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REPRESENTABILITY OF RECURSIVE 
P. MARTIN-LOF TESTS 
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The present paper, closely connected with [2], investigates the possibility of expressing P. 
Martin-L6f 's complexity theory of strings in terms of Kolmogorov's complexity of strings which 
uses algorithms (/>. We find for every recursive P. Martin-L6f test V an algorithm q> which in 
turn gives a P. Martin-L6f test V(<p) such that Fez V(f). The equality V— V(tp) holds for 
some particular P. Martin-L6f tests called representable. 

In this paper we continue our efforts to approach Kolmogorov's complexity theory 
of strings which uses algorithms q> (see [3]) and P. Martin-L6f s complexity theory 
of strings which uses M — L tests V (see [5]). A very good up-to-date survey paper 
is [7]. The present authors have already done some attempts in this direction in [2]. 
We work within the general framework of a not necessarily binary alphabet (see [1]). 

It has already been noticed that these theories are not equivalent (see [2]). 
In this paper we find for every recursive M — L test V an algorithm <p which 

in turn gives a M — L test V(cp) such that V <= V((p) (see Theorem 2). The equality 
V = V(cp) holds for some particular M—L tests V which we call representable 
(see Theorem 3). Such an equality V = V((p) would be a good interpretation of the 
somewhat unprecise term "equivalence" between Kolmogorov's and P. Martin-L6f s 
theories. In this respect see also Theorem 4. 

The last section of our paper contains remarks and open problems. 

1. BASIC NOTIONS 

Throughout the paper TV will be the set of all natural numbers, i.e. N = {0, 1,2, . . . } . 
If A is a finite set, card A will be the number of elements in A. 
For every non-empty sets A and B and for every function / : A' -> B (where 

A' <= A) we shall write / : A A B. We shall say that / is a partial function from A 
to B. We consider that f(x) = co in case / is not defined in the point x. 
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If j : A A B is a partial function, then the domain of j is the set dom (/) = 
= {xsA \f(x) + oo}; range (/) = {/(x) | x e d o m ( / ) } ; graph (/) = {(x,/(x)) : 
: x e d o m ( / ) } . 

Let X = [au a2,..., ap}, p ^ 2 be a finite alphabet. Denote by X* the free monoid 
generated by X under concatenation, i.e. X* consists of all strings x = XjX2 . . . x,„ 
where the x, belong to X; also the null string X belongs to X*. For every a in X and 
every natural n > 0, a" = aa ... a (n copies of a). We shall consider that a0 = X. 
For every x in X*, l(x) is the length of x, i.e. l(x) = m in case x = XjX2 ... x,„ and 
l(X) = 0. For Recursive Function Theory see [4] and [6]. We shall consider partial 
recursive functions (p.r. functions in the sequel) cp : X* x N A X* or g : N — 
- {0} A X* x TV. 

For every p.r. function <p : X* x TV A X*, the Kolmogorov complexity induced 
by (p is a function Kv : X* x At -> At u {oo}, defined by JT (̂x | m) = min {/(>•) 13' e 
e X*, (p(y, m) = x} in case x = cp(y, m) for some >> in X* and if,,,(x | m) = 00, 
otherwise. 

For every W a X* x (At — {0}) and for every natural m S: 1 we shall write 
Wm = {xsX*\ (X, m) eW}. We define the critical level induced by W to be the 
function mw : X* -» Atu {00} given by mw(x) = sup {m e N\ m 5: 1, xeWm} 
in case such m exists, and mw(x) = 0, in the opposite case. 

A non-empty recursively enumerable set V c X* x (N — {0}) will be called 
Martin-Lof test(M — L test) if it possesses the following two properties: 

1) For every natural m S: 1, Vm + 1 c Vm. 

2) For every natural numbers m, n, m ^ 1, 

card {x e X* \ l(x) = n, x e Vm} < p"'"'j(p - 1). 

We agree upon the fact that the empty set is a M — L test. 
The second condition enables us to say that mv takes only finite values for every 

M — L test V, because in case (x, m) e V, then m < l(x) - 1 (directly from the 
definition). 

