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PROBABILITY DISTRIBUTION
OF THE MULTIVARIATE NONLINEAR
LEAST SQUARES ESTIMATES

ANDREJ PAZMAN

The nonlinear regression model y; = #:(8;, ..., 8,) + &; with (g1,...,&y) ~ N0, >) and
with #7,(.) twice continuously differentiable is considered. Under the assumption that the maximal
curvature of the mean-values manifold {17(0) :fe U} < [R¥ is bounded, an approximative proba-
bility density for the least squares estimates of (6, ..., 8,,) is proposed. This density depends
on the first form (= the information matrix) and on the second form of the mean-values manifold
(Eq. (9)). The level of approximation depends on the probability that the sample goes beyond
the nearest center of curvature of the mean-values manifold and it is expressed in the paper
(Theorem 1).

1. INTRODUCTION AND MAIN RESULTS

Asin [4], let us consider the gaussian nonlinear regression model
(1) y=n(0)+e¢

where y := (yy, ..., py) is the vector of observed variables, 6 := (6, ..., 0,y is
the vector of unknown parameters and & := (g,,.... &y)’ is the vector of random
observations errors. It is supposed that 8 e U < R™, U open, and that ¢ is distributed
normally, N(0, £) with £ known and nonsingular. The functions #,, ..., ny are defined
and have continuous second order derivatives 8,/00; 00;0n U. Finally, it is supposed
that the vectors 0;]/001, e 0)]/'60,,, are linearly independent for every @ € U.

Eq. (1) could be also written in the more common form
Vi=n.0)+¢,: (i=1,..,N)

where xy, ..., xy are the points of the design of the experiment. The dependence
of E(y;) on x;is of no importance in this paper, therefore we prefere the simpler Eq. (1).
Denote by <a, b, |la| the inner product and the norm defined by

{a,by =a' £7'b, |a|? =<a,a).
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The probability density of y is given by

1
2 { 0)) = ———————exp{—31|y — 2(0)|*} .
)] Sy | n(6) 7 ae ) exp {—4ly — (6)[*}
The least squares (=1. s.) estimate for @ is defined by
(3 0:=08(y):= Arg noailr]x ly — u(0)]?

(if it exists). Hence the 1. 5. estimate 8 is one of the solutions of the equations

o 1] .

20, ly —a@)* =0: (i=1,...m),
or equivalently of

“) <Y—'I(9)> ﬂ>:0; (i=1,...,m).

26,

Geometrically it means that the vector y — r](@) is orthogonal to the mean values
manifold (the set of potentially possible mean values).

&:={(0):0€U},
at the point (8). It means also that the vector y is in the hyperplane V(é) where
(3) x(0):={z:ze R, (z — n(0), )00, =0; (i=1,...,m)}.
Let us denote by r the minimal radius of curvature of the manifold & More

exactly, we denote by r(n) the minimal radius of curvature of a geodesics which con-
tains the point # € & (see Appzndix for the properties of geodesics), and we define

ri=inf{r(n) :ne &}
AS 1: We shall suppose in this paper that r > 0, i.e we consider models with
bounded curvatures.

Let xa(po) be the (1 — p,) quantile of the x* p.d. with N degrees of freedom.
If xi(po) = r?, we say that (1 — po) is the level of regularity of the model.
It means that

Py yeR% |ly —a| <r} = 1= po,
where P, is the p.d. with the density f(y | 1).

We shall say that the regression model is with a distant boundary if for any ex-
pected 4 = E(y)and any y € R" such that ”y - nH < r there is a solution of Eq. (3).
It means that we suppose that there is a set of expected values of the true vector 0,
U, < U, which is sufficiently distant from ‘“‘the boundary” of U.

AS 2: We suppose in this paper that the model is with a distant boundary.

The assumption AS 2 avoid to consider the “‘edges™ of the manifold &. Such an
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assumption is usually adopted also in the linear regression model
(6) y=F0+¢e; (fcU)

(F=agiven N x m matrix). Here it is commonly supposed that U= ®™ although
in reality the values of 0,, ..., 0,, are always bounded a priori.

The model is called overlapping if for some y € B" there are two solutions 8" 3
+ 6% of Egs. (4) such that

ly = n@) =7, fy —n(6®)] = r.

