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CONTROLLABILITY OF A CLASS 
OF NONLINEAR SYSTEMS 
WITH DISTRIBUTED DELAYS IN CONTROL 

K. BALACHANDRAN, D. SOMASUNDARAM 

Sufficient conditions for global relative controllability of a class of nonlinear time varying 
systems with distributed delays in the control and implicit derivative are given. The results are 
obtained by using the measure of noncompactness of a set and the Darbo fixed point theorem. 

1. INTRODUCTION 

In the study of economic, biological and physiological systems as well as electro
magnetic systems composed of subsystems interconnected by hydraulic, mechanical 
and various other linkages, one encounters phenomena which cannot be readily 
modelled unless relations involving time delays are admitted. Examples of such 
models have been given in [8], which also includes the systems considered here. 
In particular, models for systems with delay in the control occur in the study of gas-
pressurized bipropellant rocket systems, in population models and in some complex 
economic systems [3]. More specifically, models for systems with distributed delays 
in the control occur in the study of agricultural economics [2] and in population 
dynamics [1]. We shall consider the nonlinear systems which are perturbations 
of linear systems. 

Using the measure of noncompactness of a set and Darbo's fixed point theorem, 
controllability of nonlinear systems with implicit derivative has been studied by 
Dacka [4]. In [5] Dacka has extended the method to other types of nonlinear systems 
with delays in control and implicit derivative. Controllability of nonlinear systems 
with distributed delays in control has been considered by Klamka [6, 7], with the 
aid of Schauder's fixed point theorem. In this paper we shall examine the control
lability of nonlinear systems with distributed delays in control and implicit derivative 
by the method of Dacka. 
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2. MATHEMATICAL PRELIMINARIES 

Let(Z, I. ||) be a Banach space and Ea bounded subset of X. In this paper the follo
wing definition of the measure of noncompactness of a set E is used [4, 9] 

/((E) = inf {r > 0; E can be covered by a finite number of balls 

whose radii are smaller than r} . 

The following version of Darbo's fixed point theorem being a generalisation of 
Schauder's fixed point theorem shows the usefulness of the measure of noncompact
ness. "If S is a nonempty bounded closed convex subset of X and P : S -> S is 
a continuous mapping such that for any set E c S we have 

(1) fL(PE) < k >i(E) 

where k is a constant 0 <. k < 1, then P has a fixed point". 
For the space of continuous functions C„[t0, t{\ the measure of noncompactness 

of a set E is given by 

(2) /<(£) = i w0(E) = i lim w(E, h) 

where w(E, h) is the common modulus of continuity of the functions which belong 
to the set E, that is 

(3) w(E, h) = sup [sup \x(t) - x(s)\ : \t - s\ g h] 
xeE 

where as in the space of differentiable functions C„Tto> ti] we have 

(4) n(E) = iw0(DE) 

where 
DE = {x : x e E} 

If the space X is the Cartesian product X = Xt x I 2 o f two spaces Xt and X2, 
then for any set E c X 

H(E) = max [>(£.). fi(E2)] 

where Et and E2 denote the natural projections of E onto Xj and X2 respectively. 
Let h > 0 be a given real number. For functions w : [t0 — h, r j -» Rm and 

f e [/o, t{\, let M( denote the function on [ — h, 0) defined by w,(s) = w(f + s) for 
s e [— h, 0). Furthermore if the function o(s) is of bounded variation on [-h, 0], 
then the symbol Var a(s) will denote the variation of the function g(s) on the interval 

[-A.0] 
[— h, 0]. The integrals are in the Lebesque-Stieltjes sense [6]. 
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3. STATEMENT OF THE PROBLEM 

Let us consider the nonlinear time varying system with distributed delays in the 
control represented by the following differential equation 

(5) x(t) = A(i) x(t) + f d5 B(t, s) u(t + s)+ f(t, x, x, u) 

satisfied everywhere on the interval [/0, t{\, and where x(i) e R", u(t) is an m-dimen-
sional control vector and u e Cm[t0 — h, f,], A(f) is the n x n matrix whose elements 
are continuous in t and j(f, x, x, u) is an n-dimensional continuous function in its 
arguments. The matrix B(t, s) is an n x m dimensional, continuous in t for fixed s 
and is of bounded variation in s on [— h, 0] for each (6 [(0, (,] and continuous 
from left in s on the interval (—h, 0). The symbol ds in (5) denotes that the integral 
is in the Lebesque-Stieltjes sense. Assume that 

(6) | A ( t ) | [ ^ M , \\B(t,s)\\^N for each se[-h, 0] 

\f(t, x, y, u)\ ^ K for t e [t0, (:J and x, y e R", u e Rm 

where M, N and K are positive constants. Further for every y, y e R" and x e R", 
ue R"', te [t0, tj] 

(7) \f(t,x,y,u)-f(t,x,y,u)\ < k\y - y\ 

where k is a positive constant such that 0 :g k < 1. The following definition of the 
complete state of the system and global relative controllability are assumed [6]. 