For every p.r. function cp : X* x At A X* we can obtain the particular M - L 
test F(<p) = {(x, m) e X* x (N - {0}) | Kv(x | l(x)) < l(x) - m}, see [1]. We shall 
call a M —L test Vrepreseniable in case there exists a p.r. function q> : X* x AtA^f* 
such that V = V(<p), see [2]. 

The lexicographical order on X* induced by a, < a2 < ... < ap is given by 
X < a1 < a2 < ... < ap < ala1 < axa2 < ... < axap < a2ax < . . . . The 
enumeration ofZ* in this order will be y(l)~ X, y(2) = a,, j(3) = a2, ..., y(p 4-1) = 
-= ap, y(p + 2) = ala1, .... It follows that am = y(s(m)), where s(m) = 1 + p + 
+ p2 + ... + pm = (pm+1 - l)/(p - 1). This enumeration of X* is recursive. 
In the sequel, the lexicographical order will mean this lexicographical order on X*. 
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2. RESULTS 

It is easily seen that there exist M — L tests which are not recursive. For instance, 
take A <= {at}* — {X, alt a\, a\,...} which is recursively enumerable and not 
recursive. Then V = (A — {X, at}) x {1} is a non-recursive M — L test. 

The following theorem gives necessary and sufficient conditions under which 
a M — L test is recursive. 

Theorem 1 . A M - I test Vis recursive iff the function mv is recursive. 

Proof. If mv is recursive we can compute mv(x) for every x in X*. Let (x, m) be 
in X* x (N - {0}). If mv(x) § m, then (x, m) e V; if mK(x) < m, then (x, m) £ V. 
Thus V is recursive. 

Now suppose V is recursive which means that Xv x% a recursive function (xv is the 
characteristic function of V). It is easy to see that for every x in X* we have mv(x) = 
= max {meN\xv(x,m) = 1}, in case (x, l)eV , and mv(x) = 0, in case (x, l) $ V. 
This shows that my is recursive. • 

Actually, the object of our paper will be the study of some properties of recursive 
M -L tests. 

Theorem 2. Let V _ X* x At be a recursive M — L test. Then there exists a p.r. 
function (p : X* x N •-> X* such that V _ F(<p). 

The p.r. function (p can be taken to possess the following properties: 

(a) The function <p is injective. 
(b) The graph of q> is recursive. 
(c) For every x in X*, we have the equivalence: (x, l) e V iff (x, l) 6 V(<p). 

Proof. The set A = {(x, mv(x)) | x e Vt} is obviously recursive. We distinguish 
two cases: i) V is infinite and in this case there exists an injective recursive function 
g : N - {0} -> X* x N such that g(N - {0}) = A; ii) V is finite and A has q 
elements, and in this case there exists an injective (p.r.) function g : {1, 2 , . . . , q} -* 
~* X* x N such that g({l, 2, ..., q}) = A. In all cases, if i is in the domain of g, 
we put g(i) = (x;, mv(x$). Moreover, due to the recursiveness of V, we can suppose 
that g has the following "lexicographical" property: for all natural 1 <. i < j : 

u) K*d£K*j)> 
v) if l(xi) = l(xj), then mK(x;) ^ mr(xj). 

We can define the procedure for cp. 
For i = 1, g(l) = (x l5 mv(x1)) and we put ^ (z^ /(xt)) = x1 ; where Zj = 

= y(s(l(xt) — m^Xi) - 1)). See the definition of s in Section 1. 

Nsxt, let i = 2, so g(2) = (x2, mv(x2)). In case l(xt) 4= Z(x2), we put cp(z2, l(x2)) = 
= x2, where z2 = j>(s(/(x2) - mv(x2) - l)). In case /(x t) = /(x2), we consider 
the greatest element (according to the lexicographical order) of the set {y(l), y(2),... 
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• ••, y(s(I(x2) - mr(x2) - 1))} - {zj}, and we shall call this element z2. Put 
(p(z2, l(x2)) = x2. 

