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STATISTICAL LINEAR SPACES

Part 1. Properties of &, 7-topology

JIRI MICHALEK

The definition of the statistical linear space in the Menger sense (SLM-space) is given in this
paper. The ¢, g-topology is introduced and the basic properties of SLM-spaces as linear topo-
logical spaces are investigated.

0. INTRODUCTION AND PRELIMINARIES

In this paper we shall deal with basic properties of statistical linear spaces in the
Menger sense (SLM—space) which are a special case of statistical metric spaces in the
Menger sense (SMM-space). SMM-spaces are a generalization of the usual notion
of metric spaces in that sense that a metric is replaced by a collection of probability
distribution functions. Similarly, SLM-spaces are a generalization of linear normed
spaces where a norm is substituted by a suitable family of probability distribution
functions.

This paper contains in Section 1 the definition of SLM-spaces and the main proper-
ties of them together with three examples.

The definition of the &, y-topology and basic properties of SLM-spaces as linear
topological spaces are in Section 2. Section 3 contains some properties of &, #-neigh-
bourhoods from a base for the ¢, y-topology. In Section 4 properties of the mapping
#, which is defined on an SLM-space and takes its values in the Lévy space of pro-
bability distribution functions, are studied.

The notation of an SMM-space is studied in many details in [1]. A detailing discus-
sion of the original Menger definition of the generalized triangular inequality is made
there. Under these conclusions the authors suggested the following definition of an
SMM-space.

Definition 1. By a statistical metric space in the sense of Menger we shall call
a triple (S, A, T) where S is a nonempty set, " is a mapping 4 :S x S > F,
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where & is the set of all onc-dimensional probability distribution functions, satisfying
(f(x, y) = Fxs'('))
1 (Feu) =1 for u>0)« x=y
2. F(0)=0 for every pair x,y€S
3. F,(u) = F,(u) for every ue R and every pair x, y€ S (R is the set of reals)
4. F(u + v) = T(F,(u), F,.(v)) for every x, y, z€ S and every u, ve R where T
is a t-norm defined on <0, 1) x <0, 1) with values in ¢0,1) and satisfying
properties:
(a) T(a, by = T(b,a); T(a, 1) =a for a>0
(b) T(a, by £ T(c,d) for a=<c, b=d
T(T(a, b), ¢) = T(a, T(b, ¢))
(d) T(0,0) = 0.

Definition 1 yields immediately that every #-norm T satisfies T{(a, b} < min (a, b)
where min is a f-norm too. Further important examples of t-norms are T(a, b) =
= ab, T(a, b) = max (a + b —1,0). It is worth quoting [10] where one can see
a close relation between #-norms and 2-dimensional copulas.

Further, in [1] the &, 7-topology is introduced by the neighbourhoods of the form

NJen)={yeS:Fyn)>1—-¢}, xe8, #>0, 0<e=1

and under the continuity of the t-norm T it is proved that these neighbourhoods

form a base for a Hausdorff topology in S. This topology is called the &, n-topology.

The paper [2] studies the question under which conditions the &, #-topology is metriz-

able. If sup T(a, a) = 1 then the system A" = {U(e, )} where U(e, 1) = {(x, y) €
a<1

€S X S:Fn)>1~¢} (n>0,ce(0,1)) is a base of a Hausdorfl uniformity
in§ x S.
The mapping o : § x S — & where & is the Lévy space of probability distribu-
tion functions is studied in [3]. If lim T(a, v) = a uniformly in <0, 1), then " is
ot

uniformly continuous with respect to the ¢, y-topology in S x S.

The problem of a completion of SMM-spaces is solved in [4]. It is proved (under
certain conditions on the t-norm T) that every SMM-space can be (up to an iso-
morphism) completed by the maintaince of the f-norm in the unique way.

In [5] it is suggested one of the possible generalizations of the triangular inequality.
The demand 4 in Definition 1 is replaced by 4': (F,(u) = 1 and F,.(v) = 1) >
= F.(u + v) = 1, which is of course weaker than 4 in Definition 1. Further, in this
paper a relation between the mapping # (mentioned above) and a certain class
of semimetrics on S is studied and it is proved, in the casc of the t-norm T = min (a, b)
the existence of a probability space (D, 4, i) where D contains some semimetrics
on 8, all sets of the form {d € D :d(x, y) > u} x, y e S, u € R belong to & and

u{deD :d(x, y) > “} = Fx.v(u) :

59



At the beginning the theory of SMM-spaces belonged rather to the functional
analysis than to the probability theory; e.g. many articles are devoted to problems
of fixed points of mappings defined on SMM-spaces. Recently, some papers occurred
where the connection with the probability theory is quite evident, see, e.g. [7], 8], [9].

