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ON THE DECOUPLING OF ONE CLASS 
OF MULTIVARIABLE SYSTEMS 

MIROSLAV LOSENICKY 

In the paper a sufficient condition for the decoupling of one class of linear multi-input, multi-
output systems is derived. It is much easier to verify this condition than to calculate the Falb-
Wolovich's test for decoupling. 

1. INTRODUCTION 

The problem of transforming a multivariable system to a decoupled form can be 
principally treated by two approaches. The first one employs the knowledge of the 
internal system structure, and an appropriate state feedback compensating the undesir
able interactions is constructed. Obviously, such a feedback also affects the dynamics 
of the considered system. The second approach is based on the external frequency 
domain description of the system. The internal structure of the system remains 
unchanged, only suitable compensators are constructed in such a way that the overall 
system is decoupled from the external point of view. 

In this paper we focus our attention on the simplest problem of decoupling by static 
state feedback into single-input single-output subsystems. 

2. BASIC PROBLEM 

Let us consider an r-input, r-output, n-dimensional linear system 

x(i) = Ax(t) + Bu(t) 

(I) S(A,B,C): 

Y(t) = Cx(t) x(t0) = 0 

where A, B and C are real constant matrices, respectively nxn, nxr, rxn and 
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denote by 

(2) S(p)=C(pl-A)-iB 

its transfer matrix. 

We say that S(A, B, C) is decoupled if S(p) is diagonal and nonsingular, i.e. a com

ponent «; of u does not affect any component }'j,j =f= i, of y but it does affect the yt 

in the sense that 

(3) rank C[B, AB,..., A"~ *B] = r . 

The decoupling thus means non-interaction and output controllability, and it is not 

a generic property of the system. 

The problem of decoupling by static state feedback (Morgan's problem, see [7]) 

then consists in determining a control law 

(4) u(t) = Rx(t) + Qv(t) 

such that the close-loop system with the transfer matrix 

(5) S(p) = C(pl - A - BR)-1 BQ 

be decoupled. 

For every component yt of the vector y it is possible to find a number di defined as 

(6) dt = min {x : CtA
y . B # 0, x =» 0 , 1 , . . . , n - 1} 

(6a) di - n - 1 . . . if s;(f) = 0 . 

Physically the coefficient dt denotes the lowest non-zero derivative of the ith coordin

ate of the impulse response vector s(t) at the time t = 0. When introducing the 

constants 3 ; analogically for the closed-loop system, then it can be proved that 

(7) di = di 

The criterion of decoupling derived by Falb and Wolovich can be summarized as 

follows: 

Theorem VF_W. Let the system S be output controllable. Then S can be decoupled 

by static state feedback if and only if 

~CxA
ilB~ 

det BD = det Ф 0 . 
CrA

d*B 

The decoupled system S can be described by the transfer matrix 

(9) % ) = diag[S ; ; (p)] ; = 1  

and it always holds 

(10) tdi + r^n. 
i = i 
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3. CONSTRUCTION OF A MORE SIMPLE CRITERION 

The test for decoupling by means of VF_W is difficult especially in the case of higher 
order systems. So we shall try to simplify the above general criterion for some special 
cases. 

We make the following assumptions: 
(a) system S is of nth order with r inputs and r outputs 
(b) dt * n - 1 for i = 1, 2, ..., r 
(c) S is output controllable that means 

(11) rankP- = rank [CB, CAB,..., CAa~lB] = r . 

Relation (11), enabling us to determine the constants du d2, ..., dr by inspection, 
is obviously equivalent to the condition 

(12) det S(p) * 0 . 

As S(p) represents a matrix of dimension r x r, then it holds 

rank S(p) = r = rank C(pl — A) x B ^ min {rank C, rank 8} (13) 

and so 

(13a) rank C = r . . . corresponds to the requirement of independent outputs , 

(13b) rank B = r ... corresponds to the requirement of independent inputs . 

The relation (8) in the Falb-Wolovich's test of decoupling can be expressed not only 
in the form 

'C^B] 
det ß„ = 

CЛd'B 
*o 

but also as 

(14) rank 

C. 0 0 0 ... 0 
0 C2 0 0 ... 0 

0 0 0 0 ... cr 

A-'" 
A d 2 

. ß 

Á"' 

rank Č = r 

As in (14) 

(15) 

and taking into account the necessary condition (13b) it also holds 

(16) rank '. 
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This condition represents a necessary but not sufficient condition for decoupling. 
Notice that for 

(17) d. = d2 = . . . = dr = d* 

condition (16) can be written as 
(18) rank Ad* ^ r . 

The simplification of the general Falb-Wolovich's test for some special cases can be 
carried out on the basis of the matrix analysis. Using some manipulations (11) can be 
written as 

(19) 
C.Bj C.AB] 

CB\ : 

C ^ ß ! 