Continuing the procedure we reach the step i > 1. There are two cases. In the first 
case /(x;) + l(xj), for all j < i. In this case we put <p(zt, l(xt)) = x,, where z ; = 
= y(s(l(xt) - mr(Xi) - l)). In the second (opposite) case let j(l) < j(2) < ... 
... <j(k) < i be all indices j < i such that Z(x;) = l(Xj). In fact, ](2) = j(l) + 1, 
j(3) = j(2) + 1 , . . . , due to the properties of the enumeration function g. We define 
z, to be the greatest element (in lexicographical order) of the set {y(l), y(2), •. • 

• • •, y(s(Kxi) - mr(xi) - 0)} ~ {ZJW ZK2Y • • •' zm) a n d P u t <P(zi> Kxd) = xi- Noti
ce that cp acts as a function, because if /(x,) = l(Xj) we have z ; 4= zP 

The construction is possible and the motivation follows. Put l(Xi) = /(xj(1)) = 
= KXJ(2)) = • • • = Kxm) = '• We have m; = mr(Xi) < mk = mr(Xj(k)) < mk„t = 
= mv(x}(ji-1)) < ... < mx = mr(Xj(1)). For every natural r e {1,2, . . . , k] u {/} 
let Bt = \y(l), y(2), ..., y(s(l - m, - 1))}. Notice that Bt c B2 <= ... <= Bk <= Bt 

and Bu = B„(for u < v) iff m, = m„. We shall try to describe in a detailed manner 
the action of cp and this will complete the motivation. 

Clearly, zja) = y(s(l - m, — 1)). In order to obtain zJ(2), we distinguish two 
possible cases: a) m± > m2 (and in this case zJ(2) = y(s(l — m2 — l)); b) my = m2 

(and in this case Bt = B2, so z j (2) must be y(s(l — m2 - l) — l)). It is to be seen 
that in case b) one has s(l — m2 — l) — 1 ^ 1 (in other words the construction 
is possible) because 2 < card {x 6 X* | Z(x) = / and (x, m2) e V) < (pl~mi — l) / 
/ (p — l) =» s(/ — m2 — l). The case when strict inclusion occurs between the B'ts 
being clearly favorable, we focus our attention to the "bad" situation mh = mh+1 = 
= mh + 2 = . . . = mr = m (1 <. h <. r <. i). Here, in case h > 1, we consider 
m/l_1 < mh. We have Bh = Bh+1 = ... = Br. The construction gives: zJ{h) = 
= y(s(l - m - 1)), zj(h + 1) = y(s(\ - m - 1) - 1, ..., zm = y(s(l - m - 1) -
— (r — hj). It remains to show that s(l — m — 1) — (r — ft) 2: 1, i.e. r - h + 1 < 
< (p'~m - l)l(p - 1). This inequality follows from r - h + \ <, card {x e X*: 
: /(x) = /, (x, m)eV}< (p<- - l ) / (- - l). 

It is worth to add the fact that in case V is finite and the set A (see the beginning 
of the proof) has q elements, the procedure stops at step q. 

The injectivity of cp is derived from the injectivity of g : (x;, mr(xt)) 4= (xp mr(X])) 
iff x, =(= Xj or mr(x) =1= mr(xj). This implies that for different i and j one must 
obtain different values cp(zi, /(x;)) = x, and cp(zp l(Xj)) = Xj. 

Our next task is to prove the inclusion V <= V(cp). Indeed, in case (x, m) is in V 
let (x, mr(x)) = (x;, mF(x,)) in the enumeration given by g. So m < mv(x ;) and 
X, = <p(z;, Z(x;)) where the length of z ; is less than l(Xi) - mr(xt) - 1, which shows 
that _T„(x | l(X)) < /(x,) - mK(x;) - 1 < /(x) - mr(X), i.e. (x, mK(x)) e V(cp). Con
sequently, (x, 7?i) is in the M — L test V(cp). 

Moreover, we can prove here also point (c), because it is seen that for every x 
in X* such that (x, 1) e V(cp) there exists a natural i such that x = x ; and (x;, mr(x,)) e 
e V, which implies (x, 1) e V. 
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All it remains to prove is point (b), i.e. the recursiveness of the graph of <p. This is 
seen taking arbitrarily ((z, I), x) K (z, I, x) in X* x N x X* and checking if (z, I, x) 
belongs to the graph of <p, according to the following decision algorithm: 

1. If mv(x) = 0, NO. Stop. 
2. If l(x) * /, NO. Stop. 
3. Choose i such that g(i) = (xh mv(x)) and x = xt. 
4. Run the first i steps in the procedure defining cp in order to find z;. 
5. If z = z„ YES. Stop. 
6. If z #= z„ NO. Stop. • 

Remark. It is obvious that for a given recursive M — L test V there are many p.r. 
functions cp : X* x N-^X* such that Fez V(cp), e.g. our construction depends 
on the enumeration function g. 