1. DEFINITION OF SML-SPACE, BASIC PROPERTIES, EXAMPLES

In this paper a special case of statistical metric spaces is considered. The definition
of SMM-spaces is based on that fact that although the distance of two points is
a fixed nonnegative number, an observer can measure this distance with certain
errors. His measurements are affected by errors and from this point of view a distance
is a random variable with its distribution function. Similarly, we can consider the
case of a normed linear space, where a norm is the distance measured from the zero
element. Properties of a norm and Definition 1 of the SMM-space lead us to the
following definition of the linear statistical space.

Definition 2. Let S be a real linear space, let & be the set of all probability distribu-
tion functions defined on the real line B. Let £ : S — & be a given mapping. For
every x € S let us denote #(x) = F, € # and we demand that ¢ satisfies:

1.x=0<F,=Hwhere Hu) = 0u £ 0; H{u) = 1u > 0

2. Fy,(u) = F(uf|4]) for every x e S and every / # 0.
3. F(u) = Oforevery u < 0and every xe S.
4. T(F (u), F,(v)) £ Fos,(u + v) for every u, ve R and every pair x, ye S whcrc

Tis a t-norm satisfying (a), (b), (), (d) in Definition 1.

Under these conditions the triple (S, 7, T) is called a linear statistical space in the
Menger sense (SLM-space).

Example 1. Let S =R, let G be a distribution function with G(0) = 0 and
G = H.If xe S let us define

S(x) = F()—G(r |> for x 0

F(0)=H(-) and T(a, b) = min(a,b);

then (R, #, min) is an SLM-space. As we assume G = H then x = 0 if and only
if F, = H. Further, F,(0) = 0 for every x € R thanks to the assumption G(0) = 0.
Thus, we have

1 u
le(u) = ¢ (L> ¢ (Fﬂ—u_> ¢ (l H) B F" (-‘)
[ Al [ 14 I g
for every Ae R, 2 + 0 and every x € R. The main problem is to prove the triangular
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inequality in the form

Fooy(u + v) 2 min (F (u), Fy{vy), ie.

) o)z (o) o)

If u < 0 or v < 0 then the inequality (x) is true because G(0) = 0. In the case u > 0
and v > 0, x =0 or y = 0 or x + y = O the generalized triangular inequality is
trivial. As the function G is nondecreasing, the inequality (x) for u > 0, » > 0,
|x + ¥] >0, |x| > 0, [y] > 0 follows from the inequality

L, (1, 1)_

[x + ] I 1l
Indeed, let us assume u > 0, v > 0, Ix + y| >0 and (u+ v)/lx + yl > min (u/]x N
of]y|). It implies that simultaneously (u + v)/|x + y| > u/|x| and (u + v)[|x + y| >
> vf|y], thus (u + v) |x] > ulx + y| and (u + v)|y| > vx + y|, what gives |x| +
+ ly > ]x + y|and that is a contradiction. This completes the proof of that fact
that (R, #, min) is an SLM-spacc.

Example 2. Let S be the set of all real sequences, i.e. § = {x : X = (xy, X3, X3, ..
<. X, ...)}, Where the operations of addition and scalar multiplication are defined

coordinatewisely. Let {a,, ©_, be a sequence of positive numbers such that f: a, = 1.
Let us define the mapping £ : S —» & in the following way: n=1
ifx = (x5, X, X3, ..+, X, ...) then we put

Fx(u) =0 for u= lel

Fo(u) = a, for x| < u £ x| + |x,

Fu)=a; +ay for |x;| + |x2] <u x| + |xa] + |54

H Do Dnet
F(u)=Ya, tor Y || <u éni x|
. =1 B =31 s

w
In the case if ) |x] < o0 we must consider two possibilities:
&
[ ! e
a) ¥ ]xi| contains infinitely many non-zero elements, then F,(u) = 1foru 2 ). ]xi|
i=1 i=1

b) Y |x;| contains finitely many non-zero elements only, then Fi(u) =1 for u >
51w

