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ON STRUCTURAL APPROXIMATING MULTIVARIATE 
DISCRETE PROBABILITY DISTRIBUTIONS 

JIRI GRIM 

The purpose of structural approximating is to develop a flexible parametric model applic
able to estimating various types of probability distributions. The approach combines the idea 
of product approximating with the concept of finite mixtures. To optimize mixtures of product 
approximations the maximum-likelihood principle is used. An efficient numerical solution 
is enabled by a convergent iterative procedure. A numerical example previously used by other aut
hors is included to compare different structural approximations. 

1. INTRODUCTION 

Essentially, there are two possibilities how to estimate an unknown probability 
distribution if a sample of independent observations of a random vector is given. 
Applying a parametric method we assume the unknown distribution to be trom 
a standard parametric family and estimate only the involved parameters. This 
approach is computationally feasible but the results are often unsatisfactory, since, 
in practical problems, the assumed model is usually not adequate. Nonparametric 
methods, on the other side, do not require special assumptions concerning the form 
of the estimated distribution. However, they are less efficient and have also some 
other disadvantages like exceeding storage requirements, poor properties in case 
of small sample size etc. 

In the present paper we consider a special class of parametric probability distribu
tions defined by a dependence structure of the involved random variables and by 
a set of marginal distributions. This "structural" approximating retains the computa
tional simplicity of parametric methods but the form of the approximated distribu
tion need not be a priori assumed. The structural approach is based on approximating 
multivariate probability distributions by products of their lower order marginals 
studied by several authors in different aspects. 

Thus, to reduce storage requirements, Lewis [15] applied this approach to discrete 
probability distributions and suggested an information criterion, so called relative 



entropy, as a measure of goodness of approximation. Introducing a notion of tree 
dependence Chow and Liu [3] considered approximating d-dimensional discrete 
distributions by [d — 1) second-order marginals under the same criterion. The optimal 
choice of marginal distributions, not studied by Lewis, is solved here in terms of 
graph theory — by finding the maximum-weight spanning tree. Chow and Liu extend
ed their solution also to statistically formulated problems, when only estimated 
marginals are available. Similar situation is considered also in the papers [ l l ] and [7] 
with the aim of approximating unknown multivariate distributions, especially when 
the sample size is small. Again the relative entropy is used as a criterion but, instead 
of dependence tree, a less general markovian dependence structure is optimized. 
The information theoretical context of the product approximating clarifies the paper 
of Perez [16] introducing general concepts of dependence tightness and e-admissible 
simplification of dependence structures. 

Several references on approximating discrete distributions relate to contingency 
tables. The problem introduced by Deming and Stephan [5], [18] is to estimate 
the cell probabilities Pip (i = 1, 2, ..., r; j = 1, 2, ..., c) of an r x c contingency 
table for which the true marginal probabilities Pi.,p.j are known and fixed. Un
fortunately, this is not the case when only a sample of observations is available. 
Nevertheless, considerable attention has been paid to this problem in the literature, 
especially to an interesting iterative procedure suggested by Deming and Stephan. 
To compute the estimates pfj- the procedure successively satisfies the corresponding 
marginal restrictions continuing this iteration until convergence. Extending the 
results of Lewis [15], Brown [ l ] suggested a similar procedure and showed that the 
relative entropy as a measure of goodness of approximation improves at each step 
of the iteration. Finally, emphasizing statistical aspects, Ireland and Kullback [10] 
thoroughly analysed the properties of this algorithm. Kullback [13] extended 
further its applicability to multivariate probability densities and with Ku [12] also 
to the sample-based estimating of discrete probability distributions. However, the 
algorithm of Deming and Stephan seems to be less favourable in higher dimensions, 
since the estimated distribution is iteratively computed at each point of the discrete 
space. Moreover, the underlying model involves a large number of parameters. 

To develop structural approximations practically applicable to estimation problems 
we first recapitulate the concept of product approximating (Section 2). In Section 3 
it is shown that, without any loss of generality, only a special type of dependence 
structure may be considered in estimation problems (Theorem 3.1). In Theorem 3.2 
the original solution of Chow and Liu is presented in a rigorous form. The statistically 
oriented approximating based on maximum-likelihood estimates of parameters is 
considered in Section 4. A new type of approximations is developed by introducing 
finite mixtures. Finally (Section 5), a numerical example is used to illustrate the hier
archy of different structural approximations. 