Theorem 3. Let V be a M — L test. Consider the following assertions: 
(1) V is representable. 
(2) For every natural m >. 1, one has 

(*) for all n >. m + 1 , card {x e X* | l(x) = n, mv(x) = m} ^ pn~m~l . 

Then (l) => (2) and in case Vis recursive the implication (2) => (i) holds too. 

Proof. (1) => (2). The hypothesis is that V= V(<p) for some p.r. function <p : X* x 

x W A X * . 
Fix the natural numbers n > m > 0. For every x in X* with l(x) = n and such 

that mv(x) = m there exists y in X* with l(y) < l(x) — m and <p(y, l(xj) = x. 
We have l(y) g n — m — 1. 

We shall show that l(y) = n — m — 1. Supposing by contradiction l(y) < n — 
— m — 2, let l(y) = n — m — 1 — h with h > 0. This will lead us to the false 
relation (x, m + h)eV. Indeed, l(y) = n — m — /i — 1 <n~ m — h and <p(y, l(x)) = 
= x show that (x, m + h) e V(<p) = V. 

The just proved equality l(y) = n — m — 1 shows that 

card {x e X* \ l(x) = n, mv(x) = m) S card {y e X* \ l(y) = n - m - 1} = 

and the assertion (2) is proved. 
Assuming that V is recursive we shall prove (2) => (1). The hypothesis is that (*) 

holds for every m >. 1. We shall show that V = V(cp), where <p is the p.r. function 
constructed in Theorem 2, namely we shall show that V(cp) c V. 

Take (x, m) in V(cp). In any case (x, l)eV (see Theorem 2). We shall prove that 
(x, m)eV by proving that mr(x) = mVi<p)(x). Since V <= V(cp) (see Theorem 2) 
we have mVM(x) =t mF(x) and all it remains to prove is that mv(x) > mv(q,)(x). 

Supposing the contrary, it follows that (x, mv(x) + l) e V(<p), hence there exists z 
in X* with l(z) < l(x) - mv(x) - 1 and <p(z, l(x)) = x. 
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Let g(i) = (x;, mF(x,)) where x = x ; in the enumeration given by g (see the con
struction of <p in the proof of Theorem 2). We let the procedure giving <p run i steps 
and we obtain the string z ; such that <p(z;, /(x,)) = x;. We shall show that /(z;) = 
= 1(XJ) - mv(xi) - 1 = l(x) - mv(x) — 1, thus deriving a contradiction (in view 
of the injectivity of cp). 

Now the reader must remember the action of cp (see the proof of Theorem 2). 
In case /(x;) + l(xj) for all j < i, we have l(zj) = l(xt) — mK(x;) - 1, and the 
proof is finished in this case. In case l(xJ(1)) = l(xJ(2)) = ... = l(xi(k)) = /(x;), 
1 < j(l) < j(2) < ... < j(k) < i, we have analysed several possibilities, according 
to the existence of some equalities in the sequence of inequalities: mv(xJ(1)) = 

= mv(xj(2)) = ... = mv(xj(k)) — mv(xi). In the case of the strict inequality mv(x;) < 
< mv(xJ(k)) we saw that /(z;) = /(x;) — mK(x;) — 1, and again the proof is finished. 
The most complicated case is when mv(xi) = mv(xJ(k)) = m^Xj^-^) = ... 
... = mv(xJ(k-r)), where 0 ^ r < k. In this case we must put z ; = y(s(/(x;) — 
— mv(xi) — l) - (r + l)). In any case we have r + 2 elements x such that /(x) = n 
and mv(x) = m (we put /(x;) = n and mv(x-) = m) and the hypothesis gives r + 
+ 2 < jf~m~l = card {z e X* \ l(z) - n - m - 1}. But y(s(n - m - 1)) is the 
last element (in lexicographical order) of the set {z e X* | /(z) = n — m — 1} = H. 
It follows that z ; e /f, which shows that the length of z ; is n — m — 1 and the proof 
is finished in this case too. • 

The next result establishes a precise connection between the Kolmogorov comple
xity Kv and the critical level mv in case V = V(<p). 