> _Zlfxil.
=
We do not eliminate the case of an empty interval.
As a t-norm we choose again the function min (a, b). Then the triple (S, #, min)
is an SLM-space. Surely, F, = H if and only if x = 0 because for every x # 0 at

61



least one coordinate x; differs from zero. Further, F,(u) = F,‘(u/l/l|) for every
x€S, A% 0, ueR because if 1 & 0, u > 0, x = 0 then Ax = 0 and F,(u) = 1.
If u < 0 then for every x € S it is F,(u) = 0 hence F,,(u) = 0 also for every Ae R.
Now, in the last case A & 0, u > 0, x + 0 we have

n n n+1
MY~ Y4, ifand onlyif f< <N
F, (l/li) i:la, if and only i i;]x,l < |/1] < igllx,l s

what is
n n+tl
> I/lxi] <usgy le,-| .
=1 i=1
The previous inequality expresses the value of F,, at the point u, i.e.
N n n n+1
Fi(u)=Ya; ifandonlyif ¥ |ix]|<u Y |2x]|.
i=1 i=1 i=1

At the end we must verify the generalized triangular inequality with the #-norm min.
n n+l n+1 n+t
Ifu+ve() |x,- +yh Y |xi + y,-l) then either u <Y [xi| orvsy fy,-!, hence
i=1 n i=1 n i=1 i=1
either F(u) £ Y a; or F(v) £ Y a,, but in every case the inequality min (F,(u),
=1 !

F,(v)}) £ F,.,(u + v) holds. The case F,(u) = 1 is investigated in a similar way.

Example 3. Let (2, o7, P) be a probability space. Two random variables ¢, #
on ©Q with P{w : &(w) = n(w)} = 1 shall belong to the same class of equivalence.
Let S denote these classes of equivalence on Q. Evidently, S is a linear space. Let us
define a mapping # in the following way:

Q) [u] =Plo: [Ho)| < u} = Fu), ¢S, ueR,

As a t-norm we choose m(a, b) = max (a + b + b — 1, 0). Then the triple (S, #, m)
is an SLM-space.

1t is clear that for every 4 & 0 and £ € S it holds

Plo :|i&(o)| < u} = P{w o) < ﬁ[}

and hence Fylu) = Fyul|A]). Similarly, P{w :|¢(e)| <u} =0 for u <0 gives
F{u) =0 tor every u < 0. Surely, Fy(u) = H(u) for every ueR if and only if
¢ = 0. The validity of the generalized triangular inequality is based on the results
in [10]. It holds that the joint distribution function G, (-, *) of &, 7€ S can be ex-
pressed as a function of their marginal distribution functions ge(*), g,(*) Ge ,(u,v) =
= C(g(u), g,{v)) where C is a 2-dimensional copula generally depending on a couple
&, 5. This copula C is a function defined on <0, 1> x (0, 1) satisfying the following
inequality

min (a, b) 2 C(a, b) = m(a, b).
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The inclusions {w :|&(w) + n(w)l <u+v}>{o:|lo) + ln((o)l <u+o}>
> {0 [{o)| < u, [y{w)] < v} give

Feofu + ) = Plo: [6(o) + (@) < u + 0} 2
z Plo: [8o)] < u n(@)] < v} = CEL{u), F\(v) 2 m(Fyu), F.().
It proves the validity of the generalized triangular inequality with the t-norm m.

Theorem 1. Every SLM-space is an SMM-space with the same f-norm.

Proof. Let (S, #, T) be an SLM-space. Let us define the mapping #(x, y) =
=#(x = y), # :S x S — F. Then the triple (S, A, T) is an SMM-space. #(x) =
= Hif and only if x = 0. The mapping " is surcly symmetric, because #(x — y) =
= #(y—x). If we denote #'(x, y)=F,,, #(x)=F,, then the generalized triangular
inequality holds, because

T(ny(u), FyZ(v)) = T(Fx—y(“)’ Fy—:(v)) = FXA,z(u +v)= sz(u + U) . O

Remark. Let S be an n-dimensional real lincar space. Then the triple (S, ¢, T)
is an SLM-space if and only if to cvery n-tuple of real numbers (4, 4,, -, 4,) a pro-
bability distribution function F;, ;, ...s,, corresponds such that

1. Figymmny = Hifand only if 2, = 2, = .. = 4, = 0

2. Flun, paginlt) = I"@“hy,,,];.")(u/lu]) for every p =% 0, ue R and every n-tuple
().1, Agy eves ).")

o Fiinagnan(0) = O for every n-tuple (4,, A5, ..., 4,)

T(F i i Fos o)) S F ottt oo ittt + ) for every n-tuple
(A4, A25 +.vs Ay) and (uy, gy, ..., ) and every u, ve R (Tis a t-norm).