2. PRODUCT APPROXIMATIONS OF DISCRETE PROBABILITY 
DISTRIBUTIONS 

Let us consider a probability distribution of a discrete random vector X = 
= {XuX2,...,Xd): 

(2.1) p(x), x = [xux2,...,xd)eSC ; 3C = flT_ x 3C2 x . . . x SCd ; 

where .f fc, (fc = 1,2,... , d) is a set of discrete values of the variable Xk. To simplify 
notation of marginal distributions we denote by / the set of indexes {l, 2, ..., d}. 
If A c / is a subset of / and A c / its complement: 

(2.2) / - { 1 , 2 , . . . , < / } ; A = {._,._,...,.„} c / ; A = { i _ + 1 , . . . , i_} = K A , 

we denote by 

(2.3) xA = (*,., ..., xik) e arA = Xh x ... x rifc ; xA = (x ik+1, ..., x J £ 3TA 

the corresponding subvectors and subspaces. Thus, to express a marginal distribution, 
we can write 

(2.4) pA(xA) = p(xA) = p(xh, xh,..., xik) = Y_ p(x) ; xA e 9CA ; A c / . 
xAearA 

As indicated, the subscript A in pA will be omitted whenever tolerable. (For A = 0 
we obtain p(x0) = 1 . ) 

Now, if sd is a partition of the set I: 

(2.5) J / = {A, ,A 2 , . . . ,AK } ; U \ = / ; j # fc =* A_ n Afc = 0 
t = i 

then, using conditional probability distributions, we can write the well known 
expansion formula 

(2.6) p(x) = p(xAK | X A K _ _ , . . . , xA i ) p(xAK_, | xAK_2, . . . , x A i ) . . . p(xA2 | xA i ) . 

The principle of product approximating naturally follows from equation (2.6) 
if one uses only subsets of the conditioning variables. 

Definition 2.1. Let s4 be a partition of the set / and 3* a sequence of pairs of subsets 
with the property 

(2.7) 9> = {(A, [ 6,), (A2 | 82), ..., (AK \ B j } ; 6, J\J Aj c / ; 

fe= 1......K; (B, = 0 ) 

Further let p(xA), A c / be marginal distributions of a probability distribution p. 
Then the function 

(2.8) P(x | ST) = n % ^ = P(XA1) ft pK, I X BJ ! « f 
fc-i KxsJ ' = 2 



will be called the product approximation of the distribution p and Sf is the dependence 
structure of this approximation. 

Let us remark that the function (2.8) is itself a valid probability distribution. 
For the sake of simplicity we assume here and in the following that the involved 
conditional distributions exist or, respectively, the marginal distributions in the 
denominator are nonzero. 

To measure the "closseness" of approximation we use a generally accepted 
information criterion — the relative entropy 

(2.9) % ; I J ) = Z p W l n - ^ r ^ 0 

which is nonnegative and equals zero only if the two distributions p, P are identical. 
Expanding the logarithm in (2.9) and using the relation 

(2.10) £ - p(x) In p(xA) = £ - p(xA) In p(xA) = H(pA) = H(A) ; A c / 
xsar *AearA 

we can write 

(2.11) H(p, P) = - / / ( / ) + £ [H(Ak u Bk) - H(Bk)] 
k = i 

where H(A) denotes the Shannon entropy of the marginal distribution pA. (For A = 0 
we define H(p0) = H(®) = 0.)The relative entropy (2.11) may further be rewritten 
in the following equivalent forms 

(2.12) H(p,P)=-H(\) + YJH(Ak\Bk) = 
k = l 

= -H(l) + fjH(Ak)-ls(Ak,Bk) 
k=l k=l 

where H(A | 8) denotes the conditional Shannon entropy and S(A, 8) is the mutual 
Shannon information between a pair of random vectors XA, XB: 

(2.13) H(A | 8) = H(A u 8 ) - H(B) = £ p(xs) £ - p(xA | xB) In p(xA | xB) ; 
*BearB xAearA 

S(A, 8) = H(A) + H(B) - H(AuB); A u f i c l ; AuB = 0. 

Since the entropy H(l) is constant for a fixed distribution p, we have the possibility 
to compare or optimize the product approximations (2.8) by maximizing the criterion 

(2.14) Q{?) - - £ H(Ak) + £ S(Ak, Bk) = - | H(Ak | Bk) , 
k=l k = l k=l 

i.e. independently of the actual probability distribution p. This important property, 
first noticed by Lewis [15], is employed also in Section 3 to derive a suitable general 
form of dependence structures. 

From (2.14) it follows that, given a set of several marginal probability distributions, 
we can choose an optimal product approximation (2.8) by evaluating all alternatives 



(cf. [15]). Another possibility to pose the approximation problem relates to the 
concept of e-admissible simplification of dependence structures [16]. Assuming 
a known distribution p, we are interested in product approximations for which 
the approximation error H(p, P(.\ £f)), (cf. (2.9)) is less than a given positive e. 
Obviously, the set of available marginal distributions may be complete or arbitrarily 
specified. 

