-\frac{1}{2}(\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})-\boldsymbol{\eta})^{\prime} \sum_{i=1}^{m} \dot{\gamma}^{(i)}(0) \dot{\gamma}^{(i)}(0)(\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})-\boldsymbol{\eta})\right\} \times$

$$
\begin{equation*}
\times \prod_{i=1}^{m}\left[1+(\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})-\boldsymbol{\eta})^{\prime} \ddot{\gamma}^{(i)}(0)\right] \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\text { c) } \quad q(\overline{\boldsymbol{\theta}} \mid \boldsymbol{\eta})=\tilde{f}_{\xi}^{\theta^{-}}(0)\left|\operatorname{det}\left(\left\{\partial \tau_{i}(\overline{\boldsymbol{\theta}}) / \partial \theta_{j}\right\}_{i, j=1}^{m}\right)\right| \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
f_{\boldsymbol{\theta}^{\wedge}}(\overline{\boldsymbol{\theta}} \mid \boldsymbol{\eta})=f_{\boldsymbol{\xi}}^{\boldsymbol{\theta}^{\boldsymbol{-}}}(0)\left|\operatorname{det}\left(\left\{\partial \tau_{i}(\overline{\boldsymbol{\theta}}) / \partial \theta_{j}\right\}_{i, j=1}^{\boldsymbol{m}}\right)\right| . \tag{30}
\end{equation*}
$$

Proof. The statement a) follows from Eqs. (A 25) and from Proposition A 7 in Appendix.

From Eqs. (25), (26) and (21) it follows that

$$
\tilde{F}_{\zeta}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right)=\int_{-\infty}^{v_{1}\left(z_{1}\right)} \cdots \int_{-\infty}^{v_{m}\left(z_{m}\right)} \frac{1}{(2 \pi)^{m / 2} \operatorname{det}^{1 / 2} \mathbf{K}} \exp \left\{-\frac{1}{2} \mathbf{u}^{\prime} \mathbf{K}^{-1} \mathbf{u}\right\} \mathrm{d} u_{1} \ldots \mathrm{~d} u_{m}
$$

where

$$
\{\mathbf{K}\}_{i j}:=\left\langle\dot{\gamma}^{(i)}\left(z_{i}\right), \dot{\gamma}^{(j)}\left(z_{j}\right)\right\rangle
$$

Therefore the corresponding density is

$$
\begin{equation*}
\tilde{f}_{\zeta}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right)=\frac{1}{(2 \pi)^{m / 2} \operatorname{det}^{1 / 2} \mathbf{K}} \exp \left\{-\frac{1}{2} \sum_{i, j=1}^{m} v_{i}\left(z_{i}\right)\left\{\mathbf{K}^{-1}\right\}_{i j} v_{j}\left(z_{j}\right)\right\} \prod_{i=1}^{m}\left(\mathrm{~d} v_{i}\left(z_{i}\right) / \mathrm{d} z_{i}\right) \tag{31}
\end{equation*}
$$

From (31) we obtain the expression in Eq. (28).

The equality in Eq. (30) follows directly from Eq. (24). It remains to prove Eq. (29).
First we can state that

$$
\begin{equation*}
\mathbf{P}^{\theta^{-}}=\sum_{l=1}^{m} \dot{\gamma}^{(l)}(0) \dot{\gamma}^{(l)^{\prime}}(0) \tag{32}
\end{equation*}
$$

To verify (32), put $\mathbf{P}^{\boldsymbol{\theta}^{-}}$according to Eq. (8) (for $\boldsymbol{\Sigma}=\mathbf{I}$), and multiply Eq. (32) by $\partial \boldsymbol{\eta}^{\prime}(\overline{\boldsymbol{\theta}}) / \partial \theta_{q}$ from the left, and by $\partial \boldsymbol{\eta}(\overline{\boldsymbol{\theta}}) / \partial \theta_{\boldsymbol{h}}$ from the right $(q, h=1, \ldots, m)$.

In the right side of Eq. (29) let us express $\tilde{f}_{\xi}^{\theta^{-}}(0)$ using Eq. (28), and $\partial \tau_{i}(\bar{\theta}) / \partial \theta_{j}$ using Eq. (A 27). We can write, according to Eq. (32),

$$
\begin{equation*}
[\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})-\boldsymbol{\eta}]^{\prime} \sum_{i=1}^{m} \dot{\gamma}^{(i)}(0) \dot{\gamma}^{(i)}(0)[\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})-\boldsymbol{\eta}]=\left\|\mathbf{P}^{\boldsymbol{\theta}^{-}}[\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})-\boldsymbol{\eta}]\right\|^{2} \tag{33}
\end{equation*}
$$

Using Eq. (32) again, we obtain

$$
\begin{gather*}
\prod_{i=1}^{m}\left[1+(\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})-\boldsymbol{\eta})^{\prime} \ddot{\boldsymbol{\gamma}}^{(i)}(0)\right]\left|\operatorname{det}\left(\left\{\partial \tau_{i}(\overline{\boldsymbol{\theta}}) \mid \partial \theta_{j}\right\}_{i, j=1}^{m}\right)\right|= \tag{34}\\
=\operatorname{det}\left(\left\{\frac{\partial}{\partial t_{i}}\left[\left(\boldsymbol{\gamma}^{(i)}\left(t_{i}\right)-\boldsymbol{\eta}\right)^{\prime} \sum_{k=1}^{m} \dot{\gamma}^{(k)}\left(t_{k}\right) \dot{\gamma}^{(k)}\left(t_{k}\right)\right]_{t=0} \frac{\partial \boldsymbol{\eta}(\overline{\boldsymbol{\theta}})}{\partial \theta_{j}}\right\}_{i, j=1}^{m}\right)= \\
=\operatorname{det}\left(\left\{\mathbf{M}_{i j}(\overline{\boldsymbol{\theta}})+[\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})-\boldsymbol{\eta}]^{\prime}\left(\mathbf{I}-\mathbf{P}^{\boldsymbol{\theta}^{-}}\right) \frac{\partial^{2} \boldsymbol{\eta}(\bar{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right\}_{i, j=1}^{m}\right) \times \\
\times\left|\operatorname{det}^{-1}\left(\left\{\partial \tau_{i}(\overline{\boldsymbol{\theta}}) \mid \partial \theta_{j}\right\}_{i, j=1}^{m}\right)\right| .
\end{gather*}
$$

From Eq. (A 27) we have

$$
\begin{equation*}
\operatorname{det}^{2}\left(\left\{\partial \tau_{i}(\overline{\boldsymbol{\theta}}) / \partial \theta_{j}\right\}_{i, j=1}^{m}\right)=\operatorname{det} \mathbf{M}(\overline{\boldsymbol{\theta}}) \tag{35}
\end{equation*}
$$

The validity of Eq. (29) follows from Eqs. (33) - (35).

From Proposition 1 it follows that the comparison of $f_{\boldsymbol{\theta}^{-}}(\overline{\boldsymbol{\theta}} \mid \boldsymbol{\eta})$ with $q(\overline{\boldsymbol{\theta}} \mid \boldsymbol{\eta})$, needed in Theorem 1, reduces to the comparison of $f_{\zeta}^{\theta^{-}}(0)$ with $\tilde{f}_{5}^{\theta^{-}}(0)$.

Proposition 2. For sufficiently small $\varepsilon_{1}>0, \ldots, \varepsilon_{m}>0$ we have the inequality

$$
\begin{align*}
& \left|\Delta_{\varepsilon_{1}}^{(1)} \ldots \Delta_{\varepsilon_{k}}^{(k)}\left[F_{\zeta}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right)-\tilde{F}_{\zeta}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right)\right]\right| \leqq \tag{36}\\
& \leqq P_{\eta}\left[\left(\mathbb{R}^{N}-W_{r}\right) \bigcap_{i=1}^{m}\left(Q_{i}^{\theta^{-}}\left(z_{i}\right)-Q_{i}^{\theta^{-}}\left(z_{i}-\varepsilon_{i}\right)\right)\right]+ \\
& \quad+P_{\eta}\left[\left(\mathbb{R}^{N}-W_{r}\right) \bigcap_{i=1}^{m}\left(S_{i}^{\theta^{-}}\left(z_{i}\right)-S_{i}^{0^{-}}\left(z_{i}-\varepsilon_{i}\right)\right)\right.
\end{align*}
$$

where

$$
W_{r}:=\left\{\mathbf{y}: \boldsymbol{y} \in \mathbb{R}^{N},\|\mathbf{y}-\boldsymbol{\eta}\|<r\right\}
$$