)

2. TOPOLOGY IN SLM-SPACES

We shall use usual notions in the topology and in the theory of linear topological
spaces; see, e.g. [11]. Only the notions important for us shall be defined explicitly.

Definition 4. Let (S, Z, T) be a statistical linear space in the sense of Menger,
letxeS,0 < e = 1,5 > 0. Then the subset of S

O(x,e,n)={zeS:F._,(n) > 1 —¢}
is called the ¢, n-neighbourhood of the point x.
As the space S is linear, it is sufficient to introduce neighbourhoods of the zero
element only, i.e. the neighbourhoods of the form O(e, n) = {z : F.(y) > 1 — ¢}.

We shall assume the continuity of the t-norm T on {0, 1) x <0, 1>. Under this
assumption it is possible to prove that the collection of &, #-neighbourhoods forms
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a base of a topology in the space (S, F#, T). It is clear that O e O(e, '1) for every
0<e=1,7n>0, because Fo(n) = H(y) = 1 > 1 — &. Further, if two &, p-neigh-
bourhoods O(e, 7), O(¢, ') are given, then there exists a neighbourhood O(&*, n*)
such that
O(c*, n*) < O(e, n) " O(e". 1) .
1t is sufficient to put ¢* = min (s, &), y* = min (1, 1;’) because
O(e, ) n O, ) = {zeS: F(n) > L — & F.(y') >
>1—¢} o {z:F(min(n,n)) > 1 — min(e¢)} = O(e*, n*).
Similarly, if ¢ £ &',y < 5’ then
O(s,n) = O(e', ') -

The last property which is necessary for a base of neighbourhoods in a topology
is that for every ¢, 7-neighbourhood O(z, ;7) and every y e Ofe, n) there exists such
an e, n-neighbourhood that O{y,*,n*) = O(e, n). Let O(e,n) and y be given.
As the function F, being a probability distribution function 1s left continuous at #,
there exist 7o < 7, &, < ¢ that Fy(1o) > 1 — g5 > 1 — &. Now, we choose #* such
that 0 < 7* < 5 — o and ¢* such that T(L — &, 1 — &¥) > 1 — ¢ (such an ¢*
exists because the f-norm T'is assumed continuous and T(a, 1) = a). Let s € O(y, &,
1) then F(n) 2 T(F(no). Fy-(n — o)) = TEy(s). Fyo ™)) 2 T(L = c60 1~
—¢*)>1—¢eand se Ofe, n).

Definition 5. The topology generated under the continuity of the f-norm T by the
base % = {O(e,n):0 < ¢ £ 1, n > 0} of the neighbourhoods of the zero element
in (S, #, T) will be called the ¢, n-topotogy.

Definition 6. A sequence {x,},2, < (S, #, T) will be called F-convergent at x € S,
if
lm F, _(u) = H(u)
n-o0

for every u € R (in symbols x, £- x).
Lemma 1. A sequence {x,};%, = (S, #, T) is F-convergent at x € S if and only if
(Vee (0, 1> vy > 03ny ¥n = no) = (x, € O(e, 1)) .
Proof. If lim F, (u) = H(u), u >0, tislim F, (u) = 1, then
(Vun>w0 Vee (0, 1> An, Vi 2 ny) =: Ifx"(u) >1=cex,e0(u).

Conversely, if (Ve€(0, 1> ¥y > 03n,Vn = ng) = x,€ O(e, n) <> F () > 1 — &, it
is precisely that lim F, () = 1 for every # > 0. If u < 0 we have F, (u) = 0 for
every n. nre O

Theorem 2. Every SLM-space (S, #, T) with a continuous z-norm is with respect
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to the ¢, n-topology a Hausdorff linear topological space with a countable base
of neighbourhoods of the zero element and hence it is metrizable.