CЛd'B 

C.A--1* 

CЛ" iß 

The case when the equality takes in (10), i.e. when the state feedback can affect 
the layout of all poles of the system, can be considered as a special case within multi-
variable systems. 

Let us suppose that besides the equality in (10) also (17J holds. Then (19) takes 
the form 

0 0 0 CtA
d*B ... C^-iBl 

(20) py= ; ; ; ; 
0 0 0 CrA

d*B ... C . A ^ B j 

Obviously in (20) the column vectors of the matrix B of the system S(A, B, C) are 
orthogonal to all row vectors of the matrices C, CA, ..., CAd*1, p o r a decoupled 
system it must hold 

(21) rank C = rank CA = rank CA2 = ... = rank CAd*~l = r . 

Now let us prove the following statement. 

Lemma. Let the following hold for the system S(A, B, C) given by (l) 
(i) rank Py = r 

(ii) fjdi + r = n 
i-i 

(iii) relation (17) is satisfied. 
Then 

C, 
c, 

(22) rank 
C r 

ČľÃ"-"1 

ČA"--1 

= d* . r 
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Proof. As (21) holds it suffices to prove the linear independence of row vectors 
associated with different powers of the matrix A. 

Let us suppose that the row vector CtA
J of the matrix on the left hand side of (22) 

can be expressed as 

(23) 
2 = 1 

BDi = C^B = C,AJ+mA = _] {XqCfA") . AmB 
2 = 1 

/ e < l , . . . , r > , h+j, h<\d*-l. 

Then, according to (8), each row of the matrix BD can be expressed as 

(24) 

j + m = d* . 

However 

(25) h + m * d* 

that contradicts to (ii). Hence relation (22) holds. D 

Recalling the rows in (22) are linearly independent (so they represent d*. r vectors 
of a basis of the linear n-dimensional vector space), the columns of the matrix B are 
orthogonal to all basis vectors and due to (13b) they can also represent the rest of r 
basis vectors. The same role can be performed also by the r row vectors CxA

d',... 
..., CrA

d*. Both above mentioned sets of r vectors describe the same sub-space of the 
dimension r. Hence no set with more than r linearly independent elements can be 
found in this space and some entries of the matrix BD (those which are scalar products 
of the row vectors CtA

d*, i = 1,2,..., r, with the column vectors of the matrix B) 
must be non-zero. 

Theorem 1. Let the assumptions (i), (ii), (iii) of the Lemma be fulfilled. Then the 
system S(A, B, C) can be decoupled. 

Proof. If (22) holds then the column of the matrix B are orthogonal to the row 

vectors of the matrix 

"CJ. 

_CrA
d*-\ 

Moreover the elements of the columns of the matrix B in the subspace of dimension 
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d* . r (generated by the vectors C l s . . . , CrA
d* *) are uniquely determined. Denote 

(26) C2A
d* ! a 2 ! 

: = B = [bx | b2 | . . . | b r] 
CrA

d*J [«, 

Thus a ;'s correspond to the row vectors, b ; 's to the column vectors (i = 1, ..., r) 

and each element of the matrix BD can be expressed as 

(27) BDkl = « t . b t . 

Denoting the columns of the matrix BD by 

(28) B D = [bDi \bD2\... \ bDr] 

then it can be written 

(29) b„ = • b , . 

Now we shall investigate the singularity condition of the matrix BD. In case BD is 

non-singular the columns bD., i — \, ...,r must be linearly independent and so 

(30) - 4 = X я/ • ьD; = 
J = l 
/ ф j 

• («i • ЬŁ + . . . + ar.br) 

af = linear combination coefficients 
Comparing (29) and (30) we get 

(31) bj = j]af.bf 
/ = i 
f*j 

and this contradicts to the assumption of output controllability and the independent 
of inputs. The theorem has been proved. • 

The proof can be carried out also by using the rows of BD. 
It can be shown that Theorem 1 holds even in the more general case, when the 

relation (17) is not satisfied. The proof can be done in the same way and is based 
on the equation 

"Cl 

C.A"'-1 

Cr~ 

(32) rank = ľ.dt 

465 



Let us then summarize: 

Theorem 2. Every output controllable system S(#4, B, C) satisfying £ dt + r = n 

can be decoupled. i = 1 

Theorems 1 and 2 substantially simplify the test of decoupling of one class of multi-

variable systems. 

Note. It results from the text that the test for decoupling expressed by Theorem 1 

or Theorem 2 is effective only in special case of the multivariable systems. If the 

system under study does not meet the assumptions of Theorem 1 or 2, the Falb-

Wolovich's criterion, which is more difficult to use, must be applied. 

4. CONCLUSION 

Theorem 2 gives a sufficient condition for decoupling of one class of multivariable 

systems. When applicable, this condition is much easier to verify than the general 

criterion formulated by Falb and Wolovich in [ l ] . 
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