Proof. From (25) we obtain

$$
\begin{gathered}
\Delta_{\varepsilon_{1}}^{(1)} \cdots \Delta_{\varepsilon_{m}}^{(m)} \widetilde{F}_{5}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right)=P_{\eta}\left[\left(\mathbb{R}^{N}-W_{r}\right) \bigcap_{i=1}^{m}\left(S_{i}^{\theta^{-}}\left(z_{i}\right)-S_{i}^{\theta^{-}}\left(z_{i}-\varepsilon_{i}\right)\right)\right]+ \\
+P_{\eta}\left[W_{r} \bigcap_{i=1}^{m}\left(S_{i}^{\theta^{-}}\left(z_{i}\right)-S_{i}^{\theta^{-}}\left(z_{i}-\varepsilon_{i}\right)\right)\right] .
\end{gathered}
$$

Analogically, from (22) we obtain

$$
\begin{gathered}
\Delta_{\varepsilon_{1}}^{(1)} \ldots \Delta_{\varepsilon_{m}}^{(m)} F_{5}^{\theta^{-}}\left(z_{1}, \ldots, z_{m}\right)=\mathrm{P}_{\eta}\left[\left(\mathbb{R}^{N}-W_{r}\right) \bigcap_{i=1}^{m}\left(Q_{i}^{\theta^{-}}\left(z_{i}\right)-Q_{i}^{\theta^{-}}\left(z_{i}-\varepsilon_{i}\right)\right)\right]+ \\
+\mathrm{P}_{\eta}\left[W_{r} \bigcap_{i=1}^{m}\left(Q_{i}^{\theta^{-}}\left(z_{i}\right)-Q_{i}^{\theta^{-}}\left(z_{i}-\varepsilon_{i}\right)\right)\right] .
\end{gathered}
$$

Hence, we prove the inequality (36) if we use that, according to Proposition A 6,

$$
W_{r} \bigcap_{i=1}^{m}\left[Q_{i}^{\theta^{-}}\left(z_{i}\right)-Q_{i}^{\theta^{-}}\left(z_{i}-\varepsilon_{i}\right)\right]=W_{r} \bigcap_{i=1}^{m}\left[S_{i}^{\theta^{-}}\left(z_{i}\right)-S_{i}^{\theta^{-}}\left(z_{i}-\varepsilon_{i}\right)\right]
$$

for $\varepsilon_{1}, \ldots, \varepsilon_{m}$ sufficiently small.
Proof of Theorem 1. We shall write $\boldsymbol{\theta}$ instead of $\overline{\boldsymbol{\theta}}$ in this proof. Without lack of generality we shall do the proof for $\mathbf{\Sigma}=\mathbf{I}$.
According to Proposition 1 we have

$$
\begin{gathered}
D:=\left|\int_{B} f_{\boldsymbol{\theta}}(\boldsymbol{\theta} \mid \boldsymbol{\eta}) \mathrm{d} \boldsymbol{\theta}-\int_{\boldsymbol{B}} q(\boldsymbol{\theta} \mid \boldsymbol{\eta}) \mathrm{d} \boldsymbol{\theta}\right| \leqq \\
\leqq \int_{\boldsymbol{B}}\left|f_{\zeta}^{\boldsymbol{\theta}}(0)-\tilde{f}_{\boldsymbol{\zeta}}^{\boldsymbol{\theta}}(0)\right|\left|\operatorname{det}\left(\left\{\partial \tau_{i} / \partial \theta_{j}\right\}_{i, j=1}\right)\right| \mathrm{d} \boldsymbol{\theta} .
\end{gathered}
$$

Hence, using Proposition 2, we obtain

$$
\begin{align*}
& D \leqq \int_{B} \frac{\partial^{m}}{\partial z_{1} \ldots \partial z_{m}}\left\{P_{n}\left[\left(\mathbb{R}^{N}-W_{r}\right)_{i=1}^{m} S_{i}^{\theta}\left(z_{i}\right)\right]+\right. \tag{37}\\
& \left.+P_{n}\left[\left(\mathbb{R P}^{N}-W_{r}\right)_{i=1}^{m} Q_{i}^{\theta}\left(z_{i}\right)\right]\right\}_{\mathrm{z}=0}\left|\operatorname{det}\left(\left\{\partial \tau_{i} \mid \partial \theta_{j}\right\}_{i, j=1}^{m}\right)\right| \mathrm{d} \boldsymbol{\theta}= \\
& =\int_{B} \frac{\partial^{m}}{\partial z_{1} \ldots \partial z_{m}} \int_{\mathbb{R}^{N}-w_{r}} \prod_{i=1}^{m}\left[x\left(\boldsymbol{y} ; S_{i}^{\theta}\left(z_{i}\right)\right)+\chi\left(\boldsymbol{y} ; Q_{i}^{\theta}\left(z_{i}\right)\right)\right] \times \\
& \left.\mathrm{dP}_{\eta}(\boldsymbol{y})_{\mathrm{z}=0} \mid \operatorname{det}\left(\left\{\partial_{i} / \partial \theta_{j}\right\}\right\}_{i, j=1}\right) \mid \mathrm{d} \boldsymbol{\theta}
\end{align*}
$$

where $\chi(\boldsymbol{y} ; T)$ denotes the indicator of a set T.
For fixed $\mathbf{y}, \boldsymbol{\theta}$ the functions $z_{i} \mapsto \chi\left(\mathbf{y} ; S_{i}^{\theta}\left(z_{i}\right)\right) ;(i=1, \ldots, m)$ have unit jumps at $\mathbf{z}=\mathbf{0}$ iff $\boldsymbol{\theta}=\theta^{*}(\mathbf{y})$. As a consequence, from (37) it follows

$$
D \leqq 2 \int_{\mathbb{R}^{N}-W_{r}} \chi\left(\theta^{*}(\mathbf{y}) ; B\right) \mathrm{d} P_{\eta}(\mathbf{y}) \leqq 2 p_{0}
$$

Corollary. Let A be an arbitrary measurable subset of U. Then

$$
\left|\int_{A} f_{\boldsymbol{\theta}}(\boldsymbol{\theta} \mid \boldsymbol{\eta}) \mathrm{d} \boldsymbol{\theta}-\int_{\boldsymbol{A}^{\prime} \cap \boldsymbol{\theta}_{\boldsymbol{\eta}}} q(\boldsymbol{\theta} \mid \boldsymbol{\eta}) \mathrm{d} \boldsymbol{\theta}\right| \leqq 3 p_{0}
$$

where $\mathscr{B}_{\boldsymbol{\eta}}:=\left\{\boldsymbol{\theta}: \boldsymbol{\eta}(\boldsymbol{\theta}) \in \mathscr{A}_{\eta}\right\}$.
Proof. We have

$$
\left|\int_{A} f_{\boldsymbol{\theta}^{\wedge}}(\boldsymbol{\theta} \mid \boldsymbol{\eta}) \mathrm{d} \boldsymbol{\theta}-\int_{A \cap \mathbb{B}_{\boldsymbol{\eta}}} f_{\boldsymbol{\theta}^{\wedge}}(\boldsymbol{\theta} \mid \boldsymbol{\eta}) \mathrm{d} \boldsymbol{\theta}\right| \leqq \int_{\mathbb{R}^{N}-W_{r}} f(\boldsymbol{y} \mid \boldsymbol{\eta}) \mathrm{d} \boldsymbol{y}=p_{0} .
$$

4. CONFIDENCE REGIONS FOR $\hat{\boldsymbol{\theta}}$

Let us choose for every $\overline{\boldsymbol{\theta}} \in U_{0}$ a set $I_{\boldsymbol{\theta}^{-}} \subset\left\{\boldsymbol{\theta}: \boldsymbol{\eta}(\boldsymbol{\theta}) \in \mathscr{A}_{\boldsymbol{\eta}_{\left(\theta^{-}\right)}}\right\}$such that

$$
\int_{I_{\bar{\theta}}} q(\boldsymbol{\theta} \mid \boldsymbol{\eta}(\overline{\boldsymbol{\theta}})) \mathrm{d} \boldsymbol{\theta} \geqq 1-\beta .
$$

Then, according to Theorem 1 ,

$$
\int_{I_{\overline{\boldsymbol{\theta}}}} f_{\boldsymbol{\theta}}(\boldsymbol{\theta} \mid \boldsymbol{\eta}(\bar{\theta})) \mathrm{d} \boldsymbol{\theta} \geqq 1-\beta-2 p_{0}
$$