Proof. If we choose any sequences {e,}, {#,}7 such that ¢, 10, #,]0 then
{0(8,,, n,,)}‘l” is a base of neighbourhoods of the origin for the ¢, n-topology, because
for every Oe, #) we can find a pair ¢, #,, such that &0 = & N,y = 1 and hence
O(Engs 1ny) = O(e: 71)-

This space will be a Hausdorfl space if and only if ) U = {0} where #(0) is a base
UeB(0
of neighbourhoods of the origin for the &, n-topology). In our case it is necessary

to prove that () O(e, n) = {0}. Let us suppose that x e ) O(e, #). Then for
&

0<es1,9>0

every n > 0 and every ¢€ (0, 1) F.() > 1 — &, in other words F () = 1 for every
n > 0. It implies that x = 0 in S. We have proved that a countable base of the origin
for the ¢, y-topology exists and hence the ¢, -topology is metrizable.

Using Lemma 1 and the existence of a countable base for the ¢, y-topology at the
origin we can easily prove that linear operations and the g, y-topology are consistent.
Let A, - Ainreals, let x, — xin S in the ¢, n-topology. Then 4,x, — Ax = 4,(x,—x) +
+ (4, — ) x and the generalized triangular inequality proves immediately conti-
nuity of scalar multiplication in the product topology. In a similar way, using the
generalized triangular incquality again, one can prove continuity of addition in S
in the product topology. )

Theorem 3. Let (S, #, Tj be a statistical linear space with the r-norm T satisfying

lim T(a, b) = 1. Then (S. #, T) with the topology defined by the F-convergence
at1,p1
is a linear topological space.

Proof. When x, - x then evidently for every subsequence {x,,}7 < {x,}7 x, Z-x
also. Further, for every stationary sequence {x,‘}‘f, i.c. x, = x for every n 2 n,

it holds that x, -2 x.

me

If x, > x, i.e. there exists at least one uy > 0 that F, _ (uo)+ 1, then an gy > 0
and subsequence {x,,} 7 < {x,} must exist such that for every subsequence {x;}? «
& (X} ? Frno_i(t1o) < 1 — &, in other words x; -5 x.

In this way we have verified all demands put on the topological convergence and
we must prove further that this convergence and linear operations defined on S are
in accordance. When x, " x, y,—~ y then using the generalized triangular inequality
we obtain

Foon(2n) 2 T(F (n), F, () 2 T(1 — &, 1L —¢)

for a suitable Jarge n and the left continuity at [1, 1] of the -norm implies that T(1 —e,
1- s) - 1 if ¢ —» 0. Similarly, as it was done in the proof of Theorem 3 we can
prove that x,-. x, A, — A imply that A,x, - Ax, too. It follows from the left conti-
nuity at [1, 1] of the +-norm T that every F-convergent scquence has a unique limit
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point, because
Freomyok2n) 2 T(Fe o of(m), Frpmyolm)) > T(1 — 6.1 — g)

for a suitable large natural n and every n > 0. O

Remark. If the r-norm T'1s continuous then as we proved in Lemma [ and Theorem
3, the ¢, n-topology and the F-convergence are equivalent. Generally, this equivalence
need not hold without the assumption of the continuity of the t-norm T, because
&, n-ueighbourhoods need not form a base of neighbourhoods of the origin in S for
the topology generated by the F-convergence.

In further considerations we shall deal with continuous t-norms only. In this case
every statistical linear space (S,f, T) has the metrizable &, n-topology and the
question of its normability is interesting for us.

Definition 7. A subset A = S where (S, 7) is a linear topological space with a topo-
logy t is called bounded in topology 7 if for every t-neighbourhood U of the origin
in S there exists A > 0 that

AciU.

In our case of an SLM-space (S, 7, T) a subset A = S is ¢, g-bounded if and only
if for every O(e, n) there exists A(g, 77) > 0 that

A< Me,n). O(e,n) = O(e, Xe,n) . ) -

In other words, the ¢, n-boundedness of 4 can be expressed as follows: a subset 4
is ¢, n-bounded if and only if for every sequence {x,}{ = 4 and every sequenc:
{2} %, Ay > 0 of reals 4,x, =~ 0 also in S.

Now, we use very important criterion of normability of linear topological spaces
due to Kolmogorov, see [11]. A Hausdorff linear topological space is normable if
and only if there exists a bounded convex neighbourhood of the origin in it. If U
is such a neighbourhood then the norm in question can be expressed as

|x| =inf{i>0:xeiU}, xeS.

In the case of an SLM-space (S, #, T) if such a neighbourhood O(e,, 1) exists,
then a possible norm || has the form

x| = inf{i > 0:xei0(eg n0)} =

=inf {1 > 0:xe 0, iny) =
=inf {4 > 0: F(lno) > 1 — &) .