The statistically oriented formulation of the approximation problem is suitable 
when a direct estimation of the unknown multivariate distribution is difficult because 
of a limited sample size. In this case the estimates or marginal distributions up 
to a given order r may be expected to be more reliable. For this reason, developing 
the concept of structural approximating, we confine the general dependence struc
ture (2.7) by the inequality 

(2.15) \AkuBk\^r; k=\,2,...,K; (1 __ r _i d) . 

Nevertheless, despite this constraint the underlying problem of discrete optimization 
is extremely difficult. 

Remark 2.1. One way to simplify the optimization problem is to set Bk = Ak_1, 
(k = 2, 3, ...,K) in the sequence £P, (cf. (2.7)). We obtain a particular "markovian" 
dependence structure (cf. [ l l ] , [16], [7]) 

(2.16) ^ = { ( A 1 | 0 ) , ( A 2 | A 1 ) , . . . 5 ( A K | ^ _ 1 ) } . 

Unfortunately, the corresponding solution has the complexity of the travelling-
salesman problem (cf. [7]) and is therefore intractable in higher dimensions. 

3. OPTIMIZATION PROBLEM 

First it will be shown, that optimizing the product approximations (2.8) under 
condition (2.15J we may confine ourselves only to a special class of dependence 
structures without any further loss of generality. 

Theorem 3.1. Let P(. \ £f) be a product approximation of a probability distribu
tion p with the property (2.15). Then there is a product approximation P(. \ £f*) 
with the dependence structure 

(3.1) &>*~W\B*),...,(A*\B*K)}; |A*| = 1 ; |6*| = min{r - 1; k - 1} ; 

k= l,2,...,d; 

which is better in the sense of the inequality 

(3.2) Q(£?*) = Q(£f) 

Proof. Let 9" be a new dependence structure obtained by extending the sets Bk 



in Sf consistently with the constraint (2.15): 

(3.3) ST = {(A, | B\), ..., (AK | B'K)} ; Bk c BJ c= \ j A* ; 
;=i 

fc-i 
|6fc| = m i n { r - \Ak\; £ |A,|} . 

/ = i 

Using formula (2.14) we obtain the inequality 

(3.4) Q(Sf') - 0(Sf) = £ [H(At | Bt) - H(At | 60] > 0 
&=i 

since each difference in the sum is nonnegative by the well known property of the 
Shannon entropy. Let us consider further a partition of a set At from Sf", (|A;| > l ) : 

(3.5) Ax = A<» u A<2> ; A<j> n A<2> = 0 ; \A™\ > 0 ; |A<2>| > 0 . 

If we modify the dependence structure S/" according to the partition (3.5): 

(3.6) Sf- = {(A, | BJ), (A2 I B2), ..., (A('> | Bf), (A<2> | A'1) u BJ), ..., (A'K | B'K)} ; 

B! = B f < = u \ ; [an - min {r - |A«->J; £|A,|} 
y=i ; = i 

then it holds 

(3.7) Q(Sf+) - Q(Sf') = tf(A | BJ) - [tf(A<2> | A,1) u BJ) + tf(A</> | Bf)] = 

= [ff(A, | B{) - H(A<2> | A[j> u B';) - H(A\^ \ BJ)] + [//(A*1) | B'f) - tf(A<*> | Bf)] = 

= i^Aj1* | B;) - H(AP> I Bf) > 0 

since the last difference is again nonnegative. Consequently, if we partition all the sets 
A; in Sf' having two or more elements (repeatedly, if necessary) and modify the 
dependence structure in a way suggested by (3.6), we obtain finally a dependence 
structure Sf* with the ptoperty (3.1) satisfying the inequality: 

(3.8) Q(Sf*) - Q(Sf') = 0 . 

The proof is complete since the inequalities (3.4) and (3.8) imply the assertion (3.2). • 

Theorem 3.1 simplifies the optimization problem considerably, since, without 
any loss of generality, the criterion Q(Sf) may be maximized on the following reduced 
class of dependence structures, (cf. (2.7)): 

(3.9) S? = {(.. | B.), (i2 | B2), ..., (id | B,)} ; n = n(l) = (iu i2,..., id); 

B* <= {h> h, ••-, ik-i} ; \Bk\ = tain {r - 1; k ~ 1} ; fc = 1, 2, ..., d ; 

P(x \SF)=Y{ p(xik | xBJ ; x e f ; 
fc=i 

where n is a permutation of the elements of the set /. Nevertheless, even in this form 
the optimization retains its complexity. Only for the case of two-dimensional marginals 



(r = 2) there is a surprisingly efficient solution of Chow and Liu [3] employing 
weighted graphs: 

Theorem 3.2. Let Gd be a complete weighted graph over the set of vertices /: 

(3.ie) Gd = {/, E | w} ; E = {(./, k):je I; k el;j* k} 

and the edge-weight function w be defined by equation 

(3.11) w : E -> Rx ; w(j, k) = S(j, k) = H(j) + H(k) - H(j, k) ; 