Hence the set

$$
\mathscr{J}_{\boldsymbol{\theta}^{\wedge}}:=\left\{\boldsymbol{\theta}: \boldsymbol{\theta} \in U_{0}, \hat{\boldsymbol{\theta}} \in I_{\boldsymbol{\theta}}\right\}
$$

is a confidence region with the level of significance equal at least to $1-\beta-2 p_{0}$.
Theorem 2. If for every $\theta \in U$ thare is a (differentiable) orthonormal basis $\boldsymbol{I}_{1}(\boldsymbol{\theta}), \ldots$ $\ldots, I_{m}(\theta)$ of the tangent space to \mathscr{E} at the point $\eta(\theta)$, such that

$$
\begin{equation*}
\frac{\partial l_{i}^{\prime}(\boldsymbol{\theta})}{\partial \theta_{j}} I_{k}(\boldsymbol{\theta})=0 ; \quad(i, j, k=1, \ldots, m) \tag{38}
\end{equation*}
$$

then we can take

$$
\mathscr{J}_{\boldsymbol{\theta}^{\wedge}}=\left\{\boldsymbol{\theta}: \boldsymbol{\theta} \in U_{0},\left\|\mathbf{P}^{\theta}[\boldsymbol{\eta}(\hat{\boldsymbol{\theta}})-\boldsymbol{\eta}(\boldsymbol{\theta})]\right\|^{2}<\chi_{\boldsymbol{m}}^{2}(\beta)\right\}
$$

where $\chi_{m}^{2}(\beta)$ is the $(1-\beta)$ quantile of the χ^{2} probability distribution with m degrees of freedom.

Proof. Take $\mathbf{\Sigma}=\mathbf{I}$. The expression in Eq. (9) can be written as

$$
q(\boldsymbol{\theta} \mid \boldsymbol{\eta})=\frac{1}{(2 \pi)^{m / 2}} \exp \left(-\frac{1}{2}\left\|\mathbf{P}^{\theta}[\eta(\boldsymbol{\theta})-\boldsymbol{\eta}]\right\|^{2}\right) \frac{\operatorname{det}\left(\left\{\frac{\partial \boldsymbol{\eta}^{\prime}}{\partial \theta_{j}} \frac{\partial}{\partial \theta_{k}}\left(\mathbf{P}^{\theta}[\eta(\boldsymbol{\theta})-\boldsymbol{\eta}]\right)\right\}_{j, k=1}^{m}\right)}{\operatorname{det}^{1 / 2}\left(\left\{\frac{\partial \boldsymbol{\eta}^{\prime}}{\partial \theta_{j}} \frac{\partial \boldsymbol{\eta}}{\partial \theta_{k}}\right\}_{j, k=1}^{m}\right)} .
$$

Define

$$
v_{i}(\theta):=I_{i}^{\prime}(\theta)[\eta(\theta)-\eta] ; \quad(i=1, \ldots, m) .
$$

Evidently
(40)

$$
\sum_{i=1}^{m} v_{i}^{2}(\boldsymbol{\theta})=\left\|\mathbf{P}^{\theta}[\boldsymbol{\eta}(\boldsymbol{\theta})-\boldsymbol{\eta}]\right\|^{2} .
$$

Further, from (38) it follows that

$$
\frac{\partial v_{i}(\boldsymbol{\theta})}{\partial \theta_{k}}=\boldsymbol{I}_{i}^{\prime}(\boldsymbol{\theta}) \frac{\partial}{\partial \theta_{k}}\left(\mathbf{P}^{\theta}[\boldsymbol{\eta}(\boldsymbol{\theta})-\boldsymbol{\eta}]\right) .
$$

Hence
(41) $\frac{\partial \boldsymbol{\eta}^{\prime}}{\partial \theta_{j}} \frac{\partial}{\partial \theta_{k}}\left(\mathbf{P}^{\theta}[\boldsymbol{\eta}(\boldsymbol{\theta})-\boldsymbol{\eta}]\right)=\sum_{i=1}^{m} \frac{\partial \boldsymbol{\eta}^{\prime}}{\partial \theta_{j}} \boldsymbol{I}_{\boldsymbol{i}} \boldsymbol{I}_{i} \frac{\partial}{\partial \theta_{k}}\left(\mathbf{P}^{\theta}[\boldsymbol{\eta}(\boldsymbol{\theta})-\boldsymbol{\eta}]\right)=\sum_{i=1}^{m} \frac{\partial \boldsymbol{\eta}^{\prime}}{\partial \theta_{j}} \boldsymbol{I}_{i} \frac{\partial v_{i}}{\partial \theta_{k}}$.

From Eqs. (39) - (41) we obtain that

$$
q(\boldsymbol{\theta} \mid \boldsymbol{\eta})=\frac{1}{(2 \pi)^{m / 2}} \exp \left(-\frac{1}{2} \sum_{i} v_{i}^{2}(\boldsymbol{\theta})\right)\left|\operatorname{det}\left(\left\{\frac{\partial v_{i}(\boldsymbol{\theta})}{\partial \theta_{j}}\right\}_{i, j=1}^{m}\right)\right|
$$

hence the random vector $\left(v_{1}, \ldots, v_{m}\right)$ is distributed $N(0, \mathbf{I})$. The needed statement follows.

Example 1. Take $m=1$,

$$
\boldsymbol{I}(\theta)=\frac{\mathrm{d} \boldsymbol{\eta}(\theta) / \mathrm{d} \theta}{\|\mathrm{~d} \boldsymbol{\eta}(\theta) / \mathrm{d} \theta\|}
$$

Then

$$
0=\frac{\mathrm{d}}{\mathrm{~d} \theta}\left(I^{\prime} \boldsymbol{I}\right)=2 \frac{\mathrm{~d} \boldsymbol{l}^{\prime}}{\mathrm{d} \theta} \boldsymbol{I}
$$

hence the assumption (38) is valid.
Example 2. Take \mathscr{E} a subset of the cylinder

$$
\left\{\mathbf{z}: \mathbf{z} \in \mathbb{R}^{N}, z_{1}^{2}=1\right\} .
$$

Evidently Eq. (38) can be satisfied.

APPENDIX A

In this section we present some necessary geometrical statements. We start by some definitions.
A (regular) curve in U is a mapping

$$
\mathbf{g}: t \in(a, b) \mapsto \mathbf{g}(t) \in U
$$

such that the vector of second order derivatives $\mathrm{d}^{2} \mathbf{g} / \mathrm{d} t^{2}$ exists and it is continuous
on (a, b). To the curve g we can associate a curve

$$
\gamma: t \in(a, b) \mapsto \gamma(t) \in \mathscr{E}
$$

according to

(A 1)

$$
\gamma(t)=\eta[\boldsymbol{g}(t)] .
$$

The curve γ is called a geodesics in the manifold \mathscr{E} (and correspondingly \mathbf{g} is called a geodesics in U) iff
a) the parameter t is normed so that

$$
\begin{equation*}
\left\|\frac{\mathrm{d} \gamma}{\mathrm{~d} t}\right\|=1 ; \quad(t \in(a, b)) \tag{A2}
\end{equation*}
$$

b) the vector of curvature $\mathrm{d}^{2} \gamma / \mathrm{d} t^{2}$ is orthogonal to \mathscr{E} i.e.

$$
\begin{equation*}
\left\langle\frac{\mathrm{d}^{2} \boldsymbol{\eta}[\mathbf{g}(t)]}{\mathrm{d} t^{2}}, \frac{\partial \boldsymbol{\eta}[\mathbf{g}(t)]}{\partial \theta_{i}}\right\rangle=0 ; \quad(i=1, \ldots, m) \tag{A3}
\end{equation*}
$$

As known from differential geometry [3, 7], every nonzero solution g of the differential equations (A 3) ($=$ the Euler-Lagrange equations) is a geodesics in U. Moreover, for every point $\overrightarrow{\boldsymbol{\theta}} \in U$ and every nonzero vector $\boldsymbol{u} \in \mathbb{R}^{m}$ there is a geodesics \mathbf{g} such that for some \bar{t}

$$
\begin{equation*}
\boldsymbol{g}(\bar{t})=\overline{\boldsymbol{\theta}} . \quad \mathrm{d} \boldsymbol{g}(\bar{t}) / \mathrm{d} t \approx \mathbf{u} . \tag{A4}
\end{equation*}
$$