AS 3: We suppose in this paper that the considered model is not overlapping.
For any 8 € U let us denote by

@) {M(0), = E {Qlﬂf gz 1(0)) f“nf%} '1("))} - <§TZ;T?>
(Lj=1,...,m)
the (local) Fisher information matrix.
By
®) = T MO =
!

we denote the matrix of projection onto the plane which is tangent to the manifold
& at the point (f). Let us denote by g(6 l #) the function

T [ (e LR )

( )m 2 dell’Z M(o)
Po(n(0) — )%} -

Let f,.(0 I 1) be the probability density* of the ls. estimate 8. The main result
of the paper is expressed in Theorem 1 by the inequaiity

(10) [f,,ﬂ(t)]q)(w— f (0| ) do

which is valid for every Borel set B which is asubsetof {0:0eU, 3 ||z —g] <7,
#7(0) = y[8(z)]} (= *“the region of accessibility™). =R~
If follows that q(() | 1) is an adequate approximative probability density of the Ls.
estimates, the level of approximation being given by the level of regularity (1 — p).
Especially, if r+> oo (i.e. po > 0), then we obtain the linear regression maodel (6).
In that case

x exp{~1

= 2p,

&*n(0)/a0,0, = 0, P°"[1(8) — n(0)] = n(®) ~ (0).
on(0)66; = {F};;, M(6) =F Z7'F.

* From typographical reasons we use 8", 8~ instead of 8, 8 in superscript and subscript.

211



Thus from (9) we obtain the well known density

a(@|n(0)) = ‘“—’(Z(FT”—F) exp {~4(0 — 0) (F'7E) (3~ 0)}

2. CASE m = 1, N = 2(HEURISTIC APPROACH)

To clarify the ideas we shall construct heuristically the probability density of the L.s.
estimate in the special case m = 1, N = 2. Without restrictions on generality we shall
suppose in this section that the parameter 6 is the ““natural parameter” (= the dis-
tance measured from some fixed point along the curve 8¢ U > n(0) e R?), ie.
that [[dn(0)/d0] = 1.

NN
\ \7(8+4)
\ N
\ AN
\ d2
\ \de
\
\ \\
(0+A)
\
-£{8)
enote by

() pl0) = (20177 exp (=12}
- qb(x):ﬁ (i) dr |

the (standarized) normal probability density function and the distribution function.
By S{6) we shall denote the half plane :

5(6) := {z 1zeR?, <z — n(0), d”(0)> < 0} :

dé
Take 4 > 0. It can be seen from Fig. 1 that for a sufficiently small 4 the set

[S(6 + 4) — S(6)] v [S(8) ~ SO + 4)]
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is the set of all points y € B2 which have a solution of Eq. (4) in the interval (6, § + 4).
Moreover, it can be seen from Fig. 1 that

(12) P,[S(6 + 4) — S(6)] — P,[S(6) — S(0 + 4)] =
= P[S(0 + 4)] - P,[S(0)]
where P, is the probability distribution of the sample y if # is its mean. Further
evidently
dn(0
P51 = o (n0) — 0. ).

We shall show that with 4 — 0 for ye S(0 + 4) — S(6) (resp. for y e S(8) —
— S(0 + A)) the solution of Eq. (4) is a relative minimum (resp. a relative maximum}
of the function 8 e U ||y — n(0)]>.

To this purpose let us consider the second order derivative

1.d? d%y
13 S E ) - y|2 =1+ {u(6) -y, =LY
(13 330 MO v = 1 (o) — v 1)
The expression
) dZ” -1
91(9) = ]d’g—z
is the radius of curvature of the curve § € U - 5(6), and the point
d?y
9) + —1
10) + 53

is its centre of curvature, as known from elementary differential geometry [1]. Let us
denote by

d?y

e (0):= g,(0) —

A0)i= 0,0) !

the unit vector pointing from #(0) to the centre of curvature. This allows to rewrite

Eq. (13) as :

2
(1) 5 o 1O =yl = &) 0) + <a(0) ~ . (0D}

As scen from Fig. 1, the point C(4) (= the point of intersection of x(6) with
%(0 + 4)) tends to the centre of curvature if 4 tends to zero. For 4 — 0 form
yeS(6 + 4) — S(8) it follows that (y — 5(6), e,(0)> < ¢,(6), hence, according
10 Eq. (14), d/d6?|(6) — y|? > 0. Moreover, as supposed, 0 is the solution of Eg.
(4), hence 0 is a relative minimum of | #(6) — y|].

We proceed similarly in the case that y e S(6) — S(0 + 4). It follows that the
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limit

a(6 | ) := lim m TS0 + 4) — S(0)] - P,IS(0) — S0 + A)]

is the probability density of the relative minima minus the probability density of the
relative maxima of the function 8 e U — |9(8) — y|*.