Then the maximum weight spanning tree zd = {/, F | w}; F c £ of the graph Gd 

defines a product approximation 

(3.i2) p(x | a) = K^,) n p[*ik I *,-J = L n K * . J ] f r i - ^ ^ - 1 

ft=2 »_i * L * = 2 K * . J X * J J J 

with the dependence structure c: 

(3.13) o = {(*. | - ) , (i2\j2) , ..., (id\jd)} ; jke{ilt i2, ..., **_.} c / ; 

which maximizes the corresponding criterion Q(a), (cf. (2.14)): 

(3-14) 0 » = -iH(ik) + YB(ik,jk) 
k-l k=2 

Proof. Let us recall that an undirected graph is complete if every possible pair 
of vertices is joined by an edge. The degree of a vertex is defined as the number 
of edges incident on the vertex. A path between two vertices is a sequence of edges 
where each vertex in the sequence has degree two except for the initial and final 
vertex which have degree one.. A graph is said to be connected if there exists a path 
between any pair of vertices in the graph. A circuit is a connected graph in which 
every vertex is of degree two. A tree is a connected graph with no circuits. A spanning 
tree of a graph is its subgraph which connects all vertices. Finally, the weight of 
a tree is the sum of the component edge weights. 

To prove the theorem we show first, that any spanning tree xd = {/, F | w} defines 
a dependence structure of the type (3.13). Since the tree does not contain circuits, 
there is at least one vertex id e I with degree one in rd. Deleting this vertex and the 
corresponding edge (id, jd) e F; jde 1\ {id} we obtain a subtree xd-1 c xd: 

(3A5) td-1={\s.{ii};F\{(id,ji)}\w} 

which also contains no circuits. Thus we can choose a vertex id-t e / \ { i d } with 
degree one in Td_x and the corresponding edge {it-i,Jd~i)e Fx {('</> Jd)}I h-i e ' N 

x {'<•> id -1} Proceeding along this line we exhaust all (d — 1) edges of the spanning 
tree td and obtain finally an isolated vertex iv It is obvious, that the resulting sequences 
£., i2,..., id;j2,J3, •••,jdl define a dependence structure a, (cf. (3.13)) and thereby 
a product approximation (3.12). The weight of the spanning tree rd may be expressed 



in the form 

(3-16) W(rd)^is(ik,jk). 
k = 2 

Let us assume now by contradiction that the product approximation P(. \a) does 
not maximize the criterion (3.14), i.e. that there is a dependence structure a' satisfying 
the inequality 

(3.17) Q(a') > Q(a) . 

It can be easily verified, that any dependence structure (3.13) uniquely defines a con
nected graph without circuits, i.e. a' defines a spanning tree x'd of Gd: 

(3.18) x'd = {/, P | w} i P = {(i'k, j'k) : k = 2, 3 d] 

Since xd has the maximum weight, we can write 

(3.19) W(xd) = i l(ik,jk) ^ W(x'd) = l S(i'k,j'k) . 
k = 2 Jt = 2 

The proof is complete since, by inequality (3.17) we have: 

(3-20) il(}'kJ'k)<iKhJk)- • 
k=2 fc = 2 

Thus, to apply Theorem 3.2, we have to evaluate the mutual information l(i,j) 
for all pairs of random variables Xh Xj 

(3.21) i(i, /) = E I P(xt, Xj) in -^f\; Uj e ' ; i # ; 
xteXi xjeZj p(xt) p(Xj) 

and find the maximum-weight spanning tree of the corresponding complete graph. 
For this purpose a standard algorithm may be used (see e.g. [17]). 

4. STRUCTURAL APPROXIMATING 

In estimation problems only a sample of independent observations of a discrete 
random vector is available as a rule: 

(4.1) S = {x*1*, x<2>,..., x<">} ; xW = (4»>, xf, ..., x<">) £ 9C 

To construct product approximations in such situations we could replace the unknown 
marginal distributions by their respective sample estimates without formal difficulties. 
However, it is more justified to apply a parametric approach and the maximum-
likelihood principle, even when (in the discrete case) the both approaches lead to the 
same optimization procedure (cf. [3]). In this sense, the product approximation 
(3.12) may be viewed as a parametric probability distribution defined by a dependence 



structure a and a set of two-dimensional marginals 0*^. 