With this question of normability an important property is connected as the following
Theorem 4 states. ’
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In the next Theorem 4 we shall need the following notation:

conv A is the absolutely convex hull of A, conv A is the convex hull of A.

Theorem 4. Let an SLM-space (S, #, T) be finite-dimensional. Then the ¢, n-topo-
logy is normable and is equivalent to the usual Euclidean topology.

Proof. We suppose that the space (S, ¢, T) is finite-dimensional and hence
every x € S can be expressed in the form

(e1, €, ..., €,) is any linear base in S. As the number of the elements in a base is
finite, we can find an ¢, y-neighbourhood 0(.9 r,) which contains all elements of the
base. Further, every x € conv (e, €5, ..., € ) can be expressed as an absolutely convex

combination of ey, ey, ..., ¢, i.e. X = 7 L€ Z || £ 1, and because conv O(e, n)

is also absolutely convex in S then conv (e,n €5, .. €,) < conv O(e, ).

Now, it is necessary to prove that conv (e, e,, ..., ¢,) is at the same time a neigh-
bourhood of the zero element in the ¢, y-topology; for this fact it is sufficient to find
O(e*, n*) such that

O(s*, r]*) - c—o?rv(el, [N e,,) .

Let us suppose, that such a neighbourhood does not exist, i.e. for every Of(e, )
there exists at least one point x, € O, n) so that x, ¢ conv (ey, e, ..., ¢,). Taking
&, 10, 1,10 we can construct a sequence \‘Cm), which has the zero element as its

limit point, let us say x,, Zz"’e but x,, ¢ Conv (e, €5, ..., €,), i-¢ Z [)'"| > 1.

First, we can suppose that M Z |2 > 1 for all m, where M < + 0. Then there
i=1
exists a subsequence {A7*; A3%, ..., A"} that is convergent and hence

n

me = Z

i=1

iMoo, Fox, but xo = 0 because

X,

n
Xo =3 Afe;, A7 = lim A7*
i=1 k
n
If there exists a subscquence ) |&',5”‘] unbounded from above, i.e.
i=1
"
lim Y !].'{"‘| =+
koi=1

then we can consider the sequence
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"
instead of the original {x,,},. However, at the same time, we have ‘c,’f,k =3 e,
i=1

with 2 |u"”“ = | and this case can be transformed to the previous one. This fact

proves that conv (ey, ey, ..., e,) must be a neighbourhood of the zero element in the
¢, 7-topology. The boundedness of conv (e, e, ..., e,,) is clear, because if {x,,,}‘l’
is any sequence from conv (e;, e,. ..., ¢,), lim g,, = 0, g,, € B then

m

wt = a3 e T || 5 1 and

(T"(ay, az, .., a,) = T(ay, T(az, cn T(a,_y,a,) ),

with |27 < 1 and this fact implies that g,x,-%-0. We proved that in the case of a finite
dimensional SLM-space (S, #, T) the &, n-topology is equivalent to the topology
generated by the coordinate convergence and the g, 5-topology is normable. O

Lemma 2. Every SLM-space (S, ¢, T) where T(a, b) = min (a, b) is a locally
convex linear topological space.

Proof. The proof is very simple. Let us consider any &, y-neighbourhood O(z, n)
in (S, £, T) and let x, ye O, ), «e (0, 1>, then F.(n) > 1 —¢ F(n)>1—-¢
and hence

Foermaplt) 2 min (Fosan). Foo_op((1 = @) 1)) = min (E,(n). Fyn) > L — . 01
3. PROPERTIES OF ¢, »~-NEIGHBOURHOODS

Lemma 3. Let 0(6, #) be an e, y-neighbourhood of the zero element in an SLM-
space (S, .7, T). Then for every /1, <1, e Rand every x e O(e, )

JxeO(e,n).

Proof. Letx e O(c, ), ie. F(n) > 1 — ethen F,(n) = F.(n/|A)) 2 Fu(n) > 1 — ¢
and hence Aix e O(e, n). O

Lemma 4. Every &, #-neighbourhood O(e, 1) is a symmetric set.