From (12) it follows

(0| #) = lim (i[ﬁ"(g ta) - ﬂ%;"é)ﬂ -@ [<'l(9) - d-Z%@XI )

4

3 = o (o)~ n. 20 )>) 5 (10 = 0.2,

If 40 then [S(8) — SO + 4)] n y:ly —u| > r} - 0. Hence if we neglect
the set of samples {y : y e R, |ly — t]H > r}, the probability of which is less than po,
we can state that there are no reldtlve maxima of ”11(9 - y, 2 and that every relative
minimum is an absolute minimum, i.e. it is the Ls. estimate 9()'). Hence the expres-
sion in Eq. (15) is an approximative expression for the probability density of the Ls.
estimate 0. To compare it with the expression in Eq. (9) we have just to use that
in the special considered case M(f) = ||dy/d6||? = 1 and that (d»/df, d*y[d6%) = 0.
The derivative

d

(10 =m0 = O L) + a0~ e 0Dy

is positive (within our regularity assumptions). Hence, using the notation
\ dn(6)
16 v(0):= (n{(0) — 9, — ),
(19) 0= (n0) = 0%
the approximative probability density (0 ] n) in (15) can be expressed as
dv(()
de

It follows that the random variable v(@) is (approximately) distributed N(0, 1).
Therefore, the interval

-0 20T <)

is a confidence interval for the true value of 0, with the confidence level depending
on f and on p,.

(0] m) = (2m) "2 exp { —1*(0)}

Finally, let us compare the obtained probability density with the result in [4].
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If [<n(6) — n, ,(0)>| is much smaller than 0,(0), then |do(9)/df] = 1, and {rom
(15) we obtain

9(0 | n) = (2m)7"% exp { —1<n(0) - n, dnd0)?}
which is the expression in Eq. (26) in [4] for the considered case that |[dy/d0| = L.

3. THE MULTIVARIATE PROBABILITY DENSITY OF 8

In this section we proceed to the general case of arbitrary m, N, N > m. We
define by n the (ﬁxed) mean of the sample y. We denote by

(17) sty = (0] < [y = n] <}
the region of accessibility (cf. Eq. (A 13) and the assumption AS 2 in Section 1).
We are interested in the probability density f,.(68 [ 1) of the Ls. estimate 6. We shall

show that it can be well approximated on the set {8 :#(8)e /,} by the function
q(0 | n) expressed in Eq. (9). The main aim of this section is to prove the following.

Theorem 1. Let B be a measurable subset of the set {8 : 0 e U, n(0) e «,}. Then

§

[ oinis = st 50

To prove Theorem 1 it is necessary to do a stepwise approximation of f,.(8 [ n)
by ¢(0] ).

Take a fixed point 8 € U such that (8} e o,. According to Proposition A S,
there is a neighbourhood of 8, Uy~ < U, such that #[U,s-] = &/,. As explained
in Appendix, if a neighbourhood V,- = U,- is adequately chosen, we can introduce
new local coordinates ¢, ..., t, in Vp— and two sets of local coordinates x, ..., xy
and z,,..., zy in the set G- :={y :yeR", yex(0), 0 € V,-} as follows. We take
m geodesics in &, ¥, ...,y such that y(0) = (8); (i = 1,...,m) and that
G(0),59(0)> = 0 if i #j (cf. Appendix for geodesics in &). The coordinates
1, 1= 1,(0), ..., 1, 1= 1,(0) are defined by

(18) (@) — y0), @)y =05 (i=1....m)
i.e. by projecting (@) onto the curves ¥V, ..., ¥ We define further
(19 = )= [0 (= L),

where 8*(y) is the (unique) solution of Eqs. (4) which is in V,-. The coordinates
Xpsy = Ems1(¥)s .. xy = Ex(y) are complementary orthogonal coordinates defined
by Eq. (A 22).

Projecting y onto p’, ..., y™, i.e. by the equations

(20) Ky — ¥z, 3z =05 (i=1,..,m)
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we define the coordinates z; = Z,(y),..., z, = {,(y). The coordinates z,,, =
= ps1(Y), -, zy = Ly(y) are again complementary orthogonal coordinates (cf. Egs.

(A 24)).
If & =1, and if 0%(y) = 0, the coordinates x,, ..., xy and z,, ..., zy arc essen-
tially the same. In that case we have namely: x; = z; (i = 1,..., N) and 0z;/0x; = 0;

(i = j), 8z;féx; = 1 (cf. Egs. (A 25) and Proposition A 7).
Let us introduce the notations
(21) vz) = 3(z) — 1,30z (=1,...,m)
and
Q7 (z> o= {)’ (yeRY, vi[Ci(Y)] < Ui(z)}
(cf. Eq. (A 17)).
Denote by {(y) the random vector

)= (Gl Gal¥)) s

and by F{ (zy, ..., z,) its distribution function induced from the density of y given
by Eq. (2), and restricted to the set &,-. Because the functions vy, ..., v, defined
in Eqs. (21) are increasing (see Proposition A 3), the increase of Fy is given by

(2) A A (2 ) = P,,[_(SI(Q?*(Z,.) — 0z — &)

Here we used the notation

APh(zy, . z0) i= Wz, ooy 2) = M(Ze, ooy Zkm 1, 2k = B Zargs -0 Zm) 5
(cf. [6], chpt. 1V. 3). The density of {(y) is then
-
3) FE o za) im = P (24 2) =
0z, ... 0z,