(4.2) P(x | a, 3P2) = p(xh) ft p(x,, | *,_) = K * J fl ^ 7 ^ ; * 6 * ; 

k = 2 k = 2 p(Xjk) 

e = (0'i I - ) , ( . » l ^ - . O d l j , ) } ; ^2 = {j»«; i j e l } 

To compute the maximum-likelihood estimates of these parameters we have to 
maximize the corresponding log-likelihood function 

(4-3) 

L(a, &2) = ± i In P(x<"> I a, SP2) = I £ In p(x<?) + f [ I £ In p(x£> | *£>)] 
JV B = l JV n = l /c = 2 | _JVn= l 

Formula (4.3) may be rewritten in the form 
(4.4) 

Up, *2) = Z PS) In Ph(i) + Z [ Z >*(•.) Z ^ ^ In *_,*(« I fl)] 

where 

(4-5) Mc) = ^ £ *(«. *<n)): *̂X€, •?) = £ Z *(€. « n % * f ) ; 
JV «=1 TV n=l 

i , ; e / ; ceaf - 17 e 3T; ; <5(<f, -.) = < ° ; ; ' # * 

are the sample estimates of the marginal probabilities. Consequently (cf. inequality 
(2.9)), for any fixed dependence structure a, the likelihood function L(a, 0>2) is 
maximized by 

(4.6) P„(t) - P,m; PwJ.« I ,) = % £ f ; IE*>' "6*-; 

W l ) /< = 2, 3, ...,d; 

After substitution (4.6) formula (4.4) may be rewritten in the form 
(4.7) L(a ,# 2 )= Z Z M ^ l n ^ j + Z Z Z P ikjk(L n) In-p±0L 

lr= 1 ieXk /c = 2 ?ea-,fc „e9rJfc pi([((J) p,.fc(jj) 

and therefore, because of analogy between formulas (3.14) and (4.7), we may use 
Theorem 3.2 to compute the optimal dependence structure a. Formally, denoting 

(4.8) l0(i, j) = Z Z PS, if) In - M j j l . ; i,; e / 
.ear. -f«rj p\(£) p/jj) 

and using the maximum weight spanning tree, we obtain 
d 

(4.9) ct = arg max { Z B-oihJk)} \ 
<T * = 2 

(Possible ties in (4.9) may be decided arbitrarily.) 



To improve the product approximation (4.2) we could consider marginal distribu
tions of higher order (r > 2) in (3.9) but, unfortunately, solution of the correspond
ing optimization problem is not known. Another possibility provides the method 
of mixtures. Using product approximations as components of mixtures we obtain 
a new class of approximations with dependence structures of qualitatively higher 
complexity. To differentiate this class of distributions from the standard parametric 
types we use the term structural approximations. In this sense a product approxima
tion may be viewed as a particular case of a structural approximation. 

As the most simple example of a structural approximation let us consider first 
the "latent structure" model of Lazarsfeld (cf. [14], [6]): 

M 

(4.10) P(x | W,«».) = Y, wm P(x I 0>lm) ; W = (wu...,wM); 
m=i 

. ^ -*i = ( -* i i , . . . ,» \ .w); 

IX* I ^i«) = i W * H ; ^ . - { P i G \m),iel}; xeSf. 
k=l 

Here the components are simple products of univariate conditional marginal distribu
tions and a dependence structure is not explicitly involved as a parameter. The 
maximum-likelihood estimates of the parameters W and 0>x may be computed 
by the following algorithm of Hasselblad-Shlezinger, (cf. [8]): 
Step 1. Given the parameters W(r), <P['\ (t = 0, 1,...) compute the quantities 

w(t) p(x(») I a>(<)\ 
(4.11) p<'>(m | x<">) -. ™m I I ^"L ; m = ] , 2 , . . . , M ; n=\,2,...,N; 

£ WWP(X<">|^0) 
. 7 = 1 

Sftp 2. Compute the new parameters W(( + 1), ^>(
1'

 + 1) by Eqs. 

(4.12) w«+ 1 ) = — £ p(t)(m I x(M)) ; m = 1, 2, . . . , M ; i = 1, 2, ..., d ; 
N n = l 

? r ^ | w) = - s | 5(5, x<">) p w (« I x(">); { e ;F;. 
£ p«'(m | x<">) " = 1 

n = i 

The convergence properties of this iterative procedure are discussed in [8], an ex
tensive numerical example is described in [9]. 

The fundamental subject of this paper is the structural approximation obtained 
as a mixture of components (4.2): 

M 

(4.13) P(x | W, a, 0>2) = Y wm P(x | ffm, 92m) ; xe9C; 

W=(Wl,w2,...,wM); a = (aua2,...,aM); &2 = (d»21, 0>22,..., 0>2M) 

°m = {(h | ~)> (h | h)> • • -, (h | h)} ; ^2» = W • • . I m); i, j e /} 

10 



The underlying dependence structure a of the probability distribution (4.13) is 
actually a mixture of dependence trees or briefly a "dependence forest". We show 
that, despite of its complexity, the structural approximation (4.13) may be efficiently 
optimized. To maximize the likelihood function 