Proof. If xe O(g, ) then F_ () = F,(n) > 1—¢ also, what implies that —x e
€ O(e, n). O

Lemma 5. Let an ¢, n-neighbourhood O(e, n) be given. Then for every x (S, #, T)
there exists a 2 > 0 such that x € u O(e, ) for every p, [u| Z A. This property is
called the absorbing property of ¢, y-neighbourhoods.
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Proof. Since for every xe(S. 7, T)lim F (u) = 1, ie. for every & > 0 there
exists u(¢) > 0 such that for every u 2 u,(e) we have F (u) > | — ¢, it is evident
to put 2 = u()fn. If p is an arbitrary real number with |u| = 2 then Fx(|u| n 2
> F(ue)) > 1 — cand hence x € O(e, u‘ 7). Asevery O(g, 1) is a symmetric set, then
Ole, !u’ n) = . Ofg, n). ]

Lemma 6. If an ¢, p-neighbourhood O(e, y) is a convex set, then it is an absolutely
convex set in (S, £, T).

Proof. It follows immediately from Lemma 3 and Lemma 4.

Lemma 7. For every ¢, n-neighbourhood of the zero element in (S, ¢, T)

S=U 0n.n).

n=1
Proof. Let x e (S. #.T)and let O(e. i7) be an arbitrary g, y-neighbourhood of the
zero element in S. As Lemma 5 states for tke chosen ¢ > 0 there exists u(e) > 0
such that F,{u(e)) > 1 — & Now, it is sufficient to choose a natural n in such a way
that n.n 2 u(s), at this moment x € O(¢, ny) = n. O(g, n). This proves that S =
=Un.O0@n). O
n=1
Lemma 8. Let x, be a cluster point of an ¢, y-neighbourhood O(e, 1) in an SLM-
space (S, #, T). Then
lim F (u)21—5.
u—nt
Proof. Let {x,} < O(g, 1), x,~~x,, let 2 > L. Then, according to the generalized
triangular inequality
Folin) 2 (oo f(: = 1) 1), Fon) 2 T(Fq - of (A= D)1= o)
for every natural n because x, € O(e, n). But x, - xg. ie. F, - ((A-1)n}> 1 —¢
for a suitable large n and hence F (47) = T(L — &', | — ¢). As ¢ is quite arbitrary,
the t-norm T'is continuous and T(a, 1) = a for a > 0, this impiies F, {in) = | — &
for every 4 > L. F_VO(-) is a probability distribution function, therefore the limit
lim F, (u) must exist and in this case lim Fo(u) = 1 — e m}

u—n+ u—y+

Lemma 9. If Ofe, ) is a convex set in an SLM-space (S, #, T) then its closure

(e, n) in the ¢, n-topology can be described as
O@.n) ={xeS:imnf{A>0:F,(n) >1-¢ £1}.

Proof. If O(g, 1) is a convex set in (S, #, T) then it is at the same time absolutely
convex and absorbing. Let us define a functional (Minkowski functional)

Pofx) = inf {1 > 0:xe Ofe, in)} =
=inf{l>0:F(in)>1—¢}.
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From the properties of the ¢, p-neighbourhood O(e, ) mentioned above it follows
that p,,(+) is a seminorm defined on S. As O(e, ) is a neighbourhood in the ¢, n-topo-
logy this seminorm p,,(+) is continuous in the &, #-topology, and the closure O(e, n)
can be expressed as

O, n) ={xeS:inf{Zi>0:F(n)>1—3¢ 21} ={x:n_[(x)Sn}
where n,_(x)=inf{i>0:F[(1)>1—¢}. O

4. PROPERTIES OF MAPPING 7

Let an SLM-space (S, #, T) be given. The mapping ¢ is defined on the linear
space S with values in the set & of all probability distribution functions defined
on real numbers. In. & we can introduce a metric Ldefined by

LF,G)=inf{h>0:Flu—h)—h<Gu)< Flu+h)+h forevery uef};

this metric is called Lévy’s metric and the pair (%, L) is a complete metric spacc.

Definition 9. Let (S, J, T)and (S, F', T') be two SLM-spaces defined on the same
linear space S. We shall say that (S, F,T)and (s, 7, T') are topologically equi-
valent if the mappings ¢, #' define equivalent ¢, n-topologies.

Theorem 5. SLM-spaces (S, #. T), (S, #', T') are topologically equivalent if and
only if the mapping L{ #(-), #'(+}) defined on § is continuous at 0 in both the &, i
topologies.