Definition 1. The set z(t) = {x(t), u,} is said to be the complete state of the system 
(5) at time t. 

Definition 2. The system (5) is globally relatively controllable on [t0, ?,] if for every 
complete state z(t0) and every xr e R" there exist a control u(t) defined on [f0, t^\ 
such that the corresponding trajectory of the system (5) satisfies the condition x(tj) = 
= xv 

The solution of the system (5) is given by 

(8) x(t) = F(t, t0) x(t0) + f F(t, x) f f° d5 B(x, s) u(x + sj\ dr + 

+ | F(t,x)f(x,x,x,u)dx 
J to 

where F(t, t0) is the transition matrix of the system x(t) = A(t) x(t) with F(t0, t0) = /. 
The second term in the right hand side of (8) contains the values of u(t) for t < t0 

as well as for t > t0. The values of the control u(t) for t e[t0 — h, i0) enter into the 
definition of the initial complete state z(t0). This can be separated by changing 
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the order of integration and using the unsymmetric Fubini theorem, we have the 
following equalities [6, 7] 

x(t) = F(t, t0) x(t0) + F(t, x)f(x, x, x, u) dx + 
J to 

+ [° dDs ( f (F(t, T) B(X, S) u(x + S) dx\ = 

(9) = F(t, t0) x(t0) + P F(t, T)/(T, x, x, u) dx + 

+ [ d&([° F(t,x-s)B(x-s,s)utodx\ + 

+ [ dBs( [ F(t, x - s) B(x - s, s) «(T) dT^ 

where dBs denotes that the integration is in the Lebesque-Stieltjes sense with respect 
to the variable s in the function B(t, s). 

Let us introduce the following notation. 

Hence x(t) can be expressed in the following form 

x(t) = F(t, t0) x(t0) + [ F(t, x)f(x, x, x, u) dx + 

(11) + [ dBs( f° F(t, x - s) B(x - s, s) ut0 dx\ + 

+ [ dBs (I' F(t, x - s) Bt(x - s, s) u(x) dx\ 

Using again unsymmetric Fubini's theorem, the equality (11) can be rewritten as 
follows 

(12) x(t) = F(t, t0) x(t0) + [ F(t, T)/(T, x, x, u) dx + 
J to 

+ [° dBs ( r F(t, x - s) B(x - s, s) 11.0 dT^ + 

+ f ( [ F(t, x ~ s)ds Bt(x - s, s)\ u(x) dx 
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Now let us consider the solution x(r) of system (5) for t = tt 

(13) x(h) = F(tu t0) x(t0) + [ ' F(tlt T ) / (T , x, x, u) dT + 
J to 

+ f dBsfr F{ti,T-s)B(T-s,s)utodT\ + 

+ f" ( f F(tu T - d) ds B„(T - S, S)\ U(T) dT 

For brevity let us introduce the following notations 

(14) S(tux)= f E((l,T-S)dsE(l(T-S,5) 

and 

(15) <5f(z(/0), x( t l)) = x. - E(ri, r0) x(/0) - [ ' F(r1, T ) / ( T , x, x, «) dr -
Jfo 

- [ dflf p E(lX, T - s) 5(T - s, s) u,0 dx\ 

Define the controllability matrix W(t0, tt) by 

(16) W(to,ti)= f's(ti,T)S'(ti^)dT 
J to 

where the prime indicates the matrix transpose. 

Remark. It should be noted that under the assumption that the function / satisfies 
the Lipschitz condition with respect to the state variables, the response is uniquely 
determined by any control. 

4. MAIN RESULT 

Theorem. Given the system (5) with conditions (6) and (7). Assume that the matrix 
W ĵo, t±) is non-singular for tx > t0. Then the system is globally relatively controllable 
on [r0, i ,]. 

Proof. The proof of the theorem is similar to the proof given in [4] and hence 
it will be only sketched. Let us consider the Banach space. 

B[t0, h] = Cm[t0, t j x Cl\t0, t{\ . 

Define the following nonlinear mapping of the space B. 