Correspondingly, to every point $\eta(\overline{\boldsymbol{\theta}}) \in \mathscr{E}$ and to every unit vector $\mathbf{w} \in \mathbb{R}^{N}$ which is tangent to \mathscr{E} at $\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})$ (i.e. \boldsymbol{w} is a linear combination of the vectors $\partial \boldsymbol{\eta}(\overline{\boldsymbol{\theta}}) / \partial \theta_{1}, \ldots$ $\left.\ldots, \partial \boldsymbol{\eta}(\overline{\boldsymbol{\theta}}) / \partial \theta_{m}\right)$ there is a geodesics γ such that

$$
\text { (A 5) } \quad \gamma(\bar{z})=\boldsymbol{\eta}(\overline{\boldsymbol{\theta}}), \quad \mathrm{d} \gamma(\bar{t}) / \mathrm{d} t=\mathbf{w}
$$

We shall use the abbreviated notations

$$
\begin{aligned}
& \dot{\gamma}(\bar{t})=\mathrm{d} \gamma(t) /\left.\mathrm{d} t\right|_{t=\bar{t}} \\
& \ddot{\gamma}(\bar{t})=\mathrm{d}^{2} \gamma(t) /\left.\mathrm{d} t^{2}\right|_{t=\bar{i}}
\end{aligned}
$$

We denote further

$$
\begin{align*}
& \varrho_{\gamma}(t):=\|\ddot{\gamma}(t)\|^{-1} \tag{A6}\\
& \mathbf{e}_{\gamma}(t):=\ddot{\gamma}(t) \varrho_{\gamma}(t)
\end{align*}
$$

the radius of curvature and the unit vector oriented from the point $\gamma(t)$ toward the centre of curvature. By

$$
\begin{equation*}
x_{\gamma}(t):=\left\{\boldsymbol{y}: \mathbf{y} \in \mathbb{R}^{N},\langle\gamma(t)-\mathbf{y}, \dot{\gamma}(t)\rangle=0\right\} \tag{A7}
\end{equation*}
$$

we denote the hyperplane orthogonal to the curve γ.
Denote by $B(\boldsymbol{\theta}, \mathrm{y})$ (or simply by B) the $m \times m$ symmetric matrix with the entries

$$
\begin{equation*}
B_{i j}(\theta, \boldsymbol{y}):=\left\langle\frac{\partial \boldsymbol{\eta}}{\partial \theta_{i}}, \frac{\partial \boldsymbol{\eta}}{\partial \theta_{j}}\right\rangle+\left\langle\boldsymbol{\eta}(\boldsymbol{\theta})-\boldsymbol{y}, \frac{\partial^{2} \boldsymbol{\eta}}{\partial \theta_{i} \partial \theta_{j}}\right\rangle \tag{A8}
\end{equation*}
$$

Proposition A 1. Let be $\boldsymbol{y} \in \mathbb{R}^{N}$ and let $\overline{\boldsymbol{\theta}}$ be a solution of Eqs. (4). $B(\overline{\boldsymbol{\theta}}, \boldsymbol{y})$ is positive semidefinite (= p.s.) iff for every geodesics γ such that $\gamma(\bar{i})=\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})$ for some \bar{i}, we have the inequality

$$
\begin{equation*}
\left\langle\boldsymbol{y}-\boldsymbol{\eta}(\overline{\boldsymbol{\theta}}), \mathbf{e}_{\gamma}(\bar{t}) \leqq e_{\boldsymbol{\gamma}}(\bar{t}) .\right. \tag{A9}
\end{equation*}
$$

There is the equality sign in (A 9) for some geodesics γ iff $\operatorname{det} B(\overline{\boldsymbol{\theta}}, \mathbf{y})=0$.
Proof. Let $\boldsymbol{\gamma}=\boldsymbol{\eta} \circ \boldsymbol{g}$ be a geodesics and let us denote $\mathbf{c}:=\dot{\boldsymbol{g}}(t)$. From (A 8) we obtain

$$
\begin{equation*}
\mathbf{c}^{\prime} \mathbf{B} \mathbf{c}=1-\left\langle\boldsymbol{y}-\boldsymbol{\eta}(\overline{\boldsymbol{\theta}}), \mathbf{e}_{\boldsymbol{\gamma}}(\overline{\mathrm{t}})\right\rangle \varrho_{\gamma}^{-1}(\overline{\mathrm{t}}) . \tag{A10}
\end{equation*}
$$

i) If \mathbf{B} is p.s. then from Eq.(A 10) follows Eq.(A 9). Conversely, if Eq.(A9) is valid for every geodesics γ then Eq. (A 10) implies that $\mathbf{c}^{\prime} \mathbf{B c} \geqq 0$ for every $\mathbf{c} \in \mathbb{R}^{n}$, such that $\mathbf{c}=\dot{\boldsymbol{g}}(t)$ for some geodesics \mathbf{g}. That means, according to Eqs. (A 2) and (A 4), $\boldsymbol{c}^{\prime} \mathbf{B} \boldsymbol{c} \geqq 0$ for every \mathbf{c} which is a solution of

$$
\begin{equation*}
\boldsymbol{c}^{\prime} \mathbf{M}(\overline{\boldsymbol{\theta}}) \mathbf{c}=1 \tag{A11}
\end{equation*}
$$

Since $\mathbf{M}(\overline{\boldsymbol{\theta}})$ is positive definite it follows that \mathbf{B} is p.s.
ii) If $\operatorname{det} \mathbf{B}=0$ then $\mathbf{B} \mathbf{c}=0$ for some $\mathbf{c} \in \mathbb{R}^{m}, \mathbf{c} \neq \mathbf{0}$. Leg \boldsymbol{g} be the geodesics in U, such that $\mathbf{g}(\bar{i})=\overline{\boldsymbol{\theta}}$ and that $\dot{\mathbf{g}}(\bar{i}) \approx \mathbf{c}$. Take $\boldsymbol{\gamma}=\boldsymbol{\eta} \circ \mathbf{g}$. From (A 10) it follows that

$$
\left\langle\boldsymbol{y}-\boldsymbol{\eta}(\overline{\boldsymbol{\theta}}), \mathbf{e}_{\boldsymbol{\gamma}}(\bar{t})\right\rangle=\varrho_{\gamma}(\bar{t}) .
$$

Conversely, if this equality is valid for some geodesics $\gamma=\boldsymbol{\eta} \circ \boldsymbol{g}$ then, according to (A 10), $\mathbf{c}^{\prime} \mathbf{B c}=0$ for some $\boldsymbol{\varepsilon} \neq \mathbf{0}$. Since \mathbf{B} is p.s. there is a matrix \mathbf{A} such that $\mathbf{B}=\mathbf{A}^{\prime} \mathbf{A}$. Therefore $\|\mathbf{A c}\|^{2}=\boldsymbol{c}^{\prime} \mathbf{B} \mathbf{c}=0$. Thus $\mathbf{B c}=0$, and $\operatorname{det} \mathbf{B}=0$.
Corollary A 1. Let $\overline{\boldsymbol{\theta}}$ be a solution of Eqs. (4) and let $\|\boldsymbol{y}-\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})\|<r$. Then $\overline{\boldsymbol{\theta}}$ is the 1.s. estimate $\hat{\boldsymbol{O}}(\mathbf{y})$.
Proof. We have

$$
\left\langle\boldsymbol{y}-\boldsymbol{\eta}(\overline{\boldsymbol{\theta}}), \mathbf{e}_{\gamma}(\bar{t})\right\rangle \leqq\|\boldsymbol{y}-\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})\|<r \leqq \varrho_{\gamma}(\bar{t}) .
$$

Hence the matrix with entries

$$
\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}}\|\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})-\boldsymbol{y}\|^{2}=2 \mathbf{B}_{i j}(\overline{\boldsymbol{\theta}}, \boldsymbol{y})
$$

is p.d. and $\overrightarrow{\boldsymbol{\theta}}$ is a relative minimum. The equality $\overline{\boldsymbol{\theta}}=\hat{\boldsymbol{\theta}}(\boldsymbol{y})$ then follows from the assumption AS 3.