Pl N (@7 (z) = Q7 (=~ &)]
= lim...lim —&4 .
G0 Em=0 €y oot By

Denote by g(Zp+1s-+-» Zy | Zy, ..+ Zy) the conditional probability density of
L 1(¥)s -+, {u(y) (induced again from f(y f n) in Eq. (2)). The joint density ff .
(2gs - Zn) G(Zma1s -0 2w I Zy, .- Z) Is transformed by the mapping (the change
of coordinates) (zj,...,zy) > (xy, ..., xy) into the joint density of (&,(y),...
..., &x(y)). Denote by f7 (x,,...,x,) the corresponding marginal density of the
random vector

&)= (&uly), - SulY)) -
Then finally, according to Egs. (19),

(24) For(B] ) = fE (%10 -y x) Jdet ({07,000,37,. )]
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This complicated way to dzduce f,.(8|#) from f(y|n) was chosen to make easy
the comparison with g(@ | 1). Namely, we shall show that q(8 | y) can be deduced
in an analogical way, but from the distribution

(25) Fi(zis oo zm) i=P,[ O‘Sf‘(zi)]
where
(26) STz = {y 1y e BN, <y — y9(z)). ¥"(z:)> < 0}

(cf. Eq. (A 16)). The corresponding density is given by

N PL O (S7(z) = STz — 80)]
(27) f(zy, s 2) = lim ... lim i=1

£20  £n—0 £y e by

Again, the joint density Jf (z1, .. 24} §(Zms15 -+ » Zn | 21, - Z,) is transformed
by the coordinate mapping (zy, ..., zy) +> (x,, ..., xy) into a joint density of (£,(y).
.o, Ex(y)). Denote by f(x,, ..., x,) the corresponding marginal distribution of
&(y ). We have the following important auxiliary proposition

Proposition 1. Let be & = 1.
Then

Sy 110 = 12 (0JT0) = ©)
OO = e - @) -0 SO0 00) - ) x

(28) v .
xgp+w®—wwmn

(29) a(0 | ) = J7 (0) [det ({x(0)/0,}7,- )],
(30) faﬂ(o | 1) = /¢ (0)|det ({or, (0) 106,37 5= 1)| -

Proof. The statement a) follows from Eqs. (A 25) and from Proposition A 7
in Appendix.

From Egs. (25), (26) and (21) it follows that

u 01(21) OZim) 1
Fe(zyy o 2p) = exp {—1u'K™'u} du, ... du,,,
HIE ) f J. (21:)’"/2det”K p{-1 5 aiy

—© -

where

K}y 1= 9=, 97 -
Therefore the corresponding density is
(1)

f:”(zl’”":m) = mlﬁf eXp{_Jf Z ( ) {K~ l}u J(Z )) H( (Zi)/dzi) .

(2m)™'? det'2 K =1
From (31) we obtain the expression in Eq. (28).
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The equality in Eq. (30) follows directly from Eq.(24). It remains to prove Eq. (29).
First we can state that

(52) P~ 3100 10).

To verify (32), put P’ according to Eq. (8) (for £ = I), and multiply Eq. (32) by
on’'(0)[06, from the left, and by &y(8)/0, from the right (g, h = 1, ..., m).

In the right side of Eq. (29) let us express f¢ (0) using Eq. (28), and d7,(6)/a0;
using Eq. (A 27). We can write, according to Eq. (32),

63 @ - ) T30 10)[10) - a1 = [P 1n®) ~ ]|
Using Eq. (32) again, we obtain ‘

G JI0+ (0) — a0 e (75 @070 =

= det ({5 [ - ”)‘ki?(k}(tk) 7O (t)]=o 5;’;‘?)}::) -

= det ({M,-j(é) + [n®) - a1 (1 - P7) ‘;_;"_(gg)}"’ > x

x |det™! ({ox(@)/00,}7;-1)] -
From Eq. (A 27) we have
(35) det? ({61(8)]00,}7 1=1) = det M(D) .
The validity of Eq. (29) follows from Egs. (33)—(35). O

From Proposition 1 it follows that the comparison of f,.(0 | n) with (@ | 1), needed
in Theorem 1, reduces to the comparison of f¢ (0) with f¢7(0).

Proposition 2. For sufficiently small ¢; > 0, ..., &, > 0 we have the inequality

(36) [ 4D APTFE (24, v 2) = FE (21 o 2)]] <

< PR = )N (=) — 07— o)) +

+ PR = W) N (ST () = (e~ )

where
W= {y:yeR" |y —n]| <r}.
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Proof. From (25) we obtain
A o B P o 2a) = PR = W) V(ST (2) = S0z, — )] +
+ PN (ST () = 7~ e)].
Analogically, from (22) we obtain
A0 A FY (245 2) = P(RY Wr)ﬁ(Q?‘(Zi) =0 (zi— el +
+ PN (07 (=) = 07— o))
Hence, we prove the inequality (36) if we use that, according to Proposition A 6,
WAL (=) = 4 = e)] = W, O [S7 (=) = ST, - 8]
for &4, -.., &, sufficiently small. =]

Proof of Theorem 1. We shall write 8 instead of @ in this proof. Without lack
of generality we shall do the proof for & = L.
According to Proposition 1 we have

= Lfm(ﬂ |n)do — L a(® | n) d"i <

< j (720~ O et (o032 )] 0.