Theorem 4. Let V be a representable M - L test and let cp : X* x A^A X* be 
a p.r. function such that V = V(<p)-

The following assertions hold for all x in X*: 
(a) mv(x) = 0 iff Kjx | Z(x)j ^ /(x) - 1. 
(b) If mv(x) > 0, then Kjx | /(x)) = /(x) - mv(x) - 1. 
In the particular case when cp has the additional property that range (cp) = 

= (x e X* \ (x, 1) e V} = Vu point (a) can be stated more precisely, namely: 
(a') mv(x) = 0 iff Kjyx \ l(x)) = oo. 

Proof, (a) Assume mv(x) = 0, therefore (x, 1) <£ V = V(<?)- This shows that for 
every j in X* with /(^) < l(x) — 1 we have cp(y, l(xf) + x. Then, either q>(y, l(x)) + x 
for all y in X* (which shows that K,p(x | l(x)) = oo), or there exists y in X* with 
^(j, , /(x)) = x, but this j> must have l(y) = l(x) - 1. So, Jr„(x | l(x)) = l(x) - 1. 

Assume now that Kj(x \ l(x)) — l(x) — 1. There are two cases: 

i) if Kv(x | l(x)) = oo, then q>(y, l(x)) + x for all y in X* and then (x, 1) # V(tp) 
a.s.o. 

ii) if ff^(x | /(x)) < oo, then there exists at least one y in X* with <p(y, l(x)) = x 
and one must have l(y) = l(x) - 1. This shows that (x, l) $ V(cp). 

(b) According to the hypothesis, there exists y in X* such that q>(y, l(x)) = x. 
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We have: mv(x) = mY^)(x) = max {m = l | there exists y in X* with 1(y) < 1(x) — m 
and q>(y, 1(x)) = x} = max {m S; l | there exists y in .Y* with m < 1(x) — 1(y) and 
cp(y, 1(x)) = x}. The last maximum is attained for those y in X* which have minimum 
length, i.e. for those y in X* with l(y) = K^x | 1(xj). So, mK(x) = Z(x) -

- * - ( * | *(*)) - 1 • 
In the particular case, all it remains to prove is the implication: mv(x) = 0 => 

=> Kv(x | t(x)) = co. Indeed, mv(x) = 0 implies (x, 1) £ V = V(q>), so x £ range (cp). 

n 
Corollary 5. Let V be a recursive representable M — L test and let <p : X* x TV A 

A X* be a p.r. function with the properties V = V(q>) and range (<p) = F.. Then 
the partial function U,, : X* A At given by Ur/)(x) = JTp(x | 1(x)) is a p.r. function 
with recursive graph. 

Proof. Relations (a') and (b) in Theorem 4 applied to the present function <p show 
that Uy is a p.r. function. The graph of Uv is recursive because the pair (x, m) e graph 
(Uv) iff my(x) > 0 and m = l(x) — mv(x) — 1. Here we made use of the recursive
ness of the function mv (see Theorem l). • 

Remark. The p.r. function cp given by the proof of Theorem 3 is a function satisfying 
the property that range (cp) = Vv 

Theorem 6. Let cp : X* x TV A X* be a p.r. function such that range (<p) = (V^))^. 
Then the following assertions are equivalent: 

(i) The partial function Uv: X* A TV given by U9(x) = Kv(x | 1(x)) is a p.r. 
function with recursive graph. 

(ii) The M — L test V((p) is recursive. 

Proof, (i) => (ii). The proof will be given by the following equivalences: ((x, m) e 
e V(<p)) o (U„(x) <1(x)-m)o (Uv(x) e {0, 1, 2, ..., 1(x) - m - l}) o (Uv(x) = 
= 0 or uj(x) = 1 or . . . or U„(x) = 1(x) - m - 1) o ((x, 0) e graph (U„) or 
(x, 1) e graph (Up) or ... or (x, 1(x) ~ m — l ) e graph (Uj). We made the con
vention that in case l(x) - m - 1 < 0, the set {0, 1,2,..., l(x) - m - 1} is empty. 