Let us fix a point $\boldsymbol{\eta} \in \mathscr{E}$. Let us denote

$$
\begin{align*}
& W_{r}:=\left\{\boldsymbol{y}: \mathbf{y} \in \mathbb{R}^{N},\|\mathbf{y}-\boldsymbol{\eta}\|<r\right\}, \tag{A12}\\
& \bar{W}_{r}:\left\{\mathbf{y}: \mathbf{y} \in \mathbb{R}^{N},\|\mathbf{y}-\boldsymbol{\eta}\| \leqq r\right\} .
\end{align*}
$$

Cf. Eqs. (5), (A 7) and (17) for the definitions of $\chi(\theta), \chi_{\gamma}(t)$ and \mathscr{A}_{η}. From Corollary

A 1 and from the assumptions AS 2 , AS 3 it follows that we can write

$$
\begin{equation*}
\mathscr{A}_{\boldsymbol{\eta}}=\left\{\boldsymbol{\eta}(\boldsymbol{\theta}): \boldsymbol{\theta} \in U, \underset{\mathbf{z} \in \mathbb{R}^{\boldsymbol{N}}}{\exists} \mathbf{z} \in \chi(\boldsymbol{\theta}),\|\mathbf{z}-\boldsymbol{\eta}\|<r,\|\mathbf{z}-\boldsymbol{\eta}(\boldsymbol{\theta})\|<r\right\} . \tag{A13}
\end{equation*}
$$

Proposition A 2. If $\boldsymbol{y} \in W_{\boldsymbol{r}} \cap \boldsymbol{\chi}(\overline{\boldsymbol{\theta}})$ and $\boldsymbol{\eta}(\overline{\boldsymbol{\theta}}) \in \mathscr{A}_{\boldsymbol{\eta}}$ then $\|\boldsymbol{y}-\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})\|<r$.
Proof. According to (A 13) there is a point $\mathbf{z} \in \chi(\bar{\theta}) \cap W_{r}$ such that $\|\mathbf{z}-\boldsymbol{\eta}(\bar{\theta})\|<r$. Suppose that $\|\boldsymbol{y}-\boldsymbol{\eta}(\bar{\theta})\| \geqq r$. Consider the N-dimensional open sphere

$$
\mathscr{S}:=\left\{\mathbf{w}: \mathbf{w} \in \mathbb{R}^{N},\|\mathbf{w}-\mathbf{c}\|<r\right\}
$$

which is tangent to \mathscr{E} at the point $\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})$ and is such that \boldsymbol{c} is on the straight line connecting \boldsymbol{y} with \mathbf{z}. Evidently \mathbf{c} is on the abscissa with the endpoints $\boldsymbol{y}, \boldsymbol{z}$, hence $\|\boldsymbol{c}-\boldsymbol{\eta}\|<r$. It follows that $\eta \in \mathscr{S}$. But $\mathscr{S} \cap \mathscr{A}_{\eta}=\emptyset$. This is a contradiction to $\boldsymbol{\eta} \in \mathscr{A}_{\eta}$.

Proposition A 3. Let γ be a geodesics and $\gamma(t) \in \mathscr{A}_{\eta}$ for some t. Then

$$
\frac{\mathrm{d}^{2}\|\gamma(t)-\boldsymbol{\eta}\|^{2}}{\mathrm{~d} t^{2}}>0
$$

Proof. Take $\boldsymbol{\theta} \in U$ such that $\boldsymbol{\eta}(\boldsymbol{\theta})=\gamma(t)$. Denote by $\boldsymbol{\eta}_{\boldsymbol{\theta}}$ the point of projection of $\boldsymbol{\eta}$ onto $\boldsymbol{\chi}(\boldsymbol{\theta})$. From Eqs. (5) and (A 3) we obtain

$$
\begin{equation*}
\left\langle\boldsymbol{\eta}_{\boldsymbol{\theta}}-\boldsymbol{\eta}, \ddot{\gamma}(t)\right\rangle=0 \tag{A14}
\end{equation*}
$$

According to (A 13) take $\mathbf{y} \in \mathbb{R}^{N}$ such that $\|\boldsymbol{y}-\boldsymbol{\eta}\|<r,\|\boldsymbol{y}-\boldsymbol{\eta}(\boldsymbol{\theta})\|<r, \boldsymbol{y} \in \varkappa(\boldsymbol{\theta})$. We have $\left\|\boldsymbol{\eta}-\boldsymbol{\eta}_{\boldsymbol{\theta}}\right\| \leqq\|\boldsymbol{\eta}-\boldsymbol{y}\|<r$, hence from Proposition A 2 we obtain $\left\|\boldsymbol{\eta}_{\boldsymbol{\theta}}-\gamma(t)\right\|<r$. Therefore using (A 14) we can write

$$
\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}\|\gamma(t)-\boldsymbol{\eta}\|^{2}=1+\left\langle\gamma(t)-\boldsymbol{\eta}_{\boldsymbol{\theta}}, \ddot{\gamma}(t)\right\rangle \geqq 1-\left\|\boldsymbol{\eta}_{\boldsymbol{\theta}}-\gamma(t)\right\| \varrho_{\gamma}(t)>0 .
$$

Proposition A 4. Let be $\boldsymbol{\eta}\left(\boldsymbol{\theta}^{(1)}\right) \in \mathscr{A}_{\eta}, \boldsymbol{\eta}\left(\boldsymbol{\theta}^{(2)}\right) \in \mathscr{A}_{\boldsymbol{\eta}}$. Then $\chi\left(\boldsymbol{\theta}^{(1)}\right) \cap \chi\left(\boldsymbol{\theta}^{(2)}\right) \cap W_{r}=\emptyset$.
Proof. According to the assumption AS 3, $\mathbf{z} \in \chi\left(\boldsymbol{\theta}^{(1)}\right) \cap \chi\left(\boldsymbol{\theta}^{(2)}\right)$ implies $\| \mathbf{z}$ -$-\boldsymbol{\eta}\left(\boldsymbol{\theta}^{(1)}\right) \|>r$ or $\left\|\mathbf{z}-\boldsymbol{\eta}\left(\boldsymbol{\theta}^{(2)}\right)\right\|>r$. Hence, according to Proposition A $2, \mathbf{z} \notin W_{r}$.

Proposition A2. Let γ be a geodesics, $\gamma(\bar{t})=\boldsymbol{\eta}(\bar{\theta}) \in \mathscr{A}_{\boldsymbol{\eta}}$. Then there is a neighbourhood of $\overline{\boldsymbol{\theta}}, U_{\boldsymbol{\theta}^{-}} \subset U$, such that $\boldsymbol{\eta}\left(U_{\boldsymbol{\theta}^{-}}\right) \subset \mathscr{A}_{\boldsymbol{\eta}}$.

Proof. Let η_{θ} be the point of projection of $\boldsymbol{\eta}$ onto $\chi(\boldsymbol{\theta})$, i.e. the solution of the equations

$$
\left\langle\boldsymbol{\eta}_{\boldsymbol{\theta}}-\boldsymbol{\eta}(\boldsymbol{\theta}), \frac{\partial \boldsymbol{\eta}}{\partial \theta_{i}}\right\rangle=0 ; \quad(i=1, \ldots, m)
$$

which satisfies the equality

$$
\boldsymbol{\eta}_{\boldsymbol{\theta}}-\boldsymbol{\eta}=\sum_{j=1}^{m} k_{j}^{(\boldsymbol{\theta})} \frac{\partial \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \theta_{j}}
$$

for some $k_{1}^{(\boldsymbol{\theta})}, \ldots, k_{m}^{(\boldsymbol{\theta})}$. Using the implicit function theorem (cf. [2], Theorem 211) we may verify that the mapping $\boldsymbol{\theta} \mapsto \boldsymbol{\eta}_{\boldsymbol{\theta}}$ is continuous in a neighbourhood $V_{\boldsymbol{\theta}^{-}}$of $\overline{\boldsymbol{\theta}}$.
We have $\left\|\boldsymbol{\eta}-\boldsymbol{\eta}_{\boldsymbol{\theta}}-\right\|=\min \{\|\boldsymbol{\eta}-\boldsymbol{z}\|: \mathbf{z} \in \boldsymbol{x}(\overline{\boldsymbol{\theta}})\}<r$, because $\eta(\bar{\theta}) \in \mathscr{A}_{\boldsymbol{\eta}}$. Hence $\left\|\boldsymbol{\eta}_{\boldsymbol{\theta}^{-}}-\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})\right\|<r$ (Proposition A 2). From the continuity of the mappings $\boldsymbol{\theta} \mapsto \boldsymbol{\eta}(\boldsymbol{\theta})$, $\boldsymbol{\theta} \mapsto \boldsymbol{\eta}_{\boldsymbol{\theta}}$ we have a neighbourhood $U_{\boldsymbol{\theta}^{-}} \subset V_{\boldsymbol{\theta}^{-}}$such that

$$
\left\|\boldsymbol{\eta}_{\boldsymbol{\theta}}-\boldsymbol{\eta}\right\|<r, \quad\left\|\boldsymbol{\eta}_{\boldsymbol{\theta}}-\boldsymbol{\eta}(\boldsymbol{\theta})\right\|<r ; \quad\left(\boldsymbol{\theta} \in U_{\boldsymbol{\theta}^{-}}\right) .
$$