Proof. If the ¢, p-topologies are equivalent, i.e. if x, %0 in (S, F,T) then
x, -0 in (S, #', T')and vice versa, then #(x,) (u) = F, (u) » H(u), #'(x,) (u) =
= F,(u) > H(u) for every ueR what can bz expressed also in the form
L{#(x,), H)) =0, L(#'(x,), H)) — 0. From the triangular incquality in the metric
space (%, L)

L(# (), £(x)) £ L), H)y + LI (x), H))

it inimiediately follows that

lim L(#(x,), #'(x,)) = 0.

Conversely, if x, -2~ 0 in (S, 7, T), i.e. L(F, , H) - 0 and we assume that L(#(x,),

F(x,)) =~ 0 also, then L(#'(x,), H) < L{#(x,), H) + L{#(x,), #'(x,)) for every n

and hence lim L(#"(x,), H) = 0. This fact says that x, -2 0in (S, #', T’) and the
n—oo

¢, y-topology in (S, #, T is stronger than the &, y-topology in (S, #/, T'). In a similar

way we can prove the opposite implication what completes the proof of Theoreni 5. [J

Theorem 6. Lzt an SLM-space (S, #, T) be given. Then the mapping ¢ : S —
— (#, L) is uniformly continuous in the ¢, n-topology.
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Proof. The t-norm T is continuous on €0, 1> x <0, 1> and therefore T is uni-
formly continuous on (0, 1) x (0, 1) and lim T(a, x) = ¢ uniform in a. It means
x11

that (Vn > 03ee(0, 1)Vae<0,1y)= T(a,1 — &) > a — y. Let x,—> x, in the
g, n-topology, we can find a natural number n, such that for every n = n,

X, € O(XO, &, 1) <= Fx,,—xn(ﬂ) >1—c¢.
Let u € R be arbitrary, then
Fou + 1) 2 T(Fyo-x(n), Fro(u) 2 T(F, (u),1 — &) > F, (1) — 1.

From this inequality we obtain that F (u + 1) + n > F (u). In a similar way
we can prove the opposite inequality F, (u) > F,(u — n) — n. Both the obtained
inequalities express together that L(F, , F. ) < #. The continuity of the mapping
J in the ¢, n-topology is proved. It is necessary to note that a choice of ¢ and # does
not depend on x,, x, and the continuity of ,# can be expressed in a stronger form as
follows (Vg > 0 Ve e (0, 1) Vx, ye S, x — y € O(e, n)) = L(F,, F,) < n. This implica-
tion means, of course, the uniform continuity of the mapping # in the ¢, #-topology.
[}
Theorem 7. A set K < (S, #, T)is bounded in the ¢, #-topology if and only if the
image #(K)in (#, L) is compact.
Proof. Let K be a bounded subset in (S, #. T). It means that for every g, n-neigh-
bourhood O(e, r]) there exists an « = «(e, ) € R such that for every real 4, ]}[ ]

K<l O(e, n) = O(r,, ]/l }7) .
Let #(K) = {F,:xeK]}. If we choose the neighbourhood O, 1) then for every
2, ]/] = ofe, 1) K < Ofe, M) It implies that #(K) = #(O(e. [/;)) what means for
every M = ofe, 1) and every xe K FX([/'.D > 1 — & We have proved that for every
Fe #(K)and every u 2 afe, 1)
F(u) >1—¢.
This fact can be expressed in the form lim F(u) = I uniformly in x e K. As wc
urw
know that the subset #(K) is compact in (#, L) if and only if
lim F(u) =1, lim F(u) =0 uniformly in #(K)

the necessary part of the proof is finished. Let us suppose that j(K) is compact
in(#,L),K = (S, #, T). Then lim F,(u) = 1 uniformlyin xe K, i.e.

u= o

(Vee(0,1) 3o = afe) Vu 2 aVx e K) = F (u) > 1 —&.

Let {x,} T be an arbitrary sequence in K and let 4, — 0 in reals. Then

FA,,x,.(“) =F,, (Hll) >1—¢ for uz= oc!)."].



As A, — 0, then for every u > 0 there exists such a natural n, that u = «|4,| for
every n  ng. So, for u = u, we have 1,x, € Ole, u). The convergence 4,x, - 0 is
proved and hence the subset K is bounded in the &, -topology. O

Theorem 8. An SLM-space (S, #, T') with the f-norm T = min is normable ii
and only if there exists such an ¢, y-neighbourhood 0(5, n) of the zero element that
its image #(O(e, 17)) is compact in (%, L).

Proof. This statement immediately follows from Theorem 7 and Criterion of
normability. O

(Received September 2, 1981.)
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