Hence, using Proposition 2, we obtain

37 D= j Rl - ) 8] +

z, ... 0z,

+ P,[(RY W)nQ"( }emo [det ({or,00,}7,_,)| dO =

[T [ s st « s e »

0z ... 0z,

dP,(y)]s-o |det ({07,/80,}7; )| 4O

ux

where x(y; T) denotes the indicator of a set T.
For fixed y, 8 the functions z; > x(y; S%z))); (i = 1,..., m) have unit jumps
atz = 0iff @ = 0%(y). As a consequence, from (37) it follows

D= Zf ~ (8*(y); B)dPy(y) £ 2po - O
R -w.
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Corollary. Let A4 be an arbitrary measurable subset of U. Then

j for(01n)do —j q(olﬂ)db“ < 3po
“ Angy,
where #, 1= {0 :n(0)e.o,} .

Proof. We have

Lfm(o [n)déo — Lﬁ%fw(ﬂln) dO‘ < jw I(y|m)dy = p,. O

—-W,

4. CONFIDENCE REGIONS FOR @
Let us choose for every @ e Uy a set J,- = {0 : 9(8) € o, -} such that
J q(0|n(@)do=1-B.
g
Then, according to Theorem 1,

[ o0 @) 0z 1~ 2p,.
Iy
Hence the set
Foni=1{0:0eUy0¢cl,}
is a confidence region with the level of significance equal at least to 1 — ff — 2p,.

Theorem 2. If for every 0 e U thzre is a (differentiable) orthonormal basis 1,(6), ...
..., 1,(8) of the tangent space to & at the point 7(0), such that

- 70

—21(0)=0; (i,j,k=1...m
% (0) (i, )
then we can take

J

For = 10:0 U, [P°[n(0) — n(0)]]* < 2:()}

where y2(f) is the (1 — B) quantile of the ¥ probability distribution with m degrees
of freedom.

Proof. Take £ = I The expression in Eq. (9) can be written as

(39) v (172 ora 1)
0]1) = i 0 (~HPT0) ) ?_‘(%Z,. ‘”(;”[ﬂi:)} ﬂ%m) |
et!/? ({ = =
90, 60, jk=1
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Define

”i(g) = ,;(0) [’1(9) - ﬂ] ; (i =1..., 111) .

Evidently
(40) 35700) = [P'Ta(0) - n)}?-
Further, from (38) it follo“:s that
20— 10) - ®'L0) ~ ).
Hence
@) L @) - ) = £ L @) - ) = 3

26; 00, =100; 60 100, 66

det ({a—@g—)}iﬂ)

hence the random vector (vy, ..., v,,) is distributed N(0,I). The needed statement
follows. ) ]

From Egs. (39)—(41) we obtain that

01 = s o (—431170)

i

s

Example 1. Take m = 1,
16) = dn(0)jdo

~ Jan(6)/do]
Then

0=Lan=29,
do a6

hence the assumption (38) is valid.
Example 2. Take & a subset of the cylinder

{z:zeR", 2] =1}.
Evidently Eq. (38) can be satisfied.

APPENDIX A

In this section we present some necessary geometrical statements. We start by some
definitions.
A (regular) curve in U is a mapping

g:te(a,b)—g(t)eU

such that the vector of second order derivatives d?g/ds* exists and it is continuous
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on (a, b). To the curve g we can associate a curve

yite(a, by y(t)eé
according to

(A1) (1) = nle(t)] -
The curve y is called a geodesics in the manifold & (and correspondingly g is called
a geodesics in U) iff

a) the parameter ¢ is normed so that

(A2) ‘%Vthl (te(a b))

b) the vector of curvature d®y[ds* is orthogonal to & i.e.
. 2
(A3) dale@] anle@ly o oy m
dt? 26,

As known from differential geometry [3, 7], every nonzero solution g of the differen-
tial equations (A 3) (=the Euler-Lagrange equations) is a geodesics in U. Moreover,
for every point @ € U and every nonzero vector u e RB™ there is a geodesics g such
that for some 7

(A4) g(f)=0. dg(i)fdt ~u.