Therefore, according to (A 13) we have $\eta(\theta) \in \mathscr{A}_{\eta} ;\left(\boldsymbol{\theta} \in U_{\theta}-\right)$.
Let us denote

$$
\begin{gather*}
t(\boldsymbol{y}):=\underset{t}{\operatorname{Arg} \min }\|\gamma(t)-\boldsymbol{y}\|, \tag{A15}\\
S_{\gamma}(t):=\left\{\boldsymbol{y}: \mathbf{y} \in \mathbb{R}^{N}, \frac{\mathrm{~d}}{\mathrm{~d} t}\|\gamma(t)-\boldsymbol{y}\|^{2}>0\right\} \\
Q_{r}(t):=\left\{\boldsymbol{y}: \boldsymbol{y} \in \mathbb{R}^{N}, \frac{\mathrm{~d}}{\mathrm{~d} t}\|\gamma(t)-\boldsymbol{\eta}\|_{r(\boldsymbol{y})}^{2}<\frac{\mathrm{d}}{\mathrm{~d} t}\|\gamma(t)-\boldsymbol{\eta}\|^{2}\right\} .
\end{gather*}
$$

Proposition A 6. Let $\boldsymbol{\gamma}$ be a geodesics, $\gamma(\bar{t})=\boldsymbol{\eta}(\overline{\boldsymbol{\theta}}) \in \mathscr{A}_{\boldsymbol{\eta}}, \boldsymbol{\eta}\left(U_{\boldsymbol{\theta}^{-}}\right) \subset \mathscr{A}_{\boldsymbol{\eta}}, \gamma(t) \in\left(U_{\boldsymbol{\theta}^{-}}\right)$, $t<\bar{i}$.

Then
(A 18)

$$
W_{r} \cap\left[S_{\gamma}(t)-S_{\gamma}(t)\right]=W_{r} \cap\left[Q_{\gamma}(\tilde{t})-Q_{\gamma}(t)\right] .
$$

Proof. From Proposition A 3 it follows that the function $t \mapsto(\mathrm{~d} / \mathrm{d} t)\|\gamma(t)-\boldsymbol{\eta}\|^{2}$ is increasing as long as $\gamma(t) \in U_{\boldsymbol{\theta}^{-}}$. Evidently $(\mathrm{d} / \mathrm{d} t)\|\gamma(t)-\boldsymbol{y}\|_{(())}^{2}=0$. Hence, for $t<\tilde{i}, \gamma(t) \in U_{\theta^{-}}$we have

$$
\begin{equation*}
\boldsymbol{y} \in Q_{\gamma}(\bar{t})-Q_{\gamma}(t) \Leftrightarrow t \leqq t(\boldsymbol{y})<\bar{t} . \tag{A19}
\end{equation*}
$$

The halfspaces $S_{r}(\bar{t})$, resp. $S_{\gamma}(t)$, are limited by the hyperplanes $x_{\gamma}(\bar{t})$, resp. $x_{\gamma}(t)$. Therefore from Proposition A 4 it follows that

$$
\langle t, \bar{t})=\left\{t(\boldsymbol{y}): \mathbf{y} \in W_{\mathbf{r}} \cap\left[S_{\gamma}(\bar{t})-S_{\gamma}(t)\right]\right\} .
$$

Comparing this with Eq. (A 19) we obtain Eq. (A 18).
Take a point $\overline{\boldsymbol{\theta}} \in U$ such that $\boldsymbol{\eta}(\bar{\theta}) \in \mathscr{A}_{\eta}$. In the remaining part of the Appendix we shall introduce adequate local coordinates on \mathscr{E} and local coordinates on \mathbb{R}^{N} in a neighbourhood of the point $\boldsymbol{\eta}(\overline{\boldsymbol{\theta}})$.

Take m geodesics $\gamma^{(1)}, \ldots, \gamma^{(m)}$ such that

$$
\begin{align*}
& \gamma^{(i)}(0)=\boldsymbol{\eta}(\overline{\boldsymbol{\theta}}) ; \quad(i=1, \ldots, m) . \tag{A20}\\
& \left.\dot{\gamma}^{(i)}(0), \dot{\gamma}^{(j)}(0)\right\rangle=0 ; \quad(i \neq j) .
\end{align*}
$$

We introduce new local coordinates on $\mathscr{E}, t_{1}=\tau_{1}(\theta), \ldots, t_{m}=\tau_{m}(\theta)$ by the
equations

$$
\left\langle\boldsymbol{\eta}(\theta)-\gamma^{(i)}\left(t_{i}\right), \dot{\gamma}^{(i)}\left(t_{i}\right)\right\rangle=0 ; \quad(i=1, \ldots, m)
$$

From the implicit function theorem (cf. [2]) it follows that the functions $\tau_{1}(\theta), \ldots$ $\ldots, \tau_{m}(\theta)$ are one-to-one and differentiable in a neighbourhood $V_{\theta^{-}} \subset U_{\theta^{-}}$.
Analogically, we define new coordinates $x_{1}=\xi_{1}(\mathbf{y}), \ldots, x_{N}=\xi_{N}(\mathbf{y})$ in the set $\mathscr{G}_{\boldsymbol{\theta}^{-}}:=\left\{\boldsymbol{y}: \mathbf{y} \in \mathbb{R}^{\boldsymbol{N}}, \boldsymbol{y} \in \chi(\boldsymbol{\theta}), \boldsymbol{\theta} \in V_{\boldsymbol{\theta}^{-}}\right\}$by the equations

$$
\begin{equation*}
\left\langle\boldsymbol{\eta}\left[\theta^{*}(\mathbf{y})\right]-\gamma^{(i)}\left(x_{i}\right), \dot{\gamma}^{(i)}\left(x_{i}\right)\right\rangle=0 ; \quad(i=1, \ldots, m) \tag{A22}
\end{equation*}
$$

$$
\xi_{i}(\mathbf{y}):=\left\langle\boldsymbol{y}-\boldsymbol{\eta}\left[\boldsymbol{\theta}^{*}(\boldsymbol{y})\right], \mathbf{w}^{(i)}\left[\boldsymbol{\theta}^{*}(\boldsymbol{y})\right]\right\rangle ; \quad(i=m+1, \ldots, N)
$$

where $\boldsymbol{w}^{(m+1)}(\boldsymbol{\theta}), \ldots, \boldsymbol{w}^{(\lambda)}(\boldsymbol{\theta})$ is an orthonormal basis of $\{\boldsymbol{y}-\boldsymbol{\eta}(\boldsymbol{\theta}): \mathbf{y} \in \boldsymbol{\chi}(\boldsymbol{\theta})\}$ and $\theta^{*}(y)$ is the solution of Eq. (4) which is in $V_{\theta^{-}}$.

Other coordinates $z_{1}=\zeta_{1}(\mathbf{y}), \ldots, z_{N}=\zeta_{N}(\boldsymbol{y})$ can be introduced as follows. First we define z_{1}, \ldots, z_{m} by

$$
\begin{equation*}
\left\langle\mathbf{y}-\gamma^{(i)}\left(z_{i}\right), \dot{\gamma}^{(i)}\left(z_{i}\right)\right\rangle=0 ; \quad(i=1, \ldots, m) \tag{array}
\end{equation*}
$$

Further we denote by $\tilde{\theta}(\boldsymbol{y}) \in U$ the vector defined by

$$
\{\boldsymbol{\eta}[\tilde{\boldsymbol{\theta}}(\boldsymbol{y})]\}=\mathscr{A}_{\eta} \cap \bigcap_{i=1}^{m} x_{i}\left[\zeta_{i}(\boldsymbol{y})\right]
$$

(cf. Eq. (A 7) for the definition of $\left.\varkappa_{i}(t):=\varkappa_{\gamma^{(i)}}(t)\right)$. Denote by $\boldsymbol{r}^{(m+1)}(\boldsymbol{y}), \ldots, \boldsymbol{r}^{(N)}(\boldsymbol{y})$ an orthonormal basis of $\bigcap_{i=1}^{m} x_{i}\left[\zeta_{i}(\boldsymbol{y})\right]$. Let us define

$$
\begin{equation*}
\zeta_{j}(\mathbf{y}):=\left\langle\mathbf{y}-\boldsymbol{\eta}[\tilde{\theta}(\mathbf{y})], \boldsymbol{r}^{(j)}(\mathbf{y})\right\rangle ; \quad(j=m+1, \ldots, N) \tag{A24}
\end{equation*}
$$