(4.14) L(W, a, 0>2) = i Y In [ Y wm P(x<"> I am, 0>2m)] 
Nn=l m=l 

by a procedure analogous to the scheme (4.11), (4.12J we have to solve the following 
recurrent relations 

(4.15) 

Kf+ 1 ) , C 1 1 ) = arg max j - £ P('\m | x<">) In P(x<"> | am, &>2m)\; 
ff^2m(Z/>|x<''>)n = 1 j 

m = 1,2, ..., M ; 

in a sufficiently simple explicit form (cf. [8]). Here the parenthesiszed sum is a weight
ed analogy of the likelihood function (4.3) and may be rewritten in the form (cf. 
(4.4)): 

(4.16) 

<e(an,e?2m) = 1 X p < > | x « ) [ l n p ( x £ > | m ) + ilnp(x<?k>\x%,m)-] = 

Vjp«>(m|x<»>)n=1 

: X PV "tf I «) In P,ti I "0 + ľ П ÞІ&Чt- П \ '») ln PцjJtt | Њ m); 
ÍЄЙГҺ k = 2„Eã-jkţeГlk 

where 

(4.i7) P < ' + l ) ( ^ | m ) - - — 1 z a ^ V V I * 0 0 ) ; ^ ^ - ie%j; 
E p ( , ) ( m | x < " ) ) " = 1 

n = l 

-g+»(& « | m) = i £ <5(£, *{">) % xf ) p«(m | x<»>) . 
Ep((>(m|x<»))" = 1 

n = l 

Similarly to Eq. (4.4), for any fixed dependence structure am the weighted likelihood 
function (4.16) is maximized by 

(4.18) pS I m) = p r *\t | M) ; p , , , ^ | „. m) = ^ ^ . 
p<, 1\n\m) 

k = 2,3,...,d; £e3T„ ; p f ^ ; 

11 



Again, having performed substitution (4.18) in Eq. (4.16), we obtain the formula 

(4.19) Se(am, SP^) = £ £ Pit+i^ I m ) l n Pi<+1\Z \m) + t l(t+i\h,k | m) 
* = 1 $eXk k=2 

where 

(4.20) ^ ( w H = E HP^K^I^w(t+J;H^lSur 
«ear, „earj pi '(C | m) p) ;(?7 | m) 

i ?6 ; ; i, jel; 

Consequently (cf. (4.7), (4.9)), we may compute the optimal dependence structure 
au+1)by means of the maximum-weight spanning tree with the edge-weight function 
(4.20). Thus, the iterative procedure maximizing the likelihood function (4.14) may 
be summarized as follows: 

Step 1. Given the parameters W(,), aU), 0>U),{t = 0, 1,...) compute the quantities 

w(<) pM") I au) <®(0. 
(4.21 j pu\m | x<»>j = J"- A * 1 g„_lj£*»L- ; m - . l, 2,.... M ; 

X wy> P(x (n ) | fff, j ^ J n = 1, 2 , . . . . AT; 

J = I 

Step 2. Compute a new weight vector W ( , + 1) by Eqs. 

1 * 
(4.22) wu+i) = - £ P(()(m | x « ) ; m = 1, 2 , . . . , M ; 

new estimates of the conditional marginal probabilities @>2
t+i) by Eqs. 

(4.17) and a new dependence structure <r(,+1), (cf. (4.20)) by Eqs. 

i 
(4.23) ff(„(+1} = arg max { Y, Su+1\ik, jk | m)} ; m = 1, 2, ..., M ; 

"m k = 2 

5. NUMERICAL EXAMPLE 

An interesting comparison of structural approximations discussed in Section 4 
suggests a numerical example used in [3] and [12]. A probability distribution 
P*(x), x = (x l s x2, x3, x4) of a vector of four binary variables defined by a table 
(cf. Table 1, column 2) is to be approximated. Thus, we are given a deterministic 
approximation problem but, formally, the maximum-likelihood procedures may also 
be used in this case if we construct an artificial sample S such that for each x e f 
the relative frequency of x in S is equal to P*(x). 

First a simple product of four univariate marginals has been used as approximation 

(5-1) Pi(x) = p^Xx) p2(x2) p3(x3) p4(x4) ; 

Pi(l) - PiiS) -» J»3(1J = 0-55 ; p4(l) = 0-50 ; (pk(0) = 1 - pfc(l);) 
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Table 1. Comparison of structural approximations. 

xx x2 x3 x4 P*(x) Pi(x) P2(x) P3(x) P4(x) P5(x) P6(x) Pn(x) 