(ii) => (i). We put V <= V((p) and apply Corollary 5 to this Fand this cp. • 

The following theoren) will furnish an interesting class of recursive representable 
M -L tests. 

Theorem 7. Let F c X* x TV have the following properties: 

(a) The set F is recursively enumerable. 

(b) For every natural m § I.we have the inclusion Vm+1 c Fm. 

1. The following assertions are equivalent: 

(i) For all natural n > m _• 1, we have: 

card {x e * * | /(x) = » , (x, m) e V) = (p""" - l)/(p - l) . 
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(ii) For all natural n > m _• 1, we have: 

card {x e X* | l(x) = n , mK(x) = m} = p" -" ' " 1 . 

2. If one of the above conditions (i) or (ii) is fulfilled for a set V having properties 
(a) and (b), then Vis a recursive representable M —L test. Such M — L tests will be 
called full. 

Proof. 1. (i) => (ii). The conditions (a), (b) and (i) insure that Vis a M — L test, 
hence mv takes only finite values. 

On the other hand, for every natural j ^ 0 and n J_ j + 1 one can see, using 
condition (b), that {x e X* \ l(x) = n, mv(x) = n - (j + l)} = {x e X* \ l(x) = n , 
(x, n - j - l) e V} — {x e X* | Z(x) = n, (x, n — j) e V}. Consequently, card {x e 
e X* | l(x) = n, mv(x) = n - (j + l)} = ( ( p F - < - ^ > - l)/(p - 1)) - ( ( / -<"-> -
— l)/(p — l)) = p', using the hypothesis and condition (b). Taking n — (j + 1) = m, 
we obtain card {x e X* | l(x) = n, mv(x) = m] = p""m~1. 

(ii) => (i). For every natural n > m >. 1 we have the equality 

(**) {x e AT* | /(x) = n, (x, m) e V} = {x e X* | /(x) = n, mv(x) = m} u 

u {x e X* | Z(x) = n, ?nF(x) - m + 1} u . . . u {x e X* | l(x) - w, mv(x) = n - 1} . 

In fact, A„ = {x e X* | /(x) = n, mK(x) = «} = 0, because A„ <= A,,-! = {x e 
e AT* | l(x) = n, mv(x) = n — l} , according to condition (b) and card A„_l = 1. 
If _„ were be non empty, then card A„ = 1, so A„ = A„_j: and this is impossible. 
Again condition (b) guarantees also that Au = 0, where u > n. Thus the proof 
of (**) is complete. 

Consequently, (**) yields 

card {x e X* | l(x) = n, (x, m) e V} = 

= 5 card {x e X* | Z(x) = n, mv(x) = j] ^ p " ^ 1 = (p"- - l)/(p - l ) . 

2. All it remains to prove is that (i) implies the recursiveness of V (because in this 
case V will be a recursive M — L test satisfying condition (2) in Theorem 3). 

The case when V is finite is obvious. 
Assume therefore that Vis infinite and let g : (N — {0}) ->• X* x N be an injective 

recursive function such that g(N — {0}) = V. Put g(i) = (x,-, m;) for all natural 
i_ 1. 

We take arbitrarily (x, m) in X* x TV and we describe an algorithm for testing if 
(x, m) is in V. Put l(x) = n. There exists a natural q = 1 such that the set G = 
= {g(l), g(2),..., g(q)} contains all the elements (v, m)eV with /(v) = n. More
over, q can be effectively found. For instance, q can be taken to be the least natural 
number h such that the set {g(l), g(2),..., g(h)} contains exactly (p"~m - l)/(p - 1) 
pairs (y, m) with l(y) = n. If (x, m) e G, then (x, m) e V and if (x, m) <£ G, then 
(x, m ) ^ . D 
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Example 8. We shall exhibit an example of M - L test V which is full and we shall 
also construct the associate p.r. function cp such that V = V(q>) given by Theorem 3. 

a) In order to give the M — L test V we shall denote, for every n > m >. 1, by 
A(n, m) the set {(x, m) e V | l(x) = n}. It is clear that the M — L test V will be com
pletely determined if we shall give all the sets A(n, m). 