Evidently

$$
\begin{gather*}
\boldsymbol{\theta}^{*}(\mathbf{y})=\overline{\boldsymbol{\theta}} \Rightarrow \tilde{\boldsymbol{\theta}}(\mathbf{y})=\overline{\boldsymbol{\theta}}, \boldsymbol{r}^{(j)}(\mathbf{y})=\mathbf{w}^{(j)}[\hat{\boldsymbol{\theta}}(\mathbf{y})]=\mathbf{w}^{(j)}(\overline{\boldsymbol{\theta}}) \tag{A25}\\
x_{1}=\ldots=x_{m}=0, \quad z_{1}=\ldots=z_{m}=0 \quad x_{m+1}=z_{m+1}, \ldots, x_{N}=z_{N}
\end{gather*}
$$

The functions $\zeta_{1}, \ldots, \zeta_{N}$ are one-to-one and differentiable in the set $\mathscr{G}_{\theta^{-}}$with $V_{\theta^{-}}$ choosen adequatelly. Evidently

$$
\begin{align*}
\xi_{i}(\boldsymbol{y}) & =\tau_{i}\left[\theta^{*}(\mathbf{y})\right] \tag{A26}\\
\zeta_{i}(\mathbf{y}) & =\tau_{i}[\tilde{\theta}(\mathbf{y})] ; \quad(i=1, \ldots, m)
\end{align*}
$$

We shall compute the Jacobi matrices of the mappings $\boldsymbol{\theta} \mapsto \boldsymbol{t}, \mathbf{x} \mapsto \mathbf{y}, \mathbf{y} \mapsto \mathbf{z}$.
Differentiating Eqs. (A 21) with respect to θ_{j} we obtain

$$
\left\langle\frac{\partial \boldsymbol{\eta}(\theta)}{\partial \theta_{j}}, \gamma^{(i)}\left(t_{i}\right)\right\rangle+\sum_{k=1}^{m} \frac{\partial}{\partial t_{k}}\left\langle\boldsymbol{\eta}(\theta)-\gamma^{(i)}\left(t_{i}\right), \dot{\gamma}^{(i)}\left(t_{i}\right)\right\rangle \frac{\partial \tau_{k}}{\partial \theta_{j}}=0
$$

Hence

$$
\begin{equation*}
\left.\frac{\partial \tau_{i}}{\partial \theta_{j}}\right|_{\boldsymbol{\theta}=\overline{\boldsymbol{\theta}}}=\left\langle\frac{\partial \eta(\overline{\boldsymbol{\theta}})}{\partial \theta_{j}}, \dot{\gamma}^{(i)}(0)\right\rangle ; \quad(i, j=1, \ldots, m) \tag{A27}
\end{equation*}
$$

Analogously, from Eqs. (A 23) we obtain
(A 28) $\left.\frac{\partial \zeta_{i}}{\partial y_{j}}\right|_{\boldsymbol{\theta}^{*}(\gamma)=\bar{\theta}}=\frac{\dot{\gamma}_{j}^{(i)}(0)}{\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}\left\|\gamma^{(i)}(t)-\boldsymbol{y}\right\|_{t=0}^{2}} ; \quad(i=1, \ldots, m, j=1, \ldots, N)$
From (A 24) and (A 26) we obtain

$$
\zeta_{i}(\mathbf{y})=\left\langle\mathbf{y}-\boldsymbol{\eta}\left[\tau^{-1}\left(\zeta_{1}(\mathbf{y}), \ldots, \zeta_{m}(\mathbf{y})\right)\right], \quad \mathbf{r}^{(i)}(\mathbf{y})\right\rangle ; \quad(i=m+1, \ldots, N)
$$

Hence
(A 29)

$$
\begin{gathered}
\left.\frac{\partial \zeta_{i}}{\partial y_{j}}\right|_{\hat{\boldsymbol{\theta}}(\boldsymbol{y})=\overline{\boldsymbol{\theta}}}=r_{j}^{(i)}(\mathbf{y})+\sum_{s=1}^{m} Q_{i s} \frac{\partial \zeta_{s}}{\partial y_{j}}=w_{j}^{(i)} \\
(i=m+1, \ldots, N, j=1, \ldots, N)
\end{gathered}
$$

where

$$
Q_{i s}:=\frac{\partial}{\partial z_{s}}\left\langle\boldsymbol{y}-\left.\eta\left[\tau^{-1}\left(z_{1}, \ldots, z_{m}\right), \boldsymbol{w}^{(i)}(\overline{\boldsymbol{\theta}})\right\rangle\right|_{z_{1}=\ldots=z_{m}=0}=0\right.
$$

From Eqs. (A 22) and (A 26) we obtain

$$
\boldsymbol{y}=\eta\left[\tau^{-1}\left(x_{1}, \ldots, x_{m}\right)+\sum_{j=m+1}^{N} x_{j} \boldsymbol{w}^{(j)}\left[\tau^{-1}\left(x_{1}, \ldots, x_{m}\right)\right]\right.
$$

It follows that for $i=1, \ldots, N$

$$
\begin{align*}
\left.\frac{\partial y_{i}}{\partial x_{j}}\right|_{\boldsymbol{\theta}^{*}(\tilde{)})=\overline{\boldsymbol{\theta}}} & =\left.\frac{\partial \boldsymbol{\eta}_{i}\left[\tau^{-1}\left(x_{1}, \ldots, x_{m}\right)\right]}{\partial x_{j}}\right|_{x_{1}=\ldots=x_{m}=0} ; \quad(j=1, \ldots, m) \tag{A30}\\
& =w_{(j)}^{i}(\bar{\theta}) ; \quad(j=m+1, \ldots, N)
\end{align*}
$$

Proposition A 7. If $\Sigma=I$ then

$$
\{\boldsymbol{J}\}_{i j}:=\left.\frac{\partial z_{i}}{\partial x_{j}}\right|_{x_{1}=\ldots=x_{m}=0} \begin{cases}=1 ; & i=j, \\ =0 ; & i \neq j ; \quad(i, j=1, \ldots, N) .\end{cases}
$$

Proof. Let us denote $\mathrm{d}^{(i)}:=\dot{\gamma}^{(i)}(0) / \frac{1}{2}\left(\mathrm{~d}^{2} / \mathrm{d} t^{2}\right)\left\|\gamma^{(i)}(t)-\boldsymbol{\gamma}\right\|_{0}^{2}$.
We have $\{\boldsymbol{J}\}_{i j}=\sum_{k}\left(\partial z_{i} / \partial y_{k}\right)\left(\partial y_{k} / \partial x_{j}\right)$. Hence from Eqs. (A 28)-(A 30) we obtain (A 31)

$$
\mathfrak{J}=\left[\begin{array}{l}
\boldsymbol{d}^{(1)^{\prime}} \\
\vdots \\
\boldsymbol{d}^{(m)^{\prime}} \\
\mathbf{w}_{m+1}^{\prime}(\theta) \\
\vdots \\
\mathbf{w}_{N}^{\prime}(\boldsymbol{\theta})
\end{array}\right\}\left(\left.\frac{\partial \eta\left[\tau^{-1}(\boldsymbol{x})\right]}{\partial x_{1}}\right|_{\mathbf{x}=0}, \ldots,\left.\frac{\partial \boldsymbol{\eta}\left[\tau^{-1}(\mathbf{x})\right]}{\partial x_{m}}\right|_{\mathbf{x}=0}, \quad \mathbf{w}_{m+1}(\theta), \ldots, \mathbf{w}_{N}(\boldsymbol{\theta})\right)=\mathbf{I}
$$

since, if $\boldsymbol{\theta}^{*}(\mathbf{y})=\overline{\boldsymbol{\theta}}$ then $\partial \boldsymbol{\eta}\left[\tau^{-1}(\mathbf{x})\right] / \partial x_{i}=\gamma^{(i)}(0)$.

APPENDIX B (COMPUTATION)

It may be useful to consider the computational aspect when computing the density $q(\hat{\boldsymbol{\theta}} \mid \boldsymbol{\theta})$ and the level of regularity $1-p_{0}$. To be concrete, let us consider the following example.