Correspondingly, to every point 7(8)e & and to every unit vector w e RY which
is tangent to & at 7(8) (i.e. w is a linear combination of the vectors dn(0)/a6,, ...
..., 9(0)[86,,) there is a geodesics y such that

(A5) 3(7) = 9(8), dp(F))dr = w.
We shall use the abbreviated notations
3(8) = dy(1)fdi],=;

3(7) = d*9())d?,z
We denote further

(a6) - o) : = ()]~

e,(1) :=¥() o,(t)
the radius of curvature and the unit vector oriented from the point y(t) toward
the centre of curvature. By

(A7) ult) = {y 1y e R, y(t) — v, 9(6)> = 0}

we denote the hyperplane orthogonal to the curve y.
Denote by B(8, y) (or simply by B) the m x m symmetric matrix with the entries

(A8) B0, y):= <ﬁl ?ll_> + <ﬂ(9)_ y, & >

29, 29,
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Proposition A 1. Let be y € B and let @ be a solution of Eqgs.(4). B(8, y) is positive
semidefinite (= p.s.) iff for every geodesics y such that y(f) = 5(f) for some i, we
have the inequality

(A 9) y = ”(ﬁ)’ ev(i) = 91(0 .
There is the equality sign in (A 9) for some geodesics 7 iff det B(8, y) = 0.

Proof. Let y = 5o g be a geodesics and let us denote ¢ := g(t). From (A 8)
we obtain

(A 10) c¢Bc =1 — <y —n(B),e,i))0; (7).

i) If Bis p.s. then from Eq.(A 10)follows Eq.(A 9). Conversely, if Eq.(A 9) is valid
for every geodesics y then Eq. (A 10) implies that ¢’ Be = 0 for every ¢ e R", such
that ¢ = g(¢) for some geodesics g. That means, according to Egs. (A 2) and (A 4),
¢’ Be = 0 for every ¢ which is a solution of

(A11) c M(9)C.= 1.

Since M(é) is positive definite it follows that B is p.s.
i1) If det B = 0 then Be = 0 for some c€ R™, ¢ = 0. Leg g be the geodesics in U,
such that g(i) = 0 and that g(7) ~ ¢. Take y = o g. From (A 10) it follows that

<y = n(0), &) = o,(1)-
Conversely, if this equality is valid for some geodesics ¥y = # o g then, according

to (A 10), ¢’ Be = 0 for some ¢ # 0. Since B is p.s. there is a matrix A such that
B = A’A. Therefore [Ac|? = ¢ Be = 0. Thus Bc = 0, and det B = 0. ]

Corollary A 1. Let 8 be a solution of Egs. (4) and let [ly — #(8)] < r. Then 8 is
the 1.s. estimate §(y).

Proof. We have
<y =n1(0).e) = |y —2@)] <r = o).
Hence the matrix with entries
@ .
——— [n(8) - y|* = 2B,(8,7)
1 00;
is p.d. and 8 is a relative minimum. The equality § = d(y) then follows from the
assumption AS 3. [}
Let us fix a point # € &. Let us denote
(A12) W,i={y:ye®" |y —q] <r},

W {y:yer" ly—u]| 7).
Cf. Egs. (5), (A 7) and (17) for the definitions of x(8), x.(t) and «,. From Corollary
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A 1 and from the assumptions AS 2, AS 3 it follows that we can write
(A13) o, ={n0):0eU, ;}Nze «0), |z — || <r |z~ a@)] <r}.
ze

Proposition A 2. If y € W, 1 %(0) and n(8) € o, then ||y — #(8)] < r.

Proof. According to (A 13) there is a point z € #(8) n W, such that |z — 5(8)] < r.
Suppose that ||y — #(8)| = r. Consider the N-dimensional open sphere

& ={w:weR" |w—c| <r}

which is tangent to & at the point r](é) and is such that ¢ is on the straight line connect-

ing y with z. Evidently ¢ is on the abscissa with the endpoints y, z, hence [[¢ — g] < r.
It follows that y € . But & n &/, = 0. This is a contradiction to 7 € o/, O

“Proposition A 3. Let 7 be a geodesics and y(t) e o7, for some t. Then

o =l .

dr?

Proof. Take 8 e U such that n(8) = y(t). Denote by #, the point of projection
of iy onto %(#). From Eqs. (5) and (A 3) we obtain

(A14) Ktp — 1. 9(1)> =0
According to (A 13) take y € RY such that ||y — nf| < 7, [y — n(8)] < r, y e %(6).
We have g — | < [ln ~ y| <r, hence from Proposition A 2 we obtain
[o — ¥(t)]| < r. Therefore using (A 14) we can write
1a
2dr?

() = 0l = 1+ (1) = 16, 5(1)> = 1 = mo = ¥(0)}Je,(0) > 0. O

Proposition A 4. Let be n(00) e o, n(6¥) e o7, Then %(07) A 1(6P) AW, = 9.