0 0 0 0 •1000 •0456 •1296 •09977 •1037 •1000 •0857 •1000 
0 0 0 1 •1000 •0456 •1037 •10000 •1296 •1000 •1143 •1000 
0 0 1 0 •0500 •0557 •0370 •04958 •0296 •0500 •0600 •0500 
0 0 1 1 •0500 •0557 •0296 •04927 •0370 •0500 •0400 •0500 
0 1 0 0 •0000 •0557 •0152 •00051 •0149 •0000 •0000 •0000 
0 1 0 1 •0000 •0557 •0121 •00026 •0124 •0000 •0000 •0000 
0 1 1 0 •1000 •0681 •0681 •10011 •0669 •0833 •0900 •1000 
0 1 1 1 •0500 •0681 •0546 •05035 •0558 •0667 •0600 •0500 
1 0 0 0 •0500 •0557 •0530 •05027 •0519 •0600 •0643 •0500 
1 0 0 1 •1000 •0557 •0636 •09996 •0648 •0900 •0857 •1000 
1 0 1 0 •0000 •0681 •0152 •00039 •0148 •0000 •0000 •0000 
1 0 1 1 •0000 •0681 •0182 •00076 •0185 •0000 •0000 •0000 

1 1 0 0 •0500 •0681 •0331 •04945 •0397 •0400 •0500 •0500 

1 1 0 1 •0500 •0681 •0397 •04978 •0331 •0600 •0500 •0500 
1 1 1 0 •1500 •0832 •1488 •14992 •1785 •1667 •1500 •1500 

1 1 1 1 •1500 •0832 •1785 •14962 •1488 •1333 •1500 •1500 

Number 15 4 7 28 9 14 14 15 
of param. 

Number 1 1 1 2 3 3 2 
of comp. 

H(P*, PІ) •0000 •3687 •0952 •0098 •0952 •0092 •0084 •0000 

The distribution Px is given in the third column of Table 1, the achieved approxima

tion error is expressed in terms of the relative entropy H(P*, Pt) (the last row of 

Table 1). The quality of approximation considerably improves if one uses the tree-

dependence product distribution (4.2). The corresponding solution of Chow and Liu 

having the form (cf. [3]; 

(5.2) P2(x) = p4]1(x4 | xt) p3[2(x3 [ x2) p2ll(x2 | xj p1(x1) ; 

ff = { ( l | - ) , ( 2 | l ) , ( 3 | 2 , , ( 4 [ l ) } ; 

Pi(l) = jp2(l) = Ps(l) - 055 ; p4(lj = 0-50 ; 

p21(l,l) = 0-40 ; p32(l,l) = 0-45 ; p41(l,l) = 0-30 ; 

is given in the fourth column. The number of independent parameters in P 2 is seven — 

except for the dependence structure a. The fifth column contains an approximation 

suggested by Ku and Kullback [12]. Its accuracy is high but the underlying distribu

tion (for Px(x) see (5.1)). 

(5.3) P 3 (x) = a(xl, x2) b(xu x3) c(xu x4) d(x2, x3) l(x2, x4)f(x3, x4) P,(x) 
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includes twenty eight independent parameters. Let us recall, that the approximation 
P3 is numerically optimized at all points x e f and therefore formula (5.3) is actually 
not used. 

The next three columns of Table 1 correspond to the mixtures of the form (4.10). 
The first one has two components and is characterized by nine independent para
meters : 

(5.4) m wm Pi(l | m) Pi(í | m) Pз(l | m) p4(l [ m) 

1 

2 

0-5500 

0-4500 

0-2727 

0-6667 

0-0000 

1-0000 

0-1818 

0-7778 

0-5455 

0-4444 

PÁP\ .) = 
р,(l 

The achieved quality of approximation is nearly the same as that of P2. The distribu
tions P5, P6 consist of three components: 

(5.5) 

(5.6) 

m wm Pi(l '") Pг(l | m) Pз(l | m) p4(l | m) 

1 

2 

3 

0-4500 

0-2500 

0-3000 

0-6667 

1-0000 

0-0000 

1-0000 

0-4000 

00000 

1-0000 

00000 

0-3333 

0-4444 

0-6000 

0-5000 

0-3500 

0-4000 

0-2500 

Pi(l I m)\p2(í I m) p3(l I m ) 

0-4286 

1-0000 

0-0000 

0-0000 

1-0000 

0-6000 

00000 

0-7500 

1-0000 

p4(í | m) 

0-5714 
0-5000 
0-4000 

The quality of these two approximations (each with fourteen independent parameters) 
is even better than that of P3. Finally, structural approximation of the form (4.13) 
with two components has been used. The number of independent parameters is 
fifteen and therefore an exact reconstruction of the original distribution should be 
possible. This is actually obtained by the following distribution (cf. the last column): 

(5.7) P7(x) = w, p4]2(x4 | x2, 1) p3 |2(x3 | x2, 1) p2]1(x2 | xt, 1) Pl(Xl | 1) + 

+ w2p4ll(x4\ x1,2)p2l3(x2 | x3, 2)p3 |1(x3 | x1,2)p1(x1 | 2) ; 