T([u,xJ)(t)=[Tl([u,x-])(t),T2([u,x-])(t)-] 
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where the pair of operators Tx and T2 is defined as follows 

(17) T,([w, x]) (f) = S'(tu t) W~\t0, f.) q(z(t0), x,) 
and 

T2([«, x]) (t) = F(f, t0) x(t0) + P E(f, x)f(x, X, X, Ii([fi, x])) dT + 
J to 

+ | d * ( T F(t,x-s)B(x-s,s)utodx} + 

+ f S(t,x)T1([u,x])(x)dx 
J (o 

(here z(t0) and xx are chosen arbitrarily). It is easy to see that the operator Tis con
tinuous, since all the functions involved in the definition of T are continuous and 
it transforms the space B\t0, f.] into itself. 

Consider the closed convex subset of B 

(19) H = {[«, x] : ||«|| < 7V,, ||xj| < N2, \\Dx\\ < N3} 

since the Lebesque-Stieltjes integral is finite, the positive constants NUN2 and JV3 

are defined by 

(20) /V. = K2lW~\t0, t0|| [|xj| + exp (M(tl - t0)) \x(i0)\ + 

+ (tl -f0)Kcxp(2M(tl - tofi + Ki] 

(21) N2 = exp (M(f. - f0)) |*(to)| + K(t, - t0) exp (M(f. - f0)) + 

+ Kt +(t, -t0)K2Nt 

(22) Â 3 = MN2 + NNXK3 + K 

K, = I f° dJT F(tl, x - s) B(x - s, s) ut0 dx\ 
IIJ-A \Jto + s I 

K2 = max |S(fi,T)|| , K3 = max Var 5(^5) 
IOSISII to^t^t, sel-h,0) 

The set H is bounded, closed and convex in B. The operator T transform H into H. 
It is easily seen that for each pair [«, x] e H we have 

(23) w(T.[«, x]), h) < w(S', h) a 
where 

a= sup {|^-i(f0,/1)|.2(z(f0),x1)} 

Since the function 5 does not depend on the choice of the points in H, all the functions 
T!([M, x)] (f) have a uniformly bounded modulus of continuity, hence, they are 
equicontinuous. 
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All the functions T2([u, x\) (t) are also equicontinuous, since they have uniformly 
bounded derivatives. Now we shall find an estimate of the modulus of continuity 
of the functions DT2([u, x\) (t). 

\DT2([u, x\) (0 - DT2([u, x\) (0| S \A(t) T2([u, x]) (t) - A(t) T2([u, x\) (t)\ + 

(24) f ° ds B(t, s) T,([u, x\) (t + s)- f ds B(l, s) T([«, x\) ( 
J - / i J - / i 

ï + s) \ + 

+ \f(t, x(t), x(t), T,([u, x\) (0) - f(i, x(t), x(t), Tt([u, x\) (0)1 

For the first two terms of the right hand side of inequality (24) we may give the 
upper estimate as po(\t - t\), where fi0 is a non-negative function Mich that 
lim f)0(h) = 0 and that it may be chosen independently of the choice of the element 

ft-0 + 

[u, x\ e H. In the same manner we find that the last term on the right of (24) can be 
estimated from above by k\x(t) — x(l)\ + f}t(\t — /|). Letting p = /?0 + /?3 we 
finally obtain 

(25) w(DT2([u, x\), h) ^ kw(Dx, h) + fi(h) 

Hence by (2) and (3) we conclude that for any set E <= H 

w0(T1E) = 0 and w0(T2E) g kw0(DE2) 

where E2 is the natural projection of the set E on the space Cl[t0, tt\. Hence, it 
follows that 

^(TE) g k /((£) . 

By the Darbo fixed point theorem the mapping Thas at least one fixed point, therefore 
there exists functions u* e Cm[t0, fj] and x* e C'[t0, tt\ such that 

(26) u*(t)= T([M*,x*])(0 

(27) x*(t)=T2([u*,x*\)(t) 

Substituting this fixed point into (17) and (18), a direct differentiation of (18) with 
respect to t shows that x*(t) is a solution to the system (5) for the control u*(t). It 
is easy to verify that the control u *(t) steer the system (5) from the complete initial state 
z(t0) to *! e R", on the interval [t0, tt\ and since z(t0) and x1 have been chosen 
arbitrarily, then by Definition 2, system (5) is globally relatively controllable on 
[to, ti]- • 

5. CONCLUSION 

Using the measure of noncompactness of a set and Darbo's fixed point theorem 
sufficient conditions fot global relative controllability of nonlinear systems with 
distributed delays in control and implicit derivative have been derived. 

(Received August 19, 1982.) 
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