Proof. According to the assumption AS3, zex(0™")n %(0®) implies [z —
— (0] > ror |z — n(6®)|} > r. Hence, according to Proposition A 2, z¢ W,. O

Proposition A 2. Let y bz a gzodesics, y(7) =#(8)e o, Then there is a neighbourhood
of 8, Uy~ = U, such that g(U,-) < o,

Proof. Let #, be the point of projection of y onto x(6), i.e. the solution of the
equations

[% .
<rle"7(0),gg-i>‘—‘02 (i=1mm),

which satisfies the equality

m a 9)
e ¥ o 2n(0)
Yo =1 ,;1 T o8 f
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for some ki, ..., k. Using the implicit function theorem (cf. [2], Theorem 211)
we may verify that the mapping 6 — #, is continuous in a neighbourhood V,~ of 8.

We have [ — -] = min {||lg — z|| : ze %(0)} < r, because 1(d)e o, Hence
|4~ — n(8)| < r (Proposition A 2). From the continuity of the mappings 8 - 5(0},
@ — 1y we have a neighbourhood Uy~ < V- such that

o=l <. lno—n@)] <r: (0.

Therefore, according to (A 13) we have g(8) € ,; (0 € Up-). |
Let us denote
(A 15) y) := Argmin |j(t) — y||,
t
v 4 2
(A 16) S(t) = {y:yeR ,any(t)~ yl >0}

(A17) 0,1) := {y iyeR®”, % [#(t) = n|

2 d
b < 500 =}

Proposition A 6. Let y be a geodesics, y(7) = 7(8) e o, n(Uy-) = o4, 9(1) & (Ug-),
t <1
Then

(A 18) W, n [5,(1) = S,()] = W, [0,(1) — 0,(1)] .

Proof. From Proposition A 3 it follows that the function  — (d/d1) |¥(t) — |2
is increasing as long as y(t) € Uy~ Evidently (d/dt) |#(r)~ y|Z,, = 0. Hence, for
t < 1,y(t) e Ug— we have
(A19) ye0,i) — 0,() =t < o(y) < I.

The halfspaces S,(f), resp. S,(1), are limited by the hyperplanes x,(f), resp. ().
Therefore from Proposition A 4 it follows that

<t f) = {t(y) tyeW.n [S?(E) - S?([)]} .
Comparing this with Eq. (A 19) we obtain Eq. (A 18). O
Take a point 8 U such that () e +,. In the remaining part of the Appendix

we shall introduce adequate local coordinates on & and local coordinates on RY
in a neighbourhood of the point #(8).

Take m geodesics %, ..., 7™ such that
(A 20) y0)=94@); (i=1,...,m).
79(0), ¥20) =05 (i £1J).
We introduce new local coordinates on &, t, = 7,(8), ..., I, = 7,(8) by the
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equations
(a2) (O) = 55 = 05 (1 = 1,oeem).
From the implicit function theorem (cf. [2]) it follows that the functions ,(8), ...
..., T,(@) are one-to-one and differentiable in a neighbourhood Vy- < Uy

Analogically, we define new coordinates x; = &,(¥), ..., Xy = &y(y) in the set
Go—:=1{y:yeR",yex(0),0c V,~} by the equations
(A22) alo¥(y)] = v, 30> = 05 (i=1,...,m)

&y)i= &y =[] wOlH(y)D s (i=m + L. N),

where w®*1(0), ..., w™¥(0) is an orthonormal basis of {y — 7(6) : y € %(6)} and
6*(y) is the solution of Eq. (4) which is in V,~.

Other coordinates z; = {;(¥), ..., zy = {y(y) can be introduced as follows.
First we define =, ..., =, by

(A23) <y — yz), #¥z)> =0: (i=1,...,m).
Further we denote by §(y) e U the vector defined by
0]} = 7,0 _Ol%i[C ()]

(cf. Eq. (A7) for the definition of x,(r) := #,w(r)). Denote by rim+)(y), . r™M(y)

an orthonormal basis of () %,[{,(y)]. Let us define
i=1

(A24) L) =<y —aldn)] s (G=m+ 1, .. N).

Evidently

(A25) 05(y) = 0= (y) = 8, r9(y) = w' [B(y)] = w(d),
Xp=..=x,=0, zy=..=7, =0 Xy =Znis, .., xy=2y.

The functions {;, ..., {y are one-to-one and differentiable in the set G with V-
choosen adequatelly. Evidently

(A26) Ely) = < [0*(v)].
ty) =«[0(y)]; (i=1,....m)

We shall compute the Jacobi matrices of the mappings - ¢, X sy, y i 2,
Differentiating Eqgs. (A 21) with respect to §; we obtain

WO i\ 45 O 0) — (1), 7Ot 9
<ao. 1) + e @(0) = ¥t 3O(1)> aej*O'

J
Hence

or;

A 27 —~
(A27) o

s <§%?) "’“’(0)>5 () =1, ..om).
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Analogously, from Egs. (A 23) we obtain

e

e ~(i)‘
(AZS) L'! = 77 (O) _— (i=1,..A,m,j=1,...,N)
thy) =3 b’(” )'Hf:o

2

Q)

d !
From (A 24) and (A 26) we obtain
Uy =<y =ale 7 G - L)L POy (i=m+ 1., N).