Wl = 0-5000 ; <-, = {(1 | - ) , (2 | 1), (3 | 2), (4 | 2)} ; 

Pi(xi | 1): pi(l | 1) = P2(l | 1) = 0-4000 ; p3(l | 1) = 0-5000; p4(l | 1) = 0-4333 ; 

p(j(Xl, xj | 1): p21(l,l | 1) = 0-2000; p32(l,l | 1) = 0-3000; p42(l,l | 1) = 0-1333 ; 

w2 = 0-5000 ; a2 = {(l | - ) , (3 | 1), (2 | 3), (4 | l ) } ; 

Pi{xt | 2): p,(l | 2) = p2(l | 2) = 0-7000 ; p3(l | 2) = 0-6000 ; p4(l | 2) = 0-5666 ; 

Pij(xi,xj\2y. p31(l,l | 2) = 0-3000; p2 3( l , l | 2) = 0-6000; p41(l,l | 2) = 0-4666 ; 
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Remark 5.1. There is a topical question of structural approximating continuous 
probability distributions (cf. [2], [6], [11], [13]). It can be seen that, in continuous 
case, the most results of Sections 2 and 3 remain valid, though the evaluation of the 
integrals occuring in the criteria (2.9) or (2.14) may become uneasy. (This difficulty 
does not arise in estimation problems, if we use m.-l. method.) 

Another problem relates to representing of marginal probability density functions. 
Whereas in a discrete case we have to estimate single probabilities, in continuous 
case the adequate nonparametric estimates are too awkward. One possibility to 
conserve computational efficiency of structural approximating is to apply a para
metric approach at the level of marginal densities. In this way Gibson [6] generalized 
the "latent structure" — to the "latent profile" model by using products of uni
variate normal densities as components. Similarly, approximating the two-dimen
sional marginals by normal densities, we obtain a continuous analogy of the structural 
approximation (4.13): 

M 

(5.8) P(x\ W,e,jr1) = £wMP(xjo-m)^'2m); x = (xt, ...,xd)e Rd ; 
m = l 

JV2 = (JfluJf21, •••,^2M) ; a = (aua2, ...,aM) ; 

P(* | °m, JTlm) = p(xu | m) f l p(xik | xjk, m) = p(xh \ m) {{ *xf *'» I "*> ; 
k = 2 k = 2 p(xjk \ m) 

°m = {(ii | ~ ) , ('2 | h), • • •> (id | id)} ; ^zm = {Pij(-> • | m); i,je 1} ; 

Pu(X<> XJ I m) = TT^TTITTT—x£XP{ -K^. ' - Cm„Xj-cmj)Ktj[Xt - Cmi'Xj - cmj)
T]. 

V((2;t)2 det Amij) 
Here the resulting components P(x \ am, J/~2m) are normal densities with specially 
sampled covariance matrices. To compute m.-l. estimates of the parameters W, a, Jf2 

we could derive the following iterative procedure (ct. [8]j 

Step 1. 

W(t> P/xY") I fT('> AfW . 

(5.9) p«\m I x<»>) = -^J^LA-Cjil^L • m = 1, 2, ..., M ; 
X wf P(x("» I af, Jf2'}) n = 1, 2, ..., N ; (t = 0 ,1 , ...) 

y = i 

Step 2. 

(5.10) WJJ+»> = 1 £ pM(m I x<">) ; <£+ x> = 1 £ x<"» p^hn I x<">); 
Nn = l A , „ , 1 ( „ n " = l 

£p<Ҷm|x^)' 

I Pl,\m | x' 
n = l 

- E tøи) - 4'Г1}) (*Г - ÚП Pin('n I *°°); U є /; 
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a ^ = arg max { £ _*+->(<_.* | '»)} J 4 T = (!."_> £ „ ) 

^XI,j |m)---to [ 1 - - ^ ^ ] ; Ue/; .*; . 

However, the problem includes actually estimating of conditional probability density 
functions and should be therefore analysed in more detail. 

6. CONCLUSION 

As mentioned in Section 4, the properties of structural approximations could be 
improved by including marginal distributions of higher order, i.e. by considering 
the components of the form (3.9) with 7- > 2. Using oriented graphs we could define 
the corresponding structures analogous to the dependence trees but their optimiza
tion is difficult because of some essential asymmetries. However, even in case of an 
acceptably simple solution one might prefer to use a structural approximation based 
on the second order marginals for computational reasons. Let us recall that optimizing 
the parameters of a mixture with M components of the form (3.9) we have to estimate 
M . (d) conditional marginal distributions at each iteration ol the procedure (cf. 
(4.21) —(4.23)). From this point of view the structural approximating with depen
dence forest may appear as a reasonable compromise. 
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