Take

$$
\begin{array}{ll}
\eta_{x}(\theta)=e^{\theta_{1} x} \sin \theta_{2} x ; & \theta_{1} \in(0,10) \\
& \theta_{2} \in(0,2 \pi)
\end{array}
$$

take $\Sigma=\mathbf{I}$, and take 4 design points $x_{1}=1, x_{2}=2, x_{3}=3, x_{4}=4$.
The program for the computation of $f(\hat{\boldsymbol{\theta}} \mid \boldsymbol{\theta})$:
Input variables: $\theta_{1}, \theta_{2}, \hat{\theta}_{1}, \hat{\theta}_{2}$ (4 numbers)
Subroutines:
(A)

$$
\eta_{i}(\theta)=\mathrm{e}^{i \theta_{1}} \sin i \theta_{2} ; \quad(i=1,2,3,4)
$$

(B)

$$
\frac{\partial \eta_{i}(\theta)}{\partial \theta_{1}}=i \mathrm{e}^{i \theta_{1}} \sin i \theta_{2}
$$

(C)

$$
\frac{\partial \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{2}}=i \mathrm{e}^{i \theta_{1}} \cos i \theta_{2}
$$

(D)

$$
\frac{\partial^{2} \eta_{i}(\theta)}{\partial \theta_{1}^{2}}=i^{2} e^{i \theta_{1}} \sin i \theta_{2}
$$

(E)

$$
\frac{\partial^{2} \eta_{i}(\theta)}{\partial \theta_{1} \partial \theta_{2}}=i^{2} \mathrm{e}^{i \theta_{1}} \cos i \theta_{2}
$$

$$
\frac{\partial^{2} \eta_{i}(\theta)}{\partial \theta_{2}^{2}}=-i^{2} \mathrm{e}^{i \theta_{1}} \sin i \theta_{2}
$$

Subroutines for matrices:
(H)

$$
\begin{equation*}
M_{j k}(\theta)=\sum_{i=1}^{4} \frac{\partial \eta_{i}(\theta)}{\partial \theta_{j}} \frac{\partial \eta_{i}(\theta)}{\partial \theta_{k}} ; \quad(j, k=1,2) \tag{G}
\end{equation*}
$$

$$
\mathbf{M}(\theta) \mapsto \mathbf{M}^{-1}(\theta)
$$

$$
\begin{equation*}
P_{j k}^{\theta}=\sum_{p, q=1}^{2} \frac{\partial \eta_{j}(\theta)}{\partial \theta_{p}}\left\{M^{-1}(\theta)\right\}_{p q} \frac{\partial \eta_{k}(\theta)}{\partial \theta_{q}} \tag{I}
\end{equation*}
$$

Use the subroutines $(\mathrm{A})-(1)$ for $\theta=\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)$, the subroutine (A) for $\theta=\left(\theta_{1}, \theta_{2}\right)$ and compute Eq. (9) for different inputs $\theta_{1}, \theta_{2}, \hat{\theta}_{1}, \hat{\theta}_{2}$.

The program for the computation of $\left(1-p_{0}\right)$:
The main idea of the algorithm is that through any point $\theta=\left(\theta_{1}, \theta_{2}\right) \in(0,10) \times$ $\times(0,2 \pi)$ and in any direction given by $\dot{\boldsymbol{\theta}}:=\mathrm{d} \boldsymbol{\theta} / \mathrm{d} t$ we can draw a unique geodesics
which is a solution if Eqs. (A 3), but for the natural parameter $t_{\text {nat }}$, where $\mathrm{d} t_{\text {nat }} / \mathrm{d} t=$ $=\|\mathrm{d} \boldsymbol{\eta} / \mathrm{d} t\|$ (cf. Eq. (A 2)).

Input: $\theta_{1}, \theta_{2}, \dot{\theta}_{1}, \hat{\theta}_{2}$ (4 numbers)
Subroutines: (B)-(F)
Subroutine "derivatives":

$$
\begin{equation*}
\frac{\mathrm{d} \boldsymbol{\eta}}{\mathrm{~d} t}=\frac{\partial \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \theta_{1}} \dot{\theta}_{1}+\frac{\partial \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \theta_{2}} \dot{\theta}_{2} \tag{J}
\end{equation*}
$$

(K)

$$
\begin{gathered}
\frac{\mathrm{d}^{2} \boldsymbol{\eta}}{\mathrm{~d} t^{2}}[v, w]=\frac{\partial^{2} \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \theta_{1}^{2}}\left(\hat{\theta}_{1}\right)^{2}+2 \frac{\partial^{2} \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \theta_{1} \partial \theta_{2}} \dot{\theta}_{1} \dot{\theta}_{2}+ \\
+\frac{\partial^{2} \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \theta_{2}^{2}}\left(\theta_{2}\right)^{2}+\frac{\partial \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \theta_{1}} v+\frac{\partial \boldsymbol{\eta}(\boldsymbol{\theta})}{\partial \theta_{2}} w
\end{gathered}
$$

where v, w are unknown input variables (interpreted as $v=\ddot{\theta}_{1}, w=\dot{\theta}_{2}$),
(L)

$$
\begin{gathered}
\frac{\mathrm{d} \boldsymbol{\eta}}{\mathrm{~d} t_{\text {nat }}}=\frac{\mathrm{d} \boldsymbol{\eta}}{\mathrm{~d} t} /\left\|\frac{\mathrm{d} \boldsymbol{\eta} \|}{\mathrm{d} t}\right\| \\
\frac{\mathrm{d}^{2} \boldsymbol{\eta}[v, w]}{\mathrm{d} t_{\text {nat }}^{2}}=\frac{\frac{\mathrm{d}^{2} \boldsymbol{\eta}}{\mathrm{~d} t^{2}}[v, w]-\frac{\mathrm{d} \boldsymbol{\eta}}{\mathrm{~d} t}\left(\frac{\mathrm{~d}}{\mathrm{~d} t}\left\|\frac{\mathrm{~d} \boldsymbol{\eta} \|}{\mathrm{d} t}\right\|\right) /\left\|\frac{\mathrm{d} \boldsymbol{\eta} \|}{\mathrm{d} t}\right\|}{\left\|\frac{\mathrm{d} \boldsymbol{\eta}}{\mathrm{~d} t}\right\|^{2}}
\end{gathered}
$$

Linear equations: Compute v, w as the solution of the linear equations

$$
\begin{align*}
& \sum_{i=1}^{4} \frac{\mathrm{~d}^{2} \eta_{i}[v, w]}{\mathrm{d} t_{\text {nat }}^{2}} \frac{\partial \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{1}}=0 \tag{EQ}\\
& \sum_{i=1}^{4} \frac{\mathrm{~d}^{2} \eta_{i}[v, w]}{\mathrm{d} t_{\text {nat }}^{2}} \frac{\partial \eta_{i}(\boldsymbol{\theta})}{\partial \theta_{2}}=0
\end{align*}
$$

(cf. Eqs. (A 3))
Put v, w into (K), (M) and compute

$$
\varrho\left(\theta_{1}, \theta_{2}, \dot{\theta}_{1}, \dot{\theta}_{2}\right)=\left\|\frac{\mathrm{d}^{2} \eta[v, w]}{\mathrm{d} t_{\text {nat }}^{2}}\right\|^{-1} .
$$

For different inputs $\theta_{1}, \theta_{2}, \dot{\theta}_{1}, \dot{\theta}_{2}$ compute

$$
\begin{gathered}
r=\min \left\{Q\left(\theta_{1}, \theta_{2}, \dot{\theta}_{1}, \dot{\theta}_{2}\right): \theta_{1} \in(0,10), \theta_{2} \in(0,2 \pi),\right. \\
\left.\theta_{1} \in\langle 0,1\rangle, \dot{\theta}_{2} \in\langle 0,1\rangle, \hat{\theta}_{1}^{2}+\hat{\theta}_{2}^{2}=1\right\} .
\end{gathered}
$$

Compute p_{0} from

$$
\chi_{4}^{2}\left(p_{0}\right)=r^{2}
$$

where $\chi_{4}^{2}\left(p_{0}\right)$ is the $\left(1-p_{0}\right)$ quantile of the χ^{2} p.d. with 4 degrees of freedom.
[1] B. Hostinský: Diferenciální geometrie křivek a ploch (Differential geometry of curves and surfaces). Prírodovědecké nakladatelství JC̆SMF, Praha 1950.
[2] V. Jarník: Diferenciální počet II (Differential calculus). NČSAV, Praha 1956.
[3] J. Milnor: Morse Theory. Princeton Univ. Press, Princeton, N. J. 1963.
[4] A. Pazman: Geometry of gaussian nonlinear regression - parallel curves and confidence intervals. Kybernetika 18 (1982), 376-396.
[5] A. Pázman: Nonlinear least squares - uniqueness versus ambiguity. Math. Operationsforsch. Statist. Ser. Statistics 14 (1984) (to appear.)
[6] A. Rényi: Teorie pravděpodobnosti (Probability theory). Academia, Praha 1972.
[7] S. Sternberg: Lectures on Differential Geometry. Second printing. Prentice-Hall, Englewood Cliffs 1965.

RNDr. Andrej Pázman, DrSc., Matematický ústav SAV (Mathematical Institute - Slovak Academy of Sciences), ul. Obrancov mieru 49, 81473 Bratislava. Czechoslovakia.