Put A(n, m) = {(y(s(n - 1) + /), m)\i = 1,2,..., s(n - m - 1}) (see Section l). 
It is seen that for every m >. 1 one has 

Vm = U {X s(« - !) + 0 | t = L 2> • ••> s (" - m ~ !)} • 
n = m + 1 

The reader can see now that this V is a full M — L test. Moreover, an elementary 
computation gives the form of the function mv. We have for all n >. 2: 

mv(y(s(n - l) + 1)) = n - 1 , 
and 

m¥(y(s(n - l) + /)) = n - k - 1 , 

for every H H n - 2, where i e {s(k - 1) + 1, s(k - l) + 2 , . . . , s(k)} ; also 

mr(x) = 0 , 
for the other x in X*. 

An inspection of A(n, 1) shows that for n >, 2 one has: 

card {x e X* | l(x) = n, there exists an m >. I such that (x, m)eV} = s(n — 2) . 

b) In order to do the construction indicated in the proof of Theorem 2, we shall 
choose an enumeration function g for the set A = {(x, mv(xj) | x e VJ. This g will 
satisfy the conditions u), v) required in the proof of Theorem 2 and it possesses the 
supplementary property (which completely determines g): 

w) if for i < j one has l(xt) = l(xj) and mv(xi) = mv(xj), then xt > Xj in lexico
graphical order. This means that for every n > m >. 1, the set {x e X* | l(x) = 
= n, mv(x) = m} is ordered by the inverse of the lexicographical order. 

The p.r. function q> : X* x TV A X* produced by the proof of Theorem 2 is given by 

(p(y(i), n) = y(s(n - l) + i), 

for every n >. 2 and i = 1, 2 , . . . , s(n — 2). 

An alternative of Theorem 7 (which was based upon the equalities (i) and (ii) 
guaranteeing the recursiveness of V) will be the following theorem. Here we shall 
actually replace the equalities (i) and (ii) in Theorem 7 by inequalities and we shall 
assume the recursiveness of V. 

Theorem 9. Let V c X* x TV be a set having the following properties: 

(a) The set Vis recursive. 
(b) For every natural m >. 1, we have the inclusion Vm+1 cz Vm. 
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(c) For all natural n > m _ 1, we have 

card {xe X* | l(x) = n, mv(x) = m) ^ p"-m~l . 

Under these assumptions the set Vis a representable M — L test. 

Proof. In view of Theorem 3, all it remains to prove is the fact that V is a M — L 
test. This can be done using the equality (**) in the proof of Theorem 6, which yields 

n - 1 

card {x e X* | l(x) = n, (x, m) e V} = £ c a r d {* e x* | '(*) = »> »v(x) = J) ^ 

^p»-i--=(p"-»-l)l(P-l). • 
j = m 

3. REMARKS AND OPEN PROBLEMS 

Our representability theory (see also [2]) is an attempt to compare Kolmogorov's 
complexity theory of strings which uses algorithms [3] with P. Martin-Lof's com
plexity theory of strings which uses M - L tests [5]. We have already seen that there 
exist non-representable M - L tests [2], i.e. these theories are not equivalent. For 
instance, take p = 2, X = {0, 1} and V = {(000,1), (010,1), (111,1)}. 

In this direction we could obtain the following result concerning recursive sets: 
If we call K-test a set V cz X* x N having properties (a), (b) and (c) in Theorem 9, 

then Kolmogorov's complexity theory and P. Martin-Lof's complexity theory done 
only with AT-tests are equivalent. This means that for every p.r. function cp : X* x 
x N A X* we can obtain the K-test V(q>) and for every K-test V cz X* x At we can 
obtain a p.r. function <p : X* x i V - ^ I * such that V = V((p) (see Example 10 in [ l ] , 
Theorems 3, 4 and 9). 

We set the following natural open problems: 

A) Does the equivalence (l)<s>(2) in Theorem 3 hold also for non-recursive M—L 
tests V? Equivalently, does the result in Theorem 9 hold also for non-recursive 
M-L tests V? 

B) Does the result in Theorem 2 hold also for non-recursive M — L tests V? 

(Received December 10, 1982.) 
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