Hence

) ar, ) " p .
(A 29) Ll o)+ 300 B =
0y loen =0 =1 6y;
(i=m+1L..,Nj=1,..,N)
where

1=z =0 — V-

8 _ .
Q= = Ky =l (zn s 20), wOE)

]

From Egs. (A 22) and (A 26) we obtain
N
y =t (xn X0y + 2w (X, )]
j=me1
It follows that for i = 1, ..., N

_ on; [1: ‘(Al o X))

0%(:)=8 0x;

ay;

(A 30)

axj X1 == X =0

= w[‘,.)(@); (j=m+1,...,N).
Proposition A 7.If & = I then

0z;
VoL Y4
{JIIJ o
ax;

1; i=j,
n:.,=xm=0{ =0; i+j; ({,j=1..,N).
Proof. Let us denote d9 ;= §P(0)/4(d?/de?) [|yO(r) — y]a.
We have {J},; Z(az [07,) (0y:]0x;). Hence from Egs. (A 28)~(A 30) we obtain
(A31)
a4\’

J— ;l(m)' ((Z,L[i"lx_)] . 5'][‘1«' I(X)] , W,,,+1(9), . wh,(9)> -

‘.”fn+ 1(0) axy =0 0x,, x=0
wi(0)
since, if 0%(y) = 8 then dq[t~'(x)]/ox; = ¥'¥'(0). 0
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APPENDIX B (COMPUTATION)

It may be useful to consider the computational aspect when computing the density

q(@ \ 0) and the level of regularity 1—p,. To be concrete, let us consider the follow-
ing example.

Take
10) = " sin0,x; 0, (0, 10)
0,¢(0,2n),
take & = I, and take 4 design points x; = 1, x, = 2, x5 = 3, x, = 4.

The program for the computation of f(B|0):

Input variables: 04, 0,, 01, 92 (4 numbers)
Subroutines: .

(A) n{0) = e sinit,; (i=1,234)
(B) an6) = ie® sinif,
30,
an -
(C) ) _ ie cos if,
20,
*n(0) 0,
D : —E= = 2e® sin i
) s :
2
(E) Indo) _ i? e cos if,
20, 20,
(") Al

22 L0y i g
—t = — *esinif,
307

Subroutines for matrices:

_ v @) omf8) ., _
(G) Mfo) = % o0, o0, (ok=1,2)
(H) M(60) > M~ 1(0)
@ P~ 5 20 iy, 0

Use the subroutines (A)—(1) for @ = (9,, 0,), the subroutine (A) for 8 = (6, 0,)
and compute Eq. (9) for different inputs 0,, 0,, 6,0,

The program for the computation of (l — po):

The main idea of the algorithm is that through any point 8 = (6,, 8,) € (0, 10) x
x (0, 2n) and in any direction given by 8 := d6/dt we can draw a unique geodesics
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which is a solution if Eqs. (A 3), but for the natural parameter t,,,, where dt,, [dt =
= [dn/dt] {cf. Eq. (A 2)).

Input: 8,, 6, 6,, 6, (4 numbers)

Subroutines: (B)—(F)

Subroutine “‘derivatives™:

(J) d_ﬂ_ = 67]_(0) 91 + Dfn@ 0
dt a0, 00,
1y < 20 P
(x) P o) = 2002 210,
a'(:(zo) ( )2 ‘771(0) o+ %()ﬂ) w

where v, w are unknown input variables (intcrpreted asv =0, w=0,),

d dn [||dgf
(” "‘“"/1*"1
dt, dt/ ||det

d |dny Ndy

a2 dz[ A bl /dA

(M) q[vw] t t|de/] |de
diZ, d_u
dt

Linear equations: Compute v, w as the solution of the linear equations

& d%nfv, w] ony6)
E ammlv.wiondb) _
(EQ) i=zl drZ,, a6,
i d?nfv,w] 0n46) _ 0
=1 ded, a0,

(cf. Egs. (A 3))
Put v, w into (K), (M) and compute

o6, 05,6, 0) = H‘* ilo ]

dtﬂﬂ‘
For different inputs 6, 8,, 0, 8, compute
r = min {g(6,, 6, 0,,0,) : 0, €(0, 10), 0, € (0, 2n),
6,€¢0,15,0,e<0,1>,0% + 85 =1}.
Compute p, from
Xﬁ(l’o) =r?

where x3(po) is the (1 — Po) quantile of the x* p.d. with 4 degrees of freedom.

(Received July 18. 1983.)
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